首页 > 论文发表知识库 > 可逆矩阵的毕业论文

可逆矩阵的毕业论文

发布时间:

可逆矩阵的毕业论文

Decision method of matrix invertibility and method to find the inverse of matrixDigest: In advanced algebra, matrix theory is one of the main aspects of linear algebra, as well as an important tool to help solving practical problems. In most of the matrix theorems and applications, the inverse of matrix plays a significant part. This paper shows different ways to decide whether a matrix is invertible, methods of finding the inverse of both general matrix and one particular set of matrices, and also how to find the inverse of matrix by Excel or : inverse of matrix, adjoint matrix, elementary transformation

一般有2种方法。 1、伴随矩阵法。A的逆矩阵=A的伴随矩阵/A的行列式。 2、初等变换法。A和单位矩阵同时进行初等行(或列)变换,当A变成单位矩阵的时候,单位矩阵就变成了A的逆矩阵。 第2种方法比较简单,而且变换过程还可以发现矩阵A是否可逆(即A的行列式是否等于0)。 伴随矩阵的求法参见教材。矩阵可逆的充要条件是系数行列式不等于零。

逆矩阵就是乘原矩阵得到单位矩阵的矩阵(无论左乘还是右乘).不是所有的矩阵都有逆矩阵,没有逆矩阵的矩阵称为奇异矩阵.矩阵的逆运算可以类比为数的除法,不过要注意左乘还是右乘.逆矩阵在矩阵理论有重要意义,也可以用来解线形方程组.

1.公式法:A^(-1)=1/|A|*(A*),这就是一楼的伴随矩阵法..2.利用初等变换,行列都可以的,只有在解线性方程组时不能列变换...3.分块求逆;4.运用推论:只要找出一个B,使AB=E,A就是可逆的... 设A^2=2E,则(A+E)(A-E)=E, 所以(A+E)和(A-E)都可逆..

广义逆矩阵的研究毕业论文

如下:

线性方程组:A(mxn)X = b ------ (1)

A是m行n列(m>n)的行列式:A'是A的转置矩阵,将(1)变成

(A'A)X = A'b - - - - (2)

(A'A)是nxn阶方阵,它的逆矩阵称为广义逆矩阵。

(A'A)行列式不为零,方程组(2)有唯一解,且与(1)的最小二乘解相对应!此结论的证明也不复杂。

思想:

广义逆的思想可追溯到1903年(E.)I.弗雷德霍姆的工作,他讨论了关于积分算子的一种广义逆(他称之为伪逆)。

1904年,D.希尔伯特在广义格林函数的讨论中,含蓄地提出了微分算子的广义逆。而任意矩阵的广义逆定义最早是由.穆尔在1920年提出的,他以抽象的形式发表在美国数学会会刊上。

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

线性方程组:A(mxn)X = b ------ (1)A是m行n列(m>n)的行列式:A'是A的转置矩阵,将(1)变成(A'A)X = A'b - - - - (2)(A'A)是nxn阶方阵,它的逆矩阵称为广义逆矩阵。(A'A)行列式不为零,方程组(2)有唯一解,且与(1)的最小二乘解相对应!此结论的证明也不复杂。

