首页 > 论文发表知识库 > 矩阵的几毕业论文

矩阵的几毕业论文

发布时间:

矩阵的几毕业论文

我的毕业论文题目是矩阵的乘法及其应用~个人感觉相当简单~我是数学与应用数学专业

(1)逐个输入矩阵,如:A=[1 3 2; 1/3 1 2; 1/2 1/2 1](2)用函数eig,如:[VA,DA]=eig(A)VA为特征向量矩阵,每列一个特征向量,DA为对角矩阵,每个对角线元素为一个特征值。(3)最大特征根是最大特征值吧?运算结果DA= + + + + + + + + - 所以A矩阵的最大特征根为.(4)其他矩阵类推。

积分变量,就是d后面的那个变量,仅仅在积分号里面有效,可以根据需要改写成不同的符号,只要在积分号里面不冲突即可,这是积分的基本性质。例如:∫f(x)dx = ∫f(y)dy = ∫f(z)dz

毕业论文中的矩阵阵表

可以插入一个表格(像上图所示表格,可以插入一个三列三行的表格),然后在格式里找边框和底纹,然后在里面可以设置(如上图,可以设置让表格的竖线不显示),让你不想让显示出来的边框显示不出来,打印出来以后就是上图效果,在word里显示为颜色较浅的线段,但是打印出来是没有的,不知我说清楚了没有,呵呵,个人认为这样是最好的办法,便于以后修改,呵呵

1、在电脑上打开word应用程序,在界面的右上角找到公式选项,并点击打开。2、在跳转的公式编辑器界面中插入矩阵外边的括号。3、插入里面的行和列,点击,会出来一个矩阵对话框,我们在里面输入行数和列数。4、在跳转的矩阵界面中,输入矩阵的相关参数。5、之后在矩阵图中输入数字即可。

matlab两个矩阵的相关性的分析方法:用corrcoef(X,Y) 函数实现两个矩阵的相关性的分析。函数格式 : corrcoef(X,Y) ;函数功能:其中%返回列向量X,Y的相关系数,等同于corrcoef([X Y]);函数举例:在命令窗口产生两个10×3阶的随机数组x和y,计算关于x和y的相关系数矩阵:x=rand(10,3);y=rand(10,3);cx=cov(x)cy=cov(y)cxy=cov(x,y)px=corrcoef(x)pxy= corrcoef(x,y)

矩阵的秩毕业论文

这个问题也不太难啊,你可以向你的学长和学姐们请教一下,或者向你的老师问问

线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。 线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。 线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易. 一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。 线性代数的概念很多,重要的有: 代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。 我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。 线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有: 行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。 二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。 线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。 例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有 r(B)≤n-r(A)即r(A)+r(B)≤n 进而可求矩阵A或B中的一些参数 上述例题说明,线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。 三、注重逻辑性与叙述表述 线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。

告诉你拟就会写吗。不如我给你写得了

计算矩阵的秩的一个有用应用是计算线性方程组解的数目。如果系数矩阵的秩等于增广矩阵的秩,则方程组只要有一个解。在这种情况下,它有精确的一个解,如果它的秩等于方程的数目。如果增广矩阵的秩大于系数矩阵的秩,则通解有 k 个自由参量,这里的 k 是在方程的数目和秩的差。否则方程组是不一致的。行吧?

可逆矩阵的毕业论文

Decision method of matrix invertibility and method to find the inverse of matrixDigest: In advanced algebra, matrix theory is one of the main aspects of linear algebra, as well as an important tool to help solving practical problems. In most of the matrix theorems and applications, the inverse of matrix plays a significant part. This paper shows different ways to decide whether a matrix is invertible, methods of finding the inverse of both general matrix and one particular set of matrices, and also how to find the inverse of matrix by Excel or : inverse of matrix, adjoint matrix, elementary transformation

一般有2种方法。 1、伴随矩阵法。A的逆矩阵=A的伴随矩阵/A的行列式。 2、初等变换法。A和单位矩阵同时进行初等行(或列)变换,当A变成单位矩阵的时候,单位矩阵就变成了A的逆矩阵。 第2种方法比较简单,而且变换过程还可以发现矩阵A是否可逆(即A的行列式是否等于0)。 伴随矩阵的求法参见教材。矩阵可逆的充要条件是系数行列式不等于零。

逆矩阵就是乘原矩阵得到单位矩阵的矩阵(无论左乘还是右乘).不是所有的矩阵都有逆矩阵,没有逆矩阵的矩阵称为奇异矩阵.矩阵的逆运算可以类比为数的除法,不过要注意左乘还是右乘.逆矩阵在矩阵理论有重要意义,也可以用来解线形方程组.

1.公式法:A^(-1)=1/|A|*(A*),这就是一楼的伴随矩阵法..2.利用初等变换,行列都可以的,只有在解线性方程组时不能列变换...3.分块求逆;4.运用推论:只要找出一个B,使AB=E,A就是可逆的... 设A^2=2E,则(A+E)(A-E)=E, 所以(A+E)和(A-E)都可逆..

