首页 > 论文发表知识库 > 有关全等三角形的论文题目

有关全等三角形的论文题目

发布时间:

有关全等三角形的论文题目

1三边全相等2两边和一夹角分别相等3三角分别相等和一对相等

在平常学习中,有许多关于证明全等三角形的问题。 据我现在知道,证明全等三角形的方法就有四种:SSS,SAS,ASA,AAS。唯独不能用的就是SSA,用这种方法证明是完全错误的。现在,我就先分别每一种证明方法列一个题目。 SSS是指有三边对应相等的两个三角形全等。 第一题是SSS证明方法里最简单的。 如图,已知AB=DE,BC=EF,AF=DC,则∠EFD=∠BCA,请说明理由。 证明:∵AF=DC(已知) E ∴AF+FC=DC+FC ∴ AC=DF 在△ABC与△DEF A F ∵ AC=DF(已证) C D AB=DE(已知) DC=EF(已知) ∴△ABC≌△DEF(SSS) B ∴∠EFD=∠BCA(全等三角形的对应角相等) 这是最基础的一道题。。SAS是指有两边和它们的夹角对应相等的两个三角形全等。第一题还是SAS证明方法中最简单的题目。 如图,AC与BD相交于点O,已知OA=OC,OB=OD,说明△AOB≌△COD. 证明:在△AOB与△COD中 A B ∵OA=OC(已知) ∠AOB=∠COD(对顶角相等) O OB=OD(已知) ∴△AOB≌△COD(SAS) D C 这一题是非常的简单但是如果前面的对顶角知识没学好的话,这一题就不会这么轻松了。 ASA是指两角和它们的夹边对应相等的两个三角形全等。 第一题是ASA比较简单的。 如图,已知∠DAB=∠CAB,∠EBD=∠EBC,说明△ABC≌△ABD. 证明:∵∠EBD=∠EBC(已知) D ∴∠ABC=∠ABD(等角的补角相等) 在△ABC与△ABD中 A B E ∵∠DAB=∠CAB(已知) AB=AB(已知) ∠ABC=∠ABD(已证) C △ABC≌△ABD(ASA)这一题我说它简单是因为有许多已知的条件,但是有一条件是要记得等角的补角相等这一知识。还有最后一种是运用AAS的方法来证明题目。如图,已知∠B=∠C,AD=AE,说明AB=AC. B证明:在△ABE与△ACD中 ∵∠B=∠C(已知) D ∠A=∠A(公共角) A AE=AD(已知) E ∴△ABE≌△ACD(AAS) C ∴AB=AC(全等三角形的对应边相等)这也只是一种,还有一种不仅用AAS方法证明全等三角形,其中还用了角平分线的知识。如图,点P是是∠BAC的平分线上的一点,PB⊥AB,PC⊥AC,说明PB=PC。证明:∵AP是∠BAC的平分线(已知) ∴∠CAP=∠BAP(角平分线的定义) ∵PB⊥AB,PC⊥AC(已知) ∴∠ABP=∠ABP(垂线的定义) 在△APB与△APC中 C ∵∠PAB=∠PAC(已证) P ∠ABP=∠ABP(已证) AP=AP(公共边) V A B ∴△APB≌△APC(AAS) ∴PB=PC(全等三角形的对应边相等) 在这些所以的证明全等三角形的题目中,有一类题目最让我头痛,经常让我做错,就像下面这题:如图△ABC和△AB’C’中,AB=AB’,要使△ABC≌△AB’C’,再添加一个条件________ B’ C A C’ B在这种情况下,我们可以用SAS,ASA,AAS.唯独不能用来证明的就是SSA的方法,可我有时就偏用SSA的方法去证明,填入BC=B’C’,这是完全错误的,在这个空内我们可以选填∠B’=∠B或∠ACB=∠AC’B’,或AC=AC’.这就是我在生活中发现的关于证明全等三角形的问题。