注:下文中^后面的内容为上标广义逆矩阵是对逆矩阵的推广。 若A为非奇异矩阵,则线性方程组Ax=b的解为x=A^(-1)b,其中A的逆矩阵A^(-1)满足A^(-1)A=AA^(-1)=I(I为单位矩阵)。若A是奇异阵或长方阵,Ax=b可能无解或有很多解。若有解,则解为x=Xb+(I-XA)у,其中у是维数与A的列数相同的任意向量,X是满足AXA=A的任何一个矩阵,通常称X为A的广义逆矩阵,用A^g、A^-或A^(1)等符号表示,有时简称广义逆。当A非奇异时,A^(-1)也满足AA^(-1)A=A,且x=A^(-1)b+(I-A^(-1)A)у=A^(-1)b。故非异阵的广义逆矩阵就是它的逆矩阵,说明广义逆矩阵确是通常逆矩阵概念的推广。存在一个唯一的矩阵M使得下面三个条件同时成立:(1) AMA=A;(2)MAM=M;(3)AM与MA均为对称矩阵。这样的矩阵M成为矩阵A的Moore-Penrose广义逆矩阵,记作M=A(^+).注:^后面的内容为上标 1955年R.彭罗斯证明了对每个m×n阶矩阵A,都存在唯一的n×m阶矩阵X,满足:①AXA=A;②XAX=X;③(AX)*=AX;④(XA)*=XA。通常称X为A的穆尔-彭罗斯广义逆矩阵,简称M-P逆,记作A^+。当A非奇异时,A^(-1)也满足①~④,因此M-P逆也是通常逆矩阵的推广。在矛盾线性方程组Ax=b的最小二乘解中,x=A^(-1)b是范数最小的一个解。若A是n阶方阵,k为满足(图1)的最小正整数(rank为矩阵秩的符号),记作k=Ind(A),则存在唯一的n阶方阵X,满足:(1) AkXA=Ak;(2) XAX=X; (3) AX=XA。 广义逆的思想可追溯到1903年(E.)I.弗雷德霍姆的工作,他讨论了关于积分算子的一种广义逆(他称之为伪逆)。1904年,D.希尔伯特在广义格林函数的讨论中,含蓄地提出了微分算子的广义逆。而任意矩阵的广义逆定义最早是由.穆尔在1920年提出的,他以抽象的形式发表在美国数学会会刊上。当时人们对此似乎很少注意。这一概念在以后30年中没有多大发展。曾远荣在1933年,.默里和J.冯·诺伊曼在1936年对希尔伯特空间中线性算子的广义逆作过讨论。20世纪50年代围绕着某些广义逆的最小二乘性质的讨论重新引起了人们对这个课题的兴趣。1951年瑞典人A.布耶尔哈梅尔重新发现了穆尔所定义的广义逆,并注意到广义逆与线性方程组的关系。.格雷维尔、.拉奥和其他人也作出了重要的贡献。1955年,彭罗斯证明了存在唯一的X=A+满足前述性质①~④,并以此作为 A+的定义。1956年,R.拉多证明了彭罗斯定义的广义逆与穆尔定义的广义逆是等价的,因此通称A+为穆尔-彭罗斯广义逆矩阵。

求逆矩阵的方法毕业论文范文

求逆矩阵的方法,进来学一下吧

若n阶矩阵A可逆,方法如下图:使用此方法的时,首先要判断矩阵A是否可逆,只需求行列式不等于0就可逆。

逆矩阵是设A是一个n阶矩阵,若存在另一个n阶矩阵B,使得:AB=BA=E ,则称方阵A可逆,并称方阵B是A的逆矩阵。单位矩阵的逆矩阵是它本身:AB=BA=E,则A=B-1;B=A-1。相关性质:A与B的地位是平等的,故A、B两矩阵互为逆矩阵,也称A是B的逆矩阵;零矩阵是不可逆的,即取不到B,使OB=BO=E;如果A可逆,那么A的逆矩阵是唯一的;单位矩阵E是可逆的,即E=E-1。

一切一切的一切,都需要计算。

方法: 构造分块矩阵(A,E), 对它进行初等行变换, 把左边一块化成单位矩阵时, 右边一块就是矩阵的逆.原理: 一般教材中都会有例: 求A的逆矩阵A=3 -1 41 0 02 1 -5解: (A,E) = 3 -1 4 1 0 01 0 0 0 1 02 1 -5 0 0 1r1-3r2,r3-2r20 -1 4 1 -3 01 0 0 0 1 00 1 -5 0 -2 1r3+r1, r1*(-1),r3*(-1)0 1 -4 -1 3 01 0 0 0 1 00 0 1 -1 5 -1r1+4r30 1 0 -5 23 -41 0 0 0 1 00 0 1 -1 5 -1r1<->r21 0 0 0 1 00 1 0 -5 23 -40 0 1 -1 5 -1所以 A^-1 = 0 1 0 -5 23 -4 -1 5 -1 满意请采纳^_^.

毕业论文中的矩阵阵表

可以插入一个表格(像上图所示表格,可以插入一个三列三行的表格),然后在格式里找边框和底纹,然后在里面可以设置(如上图,可以设置让表格的竖线不显示),让你不想让显示出来的边框显示不出来,打印出来以后就是上图效果,在word里显示为颜色较浅的线段,但是打印出来是没有的,不知我说清楚了没有,呵呵,个人认为这样是最好的办法,便于以后修改,呵呵

1、在电脑上打开word应用程序,在界面的右上角找到公式选项,并点击打开。2、在跳转的公式编辑器界面中插入矩阵外边的括号。3、插入里面的行和列,点击,会出来一个矩阵对话框,我们在里面输入行数和列数。4、在跳转的矩阵界面中,输入矩阵的相关参数。5、之后在矩阵图中输入数字即可。

matlab两个矩阵的相关性的分析方法:用corrcoef(X,Y) 函数实现两个矩阵的相关性的分析。函数格式 : corrcoef(X,Y) ;函数功能:其中%返回列向量X,Y的相关系数,等同于corrcoef([X Y]);函数举例:在命令窗口产生两个10×3阶的随机数组x和y,计算关于x和y的相关系数矩阵:x=rand(10,3);y=rand(10,3);cx=cov(x)cy=cov(y)cxy=cov(x,y)px=corrcoef(x)pxy= corrcoef(x,y)