正定矩阵的毕业论文

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

学术论文后一般应列出参考文献(表),其目的有三,即:为了能反映出真实的科学依据;为了体现严肃的科学态度,分清是自己的观点或成果还是别人的观点或成果;为了对前人的科学成果表示尊重,同时也是为了指明引用资料出处,便于检索。毕业论文的撰写应本着严谨、求实的科学态度,凡有引用他人成果之处,均应按论文中所出现的先后次序列于参考文献中,并且只列出正文中以标注形式引用或参考的有关著作和论文,参考文献应按正文中出现的顺序列出直接引用的主要参考文献。致谢按照GB7713-87的规定,致谢语句可以放在正文后,体现对下列方面致谢:国家科学基金、资助研究工作的奖学金基金、合同单位、资助和支持的企业、组织或个人;协助完成研究工作和提供便利条件的组织或个人;在研究工作中提出建议和提供帮助的人;给予转载和引用权的资料、图片、文献、研究思想和设想的所有者;其他应感谢的组织和人。在我们的毕业论文中的致谢里主要感谢导师和对论文工作有直接贡献及帮助的人士和单位。附录对于一些不宜放入正文中、但作为毕业论文又是不可缺少的部分,或有重要参考价值的内容,可编入毕业论文附录中。例如问卷调查原件、数据、图表及其说明等。

一. 定义 因为正定二次型与正定矩阵有密切的联系,所以在定义正定矩阵之前,让我们先定义正定二次型: 设有二次型 ,如果对任何x 0都有f(x)>0( 0) ,则称f(x) 为正定(半正定)二次型。 相应的,正定(半正定)矩阵和负定(半负定)矩阵的定义为: 令A为 阶对称矩阵,若对任意n 维向量 x 0都有 >0(≥0)则称A正定(半正定)矩阵;反之,令A为n 阶对称矩阵,若对任意 n 维向量 x≠0 ,都有 <0(≤ 0), 则称A负定(半负定)矩阵。 例如,单位矩阵E 就是正定矩阵。 二. 正定矩阵的一些判别方法 由正定矩阵的概念可知,判别正定矩阵有如下方法: 阶对称矩阵A正定的充分必要条件是A的 n 个特征值全是正数。 证明:若 , 则有 ∴λ>0 反之,必存在U使 即 有 这就证明了A正定。 由上面的判别正定性的方法,不难得到A为半正定矩阵的充要条件是:A的特征值全部非负。 2.n阶对称矩阵A正定的充分必要条件是A合同于单位矩阵E。 证明:A正定 二次型 正定 A的正惯性指数为n 3.n阶对称矩阵A正定(半正定)的充分必要条件是存在 n阶可逆矩阵U使 ;进一步有 (B为正定(半正定)矩阵)。 证明:n阶对称矩阵A正定,则存在可逆矩阵U使 令 则 令 则 反之, ∴A正定。 同理可证A为半正定时的情况。 4.n阶对称矩阵A正定,则A的主对角线元素 ,且 。 证明:(1)∵n阶对称矩阵A正定 ∴ 是正定二次型 现取一组不全为0 的数0,…,0,1,0…0(其中第I个数为1)代入,有 ∴ ∴A正定 ∴存在可逆矩阵C ,使 5.n阶对称矩阵A正定的充分必要条件是:A的 n 个顺序主子式全大于零。 证明:必要性: 设二次型 是正定的 对每个k,k=1,2,…,n,令 , 现证 是一个k元二次型。 ∵对任意k个不全为零的实数 ,有 ∴ 是正定的 ∴ 的矩阵 是正定矩阵 即 即A的顺序主子式全大于零。 充分性: 对n作数学归纳法 当n=1时, ∵ , 显然 是正定的。 假设对n-1元实二次型结论成立,现在证明n元的情形。 令 , , ∴A可分块写成 ∵A的顺序主子式全大于零 ∴ 的顺序主子式也全大于零 由归纳假设, 是正定矩阵即,存在n-1阶可逆矩阵Q使 令 ∴ 再令 , 有 令 , 就有 两边取行列式,则 由条件 得a>0 显然 即A合同于E , ∴A是正定的。 三. 负定矩阵的一些判别方法 1.n阶对称矩阵A是负定矩阵的充分必要条件是A的负惯性指数为n。 2.n阶对称矩阵A是负定矩阵的充分必要条件是A的特征值全小于零。 3.n阶对称矩阵A是负定矩阵的充分必要条件是A的顺序主子式 满足 , 即奇数阶顺序主子式全小于零,偶数阶顺序主子式全大于零。 由于A是负定的当且仅当-A是正定的,所以上叙结论不难从正定性的有关结论直接得出,故证明略。 四.半正定矩阵的一些判别方法 1. n阶对称矩阵A是半正定矩阵的充分必要条件是A的正惯性指数等于它的秩。 2. n阶对称矩阵A是半正定矩阵的充分必要条件是A的特征值全大于等于零,但至少有一个特征值等于零。 3. n阶对称矩阵A是负定矩阵的充分必要条件是A的各阶主子式全大于等于零,但至少有一个主子式等于零。 注:3中指的是主子式而不是顺序主子式,实际上,只有顺序主子式大于等于零并不能保证A是半正定的,例如: 矩阵 的顺序主子式 , , , 但A并不是半正定的。 关于半负定也有类似的定理,这里不再写出。

  • 索引序列
  • 矩阵的几毕业论文
  • 毕业论文中的矩阵阵表
  • 矩阵的秩毕业论文
  • 可逆矩阵的毕业论文
  • 正定矩阵的毕业论文
  • 返回顶部