1.在两个三角形中,有两条边分别相等,且它们的夹角的角平分线也对应相等。求证,这两个三角形全等. 2.如果两个三角形有两边和第三边上的中线对应相等,证明这两个三角形全等 . 3.如图,已知△ABC的B边上的中线。求证AD<1/2(AB+AC) (BC底边,顶角为A,左边的边为AB,右边的边为AC) 4.如图,已知△ABC全等于△A'B'C',AD A'D'分别是△ABC和△A'B'C'角平分线。求证AD=A'D'(也就是求证全等三角形对应角的平分线相等) (A为顶角,左边的边为AB,右边的边为AC;A'为顶角,左边的边为A'B',右边的边为A'C' 5.求证:两个锐角三角形有两边和其中一边上的高对应相等,那么正两个三角形全等 图自己画如图,已知△ABC的B边上的中线。求证AD<1/2(AB+AC) (BC底边,顶角为A,左边的边为AB,右边的边为AC) 如图,已知△ABC全等于△A'B'C',AD A'D'分别是△ABC和△A'B'C'角平分线。求证AD=A'D'(也就是求证全等三角形对应角的平分线相等) (A为顶角,左边的边为AB,右边的边为AC;A'为顶角,左边的边为A'B',右边的边为A'C')

(一) 本节内容在教材中的地位与作用。 对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两三角形间最简单、最常见的关系。本节《探索三角形全等的条件》是学生在认识三角形的基础上,在了解全等图形和全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的基础,并且是用以说明线段相等、两角相等的重要依据。因此,本节课的知识具有承上启下的作用。同时,苏科版教材将“边角边”这一识别方法作为五个基本事实之一,说明本节的内容对学生学习几何说理来说具有举足轻重的作用。(二) 教学目标在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想。同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。为此,我确立如下教学目标:(1)经历探索三角形全等条件的过程,体会分析问题的方法,积累数学活动的经验。(2)掌握“边角边”这一三角形全等的识别方法,并能利用这些条件判别两个三角形是否全等,解决一些简单的实际问题。(3)培养学生勇于探索、团结协作的精神。(三) 教材重难点 由于本节课是第一次探索三角形全等的条件,故我确立了以“探究全等三角形的必要条件的个数及探究边角边这一识别方法作为教学的重点,而将其发现过程以及边边角的辨析作为教学的难点。同时,我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。(四)教学具准备,教具:相关多媒体课件;学具:剪刀、纸片、直尺。画有相关图片的作业纸。二、教法选择与学法指导本节课主要是“边角边”这一基本事实的发现,故我在课堂教学中将尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。三、教学流程(一)创设情景,激发求知欲望首先,我出示一个实际问题:问题:皮皮公司接到一批三角形架的加工任务,客户的要求是所有的三角形必须全等。质检部门为了使产品顺利过关,提出了明确的要求:要逐一检查三角形的三条边、三个角是不是都相等。技术科的毛毛提出了质疑:分别检查三条边、三个角这6个数据固然可以。但为了提高我们的效率,是不是可以找到一个更优化的方法,只量一个数据可以吗?两个呢?……然后,教师提出问题:毛毛已提出了这么一个设想,同学们是否可以和毛毛一起来攻克这个难题呢?这样设计的目的是既交代了本节课要研究和学习的主要问题,又能较好地激发学生求知与探索的欲望,同时也为本节课的教学做好了铺垫。(二)引导活动,揭示知识产生过程数学教学的本质就是数学活动的教学,为此,本节课我设计了如下的系列活动,旨在让学生通过动手操作、合作探究来揭示“边角边”判定三角形全等这一知识的产生过程。活动一:让学生通过画图或者举例说明,只量一个数据,即一条边或一个角不能判断两个三角形全等。 活动二:让学生就测量两个数据展开讨论。先让学生分析有几种情况:即边边、边角、角角。再由各小组自行探索。同样可以让学生举反例说明,也可以通过画图说明。活动三:在两个条件不能判定的基础上,只能再添加一个条件。先让学生讨论分几种情况,教师在启发学生有序思考,避免漏解。