可交换矩阵的性质毕业论文

满足乘法交换律的方阵称为可交换矩阵。可交换矩阵的充分条件如下:

1、设A,B至少有一个为零矩阵,则A,B可交换。

2、设A,B至少有一个为单位矩阵,则A,B可交换。

3、设A,B至少有一个为数量矩阵,则A,B可交换。

4、设A,B均为对角矩阵,则A,B可交换。

5、设A,B均为准对角矩阵(准对角矩阵是分块矩阵概念下的一种矩阵。即除去主对角线上分块矩阵不为零矩阵外,其余分块矩阵均为零矩阵),且对角线上的子块均可交换,则A,B可交换。

6、设A可逆,若AB=0或A=AB或A=BA,则可交换。

7、设AB均可逆,若对任意实数K,均有A=(A-K+E)B,则AB可交换。

矩阵简介:

矩阵是高等数学中一个重要内容,在数学领域以及其他科学领域有着重大的理论意义。众所周知,矩阵的乘法在一般情况下是不满足交换律的,即在通常情况下,AB≠BA。

但是,在某些特殊情况下,矩阵的乘法也能满足交换律。可交换矩阵有着很多特殊的性质和重要的作用。把矩阵考虑两个映射的复合,矩阵交换就是这两个映射之间是交换的。

可交换矩阵(也称为交换矩阵)是指在矩阵乘法中满足交换律的矩阵。也就是说,对于任意两个可交换矩阵A和B,都有AB = BA。可交换矩阵的性质研究有多个目的:1. 理论研究:可交换矩阵是一类重要的矩阵,它们在数学中有许多特殊的性质和应用。例如,研究可交换矩阵可以帮助我们更深入地理解矩阵的运算规律、结构和性质,以及它们在数学、物理等领域中的应用。2. 应用研究:可交换矩阵广泛应用于各种学科领域。例如,在量子力学中,哈密顿算符(描述系统的总能量)就是一个可交换矩阵;在图论中,邻接矩阵和度矩阵都是可交换矩阵;在编码理论中,置换矩阵和置换群都是可交换矩阵。研究可交换矩阵的性质,可以帮助我们更好地理解和应用这些知识。3. 算法设计:可交换矩阵有许多特殊的性质,例如,对于可逆矩阵,如果它是可交换矩阵,那么它的行列式一定为正。这些性质可以被应用于算法设计中,例如,用可交换矩阵的性质来简化矩阵计算、加速矩阵求逆等。总之,可交换矩阵的性质研究具有非常重要的理论和应用价值。

满足乘法交换律的方阵称为可交换矩阵,即矩阵A,B满足:A·B=B·A。

可交换矩阵的一些性质

性质1

设A , B 可交换,则有: (1) A·B = B ·A , ( AB) = A B, 其中m , k 都是正整数

(2) A f ( B) = f ( B ) A ,其中f ( B ) 是B 的多项式,即A 与B 的多项式可交换

(3) A - B = ( A - B ) ( A + A B ⋯+B ) = ( A + A B + ⋯+ B) ( A - B)

性质2

设A , B 可交换

(1) 若A , B 均为对合矩阵,则AB 也为对合矩阵

(2) 若A , B 均为幂等矩阵, 则AB , A + B -AB 也为幂等矩阵

(3) 若A , B 均为幂幺矩阵,则AB 也为幂幺矩阵

(4) 若A , B 均为幂零矩阵,则AB , A + B 均为幂零矩阵

扩展资料:

(1)同级运算时,从左到右依次计算;

(2)两级运算时,先算乘除,后算加减。

(3)有括号时,先算括号里面的,再算括号外面的;

(4)有多层括号时,先算小括号里的,再算中括号里面的,最后算括号外面的。

(5)要是有乘方,最先算乘方。

(6)在混合运算中,先算括号内的数 ,括号从小到大,如有乘方先算乘方,然后从高级到低级。

参考资料来源:百度百科-乘法交换律

专题型论文范文。这是分析前人研究成果的基础上,以直接论述的形式发表见解,从正面提出某学科中某一学术问题的一种论文范文。可以的啊,我给你就行。

  • 索引序列
  • 可逆矩阵的毕业论文
  • 广义逆矩阵的研究毕业论文
  • 求逆矩阵的方法毕业论文范文
  • 毕业论文中的矩阵阵表
  • 可交换矩阵的性质毕业论文
  • 返回顶部