关于全等三角形的论文范文

(一) 本节内容在教材中的地位与作用。 对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两三角形间最简单、最常见的关系。本节《探索三角形全等的条件》是学生在认识三角形的基础上,在了解全等图形和全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的基础,并且是用以说明线段相等、两角相等的重要依据。因此,本节课的知识具有承上启下的作用。同时,苏科版教材将“边角边”这一识别方法作为五个基本事实之一,说明本节的内容对学生学习几何说理来说具有举足轻重的作用。(二) 教学目标在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想。同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。为此,我确立如下教学目标:(1)经历探索三角形全等条件的过程,体会分析问题的方法,积累数学活动的经验。(2)掌握“边角边”这一三角形全等的识别方法,并能利用这些条件判别两个三角形是否全等,解决一些简单的实际问题。(3)培养学生勇于探索、团结协作的精神。(三) 教材重难点 由于本节课是第一次探索三角形全等的条件,故我确立了以“探究全等三角形的必要条件的个数及探究边角边这一识别方法作为教学的重点,而将其发现过程以及边边角的辨析作为教学的难点。同时,我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。(四)教学具准备,教具:相关多媒体课件;学具:剪刀、纸片、直尺。画有相关图片的作业纸。二、教法选择与学法指导本节课主要是“边角边”这一基本事实的发现,故我在课堂教学中将尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。三、教学流程(一)创设情景,激发求知欲望首先,我出示一个实际问题:问题:皮皮公司接到一批三角形架的加工任务,客户的要求是所有的三角形必须全等。质检部门为了使产品顺利过关,提出了明确的要求:要逐一检查三角形的三条边、三个角是不是都相等。技术科的毛毛提出了质疑:分别检查三条边、三个角这6个数据固然可以。但为了提高我们的效率,是不是可以找到一个更优化的方法,只量一个数据可以吗?两个呢?……然后,教师提出问题:毛毛已提出了这么一个设想,同学们是否可以和毛毛一起来攻克这个难题呢?这样设计的目的是既交代了本节课要研究和学习的主要问题,又能较好地激发学生求知与探索的欲望,同时也为本节课的教学做好了铺垫。(二)引导活动,揭示知识产生过程数学教学的本质就是数学活动的教学,为此,本节课我设计了如下的系列活动,旨在让学生通过动手操作、合作探究来揭示“边角边”判定三角形全等这一知识的产生过程。活动一:让学生通过画图或者举例说明,只量一个数据,即一条边或一个角不能判断两个三角形全等。 活动二:让学生就测量两个数据展开讨论。先让学生分析有几种情况:即边边、边角、角角。再由各小组自行探索。同样可以让学生举反例说明,也可以通过画图说明。活动三:在两个条件不能判定的基础上,只能再添加一个条件。先让学生讨论分几种情况,教师在启发学生有序思考,避免漏解。

《勾股定理的证明方法探究》 勾股定理又叫毕氏定理:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。 据考证,人类对这条定理的认识,少说也超过 4000 年!又据记载,现时世上一共有超过 300 个对这定理的证明! 勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。 1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是 a^2+b^2=c^2。 这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。 2.希腊方法:直接在直角三角形三边上画正方形,如图。 容易看出, △ABA’ ≌△AA'C 。 过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。 △ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。 于是, S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。 以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。 我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。 赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。 西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。 下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD ? BA, ① 由△CAD∽△BAC可得AC2=AD ? AB。 ② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以 a2+b2=c2。 这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 总之,在勾股定理探索的道路上,我们走向了数学殿堂天啊,那么多的字啊。

1.撰写毕业论文是检验学生在校学习成果的重要措施,也是提高教学质量的重要环节。大学生在毕业前都必须完成毕业论文的撰写任务。申请学位必须提交相应的学位论文,经答辩通过后,方可取得学位。可以这么说,毕业论文是结束大学学习生活走向社会的一个中介和桥梁。毕业论文是大学生才华的第一次显露,是向祖国和人民所交的一份有份量的答卷,是投身社会主义现代化建设事业的报到书。一篇毕业论文虽然不能全面地反映出一个人的才华,也不一定能对社会直接带来巨大的效益,对专业产生开拓性的影响。实践证明,撰写毕业论文是提高教学质量的重要环节,是保证出好人才的重要措施。2.通过撰写毕业论文,提高写作水平是干部队伍“四化”建设的需要。党中央要求,为了适应现代化建设的需要,领导班子成员应当逐步实现“革命化、年轻化、知识化、专业化”。这个“四化”的要求,也包含了对干部写作能力和写作水平的要求。3.提高大学生的写作水平是社会主义物质文明和精神文明建设的需要。在新的历史时期,无论是提高全族的科学文化水平,掌握现代科技知识和科学管理方法,还是培养社会主义新人,都要求我们的干部具有较高的写作能力。在经济建设中,作为领导人员和机关的办事人员,要写指示、通知、总结、调查报告等应用文;要写说明书、广告、解说词等说明文;还要写科学论文、经济评论等议论文。在当今信息社会中,信息对于加快经济发展速度,取得良好的经济效益发挥着愈来愈大的作用。写作是以语言文字为信号,是传达信息的方式。信息的来源、信息的收集、信息的储存、整理、传播等等都离不开写作。

我们已经具备了有关线的初步知识,转而探索具有更美妙更复杂性质的形。对于三角形,一方面要研究一个图形中不同元素(边、角)间的性质,另一方面要关注两个图形间的关系。两个图形关系的有关全等的内容,则是平面几何中的一个重点,是证明线段相等、角相等以及面积相等的有力工具。 那么如何学好三角形全等的证明呢?这就要勤思考,小步走,进行由易到难的训练,实现由模仿证明到独立推理、由实(题目已有现成图形)到虚(要自己画图形或需要添加辅助线)的升华。具体可分为三步走: 第一步,学会解决只证一次全等的简单问题,重在模仿。这期间要注意模仿课本例题的证明,使自己的证明格式标准,语言准确,过程简练。如证明两个三角形全等,一定要写出在哪两个三角形,这既方便批阅者,更为以后在复杂图形中有意识去寻找需要的全等三角形打下基础;同时要注意顶点的对应,以防对应关系出错;证全等所需的三个条件,要用大括号括起来;每一步要填注理由,训练思维的严密性。通过一段时间的训练,对证明方向明确、内容变化少的题目,要能熟练地独立证明,切实迈出坚实的第一步。 第二步,能在一个题目中两次用全等证明过渡性结论和最终结论,学会分析。在学习直角三角形全等、等腰三角形时逐步加深难度,学会一个题目中两次证全等,特别要学会用分析法有条不紊地寻找证题途径,分析法目的性强,条理清楚,结合综合法,能有效解决较复杂的题目。同时,这时的题目一般都不只一种解法,要力求一题多解,比较优劣,总结规律。 第三步,学会命题的证明,初步掌握添加辅助线的常用方法。命题的证明可全面锤炼数学语言(包括图形语言)的运用能力,辅助线则在已知和未知间架起一座沟通的桥梁,这都有一定的难度,切勿放松努力,前功尽弃。同时要熟悉一些基本图形的性质,如“角平分线+垂直=全等三角形”。证明全等不外乎要边等、角等的条件,因此在平时学习中就要积累在哪些情况下存在或可推出边等(或线段等)、角等。烂熟于心,应用起来自然会得心应手。

全等三角形证明毕业论文

全等三角形是八年级上册人教版数学教材第十三章第一节的教学内容。本节课是“全等三角形”的开篇,是全等三角形全等的条件的基础,也是进一步学习其它图形的基础之一。本章是在学过了线段、角、相交线、平行线以及三角形的有关知识以及在七年级教材中的一些简单的说理内容之后来学习,为学习全等三角形奠定了基础。通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。 本节教材在编排上意在通过全等图案引入新课教学,在新课教学中又由直观演示图形的平移、翻折、旋转过渡,学生容易接受。根据课程标准,确定本节课的目标为: 1、知道什么是全等形,全等三角形以及全等三角形对应的元素; 2、能用符号正确地表示两个三角形全等; 3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角; 4、知道全等三角形的性质,并能用其解决简单的问题要求学生会确定全等三角形的对应元素及对全等三角形性质的理解; 5、通过感受全等三角形的对应美,激发热爱科学勇于探索的精神。通过文字阅读与图形阅读,构建数学知识,体验获取数学知识的过程,培养学生勇于创新,多方位审视问题的创造技巧。

答案楼上给了

1三边全相等2两边和一夹角分别相等3三角分别相等和一对相等

1.撰写毕业论文是检验学生在校学习成果的重要措施,也是提高教学质量的重要环节。大学生在毕业前都必须完成毕业论文的撰写任务。申请学位必须提交相应的学位论文,经答辩通过后,方可取得学位。可以这么说,毕业论文是结束大学学习生活走向社会的一个中介和桥梁。毕业论文是大学生才华的第一次显露,是向祖国和人民所交的一份有份量的答卷,是投身社会主义现代化建设事业的报到书。一篇毕业论文虽然不能全面地反映出一个人的才华,也不一定能对社会直接带来巨大的效益,对专业产生开拓性的影响。实践证明,撰写毕业论文是提高教学质量的重要环节,是保证出好人才的重要措施。2.通过撰写毕业论文,提高写作水平是干部队伍“四化”建设的需要。党中央要求,为了适应现代化建设的需要,领导班子成员应当逐步实现“革命化、年轻化、知识化、专业化”。这个“四化”的要求,也包含了对干部写作能力和写作水平的要求。3.提高大学生的写作水平是社会主义物质文明和精神文明建设的需要。在新的历史时期,无论是提高全族的科学文化水平,掌握现代科技知识和科学管理方法,还是培养社会主义新人,都要求我们的干部具有较高的写作能力。在经济建设中,作为领导人员和机关的办事人员,要写指示、通知、总结、调查报告等应用文;要写说明书、广告、解说词等说明文;还要写科学论文、经济评论等议论文。在当今信息社会中,信息对于加快经济发展速度,取得良好的经济效益发挥着愈来愈大的作用。写作是以语言文字为信号,是传达信息的方式。信息的来源、信息的收集、信息的储存、整理、传播等等都离不开写作。

全等三角形数学论文800字

还是自己写比较好啦

都不给金币还让打那么多( ´Д`)y━・~~

(一) 本节内容在教材中的地位与作用。 对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两三角形间最简单、最常见的关系。本节《探索三角形全等的条件》是学生在认识三角形的基础上,在了解全等图形和全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的基础,并且是用以说明线段相等、两角相等的重要依据。因此,本节课的知识具有承上启下的作用。同时,苏科版教材将“边角边”这一识别方法作为五个基本事实之一,说明本节的内容对学生学习几何说理来说具有举足轻重的作用。(二) 教学目标在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想。同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。为此,我确立如下教学目标:(1)经历探索三角形全等条件的过程,体会分析问题的方法,积累数学活动的经验。(2)掌握“边角边”这一三角形全等的识别方法,并能利用这些条件判别两个三角形是否全等,解决一些简单的实际问题。(3)培养学生勇于探索、团结协作的精神。(三) 教材重难点 由于本节课是第一次探索三角形全等的条件,故我确立了以“探究全等三角形的必要条件的个数及探究边角边这一识别方法作为教学的重点,而将其发现过程以及边边角的辨析作为教学的难点。同时,我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。(四)教学具准备,教具:相关多媒体课件;学具:剪刀、纸片、直尺。画有相关图片的作业纸。二、教法选择与学法指导本节课主要是“边角边”这一基本事实的发现,故我在课堂教学中将尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。三、教学流程(一)创设情景,激发求知欲望首先,我出示一个实际问题:问题:皮皮公司接到一批三角形架的加工任务,客户的要求是所有的三角形必须全等。质检部门为了使产品顺利过关,提出了明确的要求:要逐一检查三角形的三条边、三个角是不是都相等。技术科的毛毛提出了质疑:分别检查三条边、三个角这6个数据固然可以。但为了提高我们的效率,是不是可以找到一个更优化的方法,只量一个数据可以吗?两个呢?……然后,教师提出问题:毛毛已提出了这么一个设想,同学们是否可以和毛毛一起来攻克这个难题呢?这样设计的目的是既交代了本节课要研究和学习的主要问题,又能较好地激发学生求知与探索的欲望,同时也为本节课的教学做好了铺垫。(二)引导活动,揭示知识产生过程数学教学的本质就是数学活动的教学,为此,本节课我设计了如下的系列活动,旨在让学生通过动手操作、合作探究来揭示“边角边”判定三角形全等这一知识的产生过程。活动一:让学生通过画图或者举例说明,只量一个数据,即一条边或一个角不能判断两个三角形全等。 活动二:让学生就测量两个数据展开讨论。先让学生分析有几种情况:即边边、边角、角角。再由各小组自行探索。同样可以让学生举反例说明,也可以通过画图说明。活动三:在两个条件不能判定的基础上,只能再添加一个条件。先让学生讨论分几种情况,教师在启发学生有序思考,避免漏解。

【我实在不知道这是语文老师出的还是数学老师突发奇想来的】 这周我学习了全等三角形,了解了在4种情况下可以推出两个三角形全等,即边角边、角边角、边边边、角角边。只有两种情况无法得出全等,即角角角和边边角。前者是相似的条件,后者需要加一个条件才可以推出全等,即’两个三角形为锐角‘或者’两个三角形为钝角三角形‘。

有关三角形的毕业论文

Ramsey理论中若干问题的研究 中文摘要: 本文我们主要研究Ramsey理论中的以下三个问题。 (1)在Caro,Li,Rousseau和Zhang给出的r(C_m,K_n)的渐近上界的基础上,我们由分析方法得到了r....几个高精度单元的分析和Stokes问题的二阶格式 中文摘要: 本文主要介绍两个方面的问题:一是对用双参数有限元法构造的几个重要的高精度单元进行分析,得到了一些非常有用的结论。二是针对Stokes问题构造了一个三角形Hermite型二阶格式,它具有结....MEMS-DMs(微机电系统变形反射镜)中的有限元分析 中文摘要: 自适应光学是一门集科学性和工程性为一体的综合学科,它研究实时自动改善光波波前质量的理论、系统、技术和工程。微小型自适应光学采用MEMS(微机电技术)技术,极大的改变了传统自适应光学器件体....《圣经》中的人神关系的变形及其文学表现 中文摘要: 众所周知,《圣经》是西方宗教神学的核心,是西方社会文学、宗教的源头之一。在信仰的时代里,《圣经》作为神学的经典被广为流传,却忽视了《圣经》的文学经典性质,在《圣经》中有着古希伯来早期文学....有限元的可视化开发 中文摘要: 有限元法是工程科学、计算方法和计算机技术相结合的产物。由于其在处理复杂区域边界问题的灵活性,有限元法已经成为一种非常有效的工程中的数值分析方法。 本文从工程科学中的平面有限元....曲面造型中散乱数据插值曲面问题的研究 中文摘要: 本文对曲面造型中散乱数据插值曲面问题进行了研究。构造散乱空间数据插值曲面技术在CAD、计算机图形学、气象和勘探等各类科学研究和工程设计中有广泛的应用。 由于工程曲面的不规则性....五阶完全正矩阵 中文摘要: 称一个n阶半正定、元素非负的矩阵为双非负矩阵,并记所有n阶双非负矩阵构成的集合为DNN_n。对于A∈R~(n×n),若有非负矩阵B∈R~(n×m)满足A=BB~T(T表示转置),则称A为....圆域内三角形的运动测度 中文摘要: 本文考察圆形域内三角形的运动测度,分别分作正三角形和等腰三角形考察;并进一步将所求结果特殊化,使得三角形蜕化为点(或线段),以此与已知的点(或线段)的运动测度作比较;并借此进一步考察几何....基于DT网格的视频编码中的码率控制算法研究 中文摘要: 近年来,视频通信技术得到了迅速的发展,特别是随着一系列视频编码标准的制定,使人们可以享受到许多服务,比如视频点播、视频会议、电话会议等。而码率控制是视频通信中的关键技术之一,特别是在网络....平面图的全染色 中文摘要: 用G=(V,E)表示一个顶点集为V,边集为E的有限、简单无向图,{1,2,…,k}表示k个颜色的集合.G的一个正常k全染色是指一个映射φ:V∪E→{1,2,…,k}使得相邻的点、相邻的边....

三角学与天文学 早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.希腊、印度、 *** 数学中都有三角学的内容,可大都是天文观测的副产品.测量天体之间的距离不是一件容易的事. 天文学家把需要测量的天体按远近不同分成好几个等级.离我们比较近的天体,它们离我们最远不超过100光年(1光年=万亿1012公里),天文学家用三角视差法测量它们的距离.三角视差法是把被测的那个天体置于一个特大三角形的顶点,地球绕太阳公转的轨道直径的两端是这个三角形的另外二个顶点,通过测量地球到那个天体的视角,再用到已知的地球绕太阳公转轨道的直径,依靠三角公式就能推算出那个天体到我们的距离了.稍远一点的天体我们无法用三角视差法测量它和地球之间的距离,因为在地球上再也不能精确地测定它们的视差了. 〔河内天体的距离又称为视差,恒星对日地平均距离(a)的张角叫做恒星的三角视差(p),则较近的恒星的距离D可表示为:sinπ=a/D〕 若π很小,π以角秒表示,且单位取秒差距(pc),则有:D=1/π 用周年视差法测定恒星距离,有一定的局限性,因为恒星离我们愈远,π就愈小,实际观测中很难测定.三角视差是一切天体距离测量的基础,至今用这种方法测量了约10,000多颗恒星.因此从天文学中又衍生出了三角学,而三角学则为天文研究奠定了基础. 三角学起源于古希腊.为了预报天体运行路线、计算日历、航海等需要,古希腊人已研究球面三角形的边角关系,掌握了球面三角形两边之和大于第三边,球面三角形内角之和大于两个直角,等边对等角等定理.印度人和 *** 人对三角学也有研究和推进,但主要是应用在天文学方面.15、16世纪三角学的研究转入平面三角,以达到测量上应用的目的.16世纪法国数学家韦达系统地研究了平面三角.他出版了应用于三角形的数学定律的书.此后,平面三角从天文学中分离出来,成了一个独立的分支.平面三角学的内容主要有三角函数、解三角形和三角方程. 而三角学的发展历程又是十分漫长的. 最早,古希腊门纳劳斯(Menelaus of Alexandria)著《球面学》,提出了三角学的基础问题和基本概念,特别是提出了球面三角学的门纳劳斯定理;50年后,另一个古希腊学者托勒密(Ptolemy)著《天文学大成》,初步发展了三角学.而在公元499年,印度数学家阿耶波多(ryabhata I)也表述出古代印度的三角学思想;其后的瓦拉哈米希拉(Varahamihira)最早引入正弦概念,并给出最早的正弦表;公元10世纪的一些 *** 学者进一步探讨了三角学.当然,所有这些工作都是天文学研究的组成部分.直到纳西尔丁(Nasir ed-Din al Tusi,1201~1274)的《横截线原理书》才开始使三角学脱离天文学,成为纯粹数学的一个独立分支.而在欧洲,最早将三角学从天文学独立出来的数学家是德国人雷格蒙塔努斯(J•Regiomontanus,1436~1476). 雷格蒙塔努斯的主要著作是1464年完成的《论各种三角形》.这是欧洲第一部独立于天文学的三角学著作.全书共5卷,前2卷论述平面三角学,后3卷讨论球面三角学,是欧洲传播三角学的源泉.雷格蒙塔努斯还较早地制成了一些三角函数表. 雷格蒙塔努斯的工作为三角学在平面和球面几何中的应用建立了牢固的基础.他去世以后,其著作手稿在学者中广为传阅,并最终出版,对16世纪的数学家产生了相当大的影响,也对哥白尼等一批天文学家产生了直接或间接的影响. 最先使用三角学一词的是文艺复兴时期的德国数学家皮蒂斯楚斯(B.Pitiscus,1561~1613),他在1595年出版的《三角学:解三角形的简明处理》中创造这个词.其构成法是由三角形(tuiangulum)和测量(metuicus)两字凑合而成.要测量计算离不开三角函数表和三角学公式,它们是作为三角学的主要内容而发展的. 三角测量在中国也很早出现,公元前一百多年的《周髀算经》就有较详细的说明,例如它的首章记录“周公曰,大哉言数,请问用矩之道.商高曰,平矩以正绳,偃矩以望高,复矩以测深,卧矩以知远.”(商高说的矩就是今天工人用的两边互相垂直的曲尺,商高说的大意是将曲尺置于不同的位置可以测目标物的高度、深度与广度)1世纪时的《九章算术》中有专门研究测量问题的篇章. 16世纪三角函数表的制作首推奥地利数学家雷蒂库斯(G.J.Rhetucus,1514~1574).他1536年毕业于滕贝格(Wittenbery)大学,留校讲授算术和几何.1539年赴波兰跟随著名天文学家哥白尼学习天文学,1542年受聘为莱比锡大学数学教授.雷蒂库斯首次编制出全部6种三角函数的数表,包括第一张详尽的正切表和第一张印刷的正割表. 17世纪初对数发明后大大简化了三角函数的计算,制作三角函数表已不再是很难的事,人们的注意力转向了三角学的理论研究.不过三角函数表的应用却一直占据重要地位,在科学研究与生产生活中发挥着不可替代的作用. 三角公式是三角形的边与角、边与边或角与角之间的关系式.三角函数的定义已体现了一定的关系,一些简单的关系式在古希腊人以及后来的 *** 人中已有研究. 文艺复兴后期,法国数学家韦达(F.Vieta)成为三角公式的集大成者.他的《应用于三角形的数学定律》(1579)是较早系统论述平面和球面三角学的专著之一.其中第一部分列出6种三角函数表,有些以分和度为间隔.给出精确到5位和10位小数的三角函数值,还附有与三角值有关的乘法表、商表等.第二部分给出造表的方法,解释了三角形中诸三角线量值关系的运算公式.除汇总前人的成果外,还补充了自己发现的新公式.如正切定律、和差化积公式等等.他将这些公式列在一个总表中,使得任意给出某些已知量后,可以从表中得出未知量的值.该书以直角三角形为基础.对斜三角形,韦达仿效古人的方法化为直角三角形来解决.对球面直角三角形,给出计算的完整公式及其记忆法则,如余弦定理,1591年韦达又得到多倍角关系式,1593年又用三角方法推导出余弦定理. 1722年英国数学家棣莫弗(A.De Meiver)得到以他的名字命名的三角学定理 ?(cosθ±isinθ)n=cosnθ+isinnθ, 并证明了n是正有理数时公式成立;1748年欧拉(L.Euler)证明了n是任意实数时公式也成立,他还给出另一个著名公式 ?eiθ=cosθ+isinθ, 对三角学的发展起到了重要的推动作用. 近代三角学是从欧拉的《无穷分析引论》开始的.他定义了单位圆,并以函数线与半径的比值定义三角函数,他还创用小写拉丁字母a、b、c表示三角形三条边,大写拉丁字母A、B、C表示三角形三个角,从而简化了三角公式.使三角学从研究三角形解法进一步转化为研究三角函数及其应用,成为一个比较完整的数学分支学科.而由于上述诸人及19世纪许多数学家的努力,形成了现代的三角函数符号和三角学的完整的理论. 如今,人们从更高、更深的角度来认识“三角学”,是由于复数的引入.人们对复数的思考由来已久,例如对方程x2+1=0的根的思考,但人们认真地将虚数=i引入数学则是16世纪的事了.之后欧拉建立了著名的欧拉公式:eiθ=cosθ+isinθ,使得三角学中的问题都可以化归为复数来讨论,于是三角学中一大批问题得以轻松地解决.有了复数与欧拉公式,使人们对三角学的已有理论的理解更为深刻,并可以把一些原始的、复杂的处理三角学的方法与工具“抛到一边”. 事实上,三角学是一门实用的数学分支,尽管源自于天文学,但在很多其他学科中都有用. 百年前,希尔伯特在他那著名的讲演中,用以下这段话作为结束语:“数学的有机统一,是这门科学固有的特点,因为它是一切精确自然科学知识的基础,为了圆满实现这个崇高的目标,让新世纪给这门科学带来天才的大师和无数热诚的信徒吧!”我深信,只要我们从现在开始,学好数学,用好数学,21世纪一定会“给这门科学带来天才的大师”,而且其中肯定有许多来自我们90后! 注:简单的将网上的排了一下序,仍需修改!

‘        什么样的图形是三角形?就是三条边,而且是一个封闭图形。而且三角形有一个特点。不管三角形画成什么样,最少也会有两个锐角。三角形有三种,一种是锐角三角形,一种是直角三角形,一种是钝角三角形。这三个三角形最少也会有两个锐角。这个就是三角形的样子了。 如果三角形不封口还是三角形吗? 肯定不是啊,如果三角形不封口的话,那就是角, 如果是钝角三角形,那也有可能是钝角,也可能是锐角。如果是直角三角形可能是锐角,也可能是直角。如果是锐角三角形,只有可能是锐角。 三角形肯定有面积和周长啊,要不然的话他怎么能是封闭图形呢? 如果要把它分成锐角钝角直角那些角肯定先要角分呐。 还有三角形也有高,我们去拿直角三角形举例来说一说, 如果我们把直角三角形的一条边当做底,那它的高肯定是底向上延伸,到最高的地方。 如果我们把一个直角三角形的两个角,分别捏住向外延伸,他肯定会变成一个钝角三角形,因为它是越拉越大,不是越来越小。锐角三角形就不一样了,如果捏住他的角向外延伸,可能会变成一个直角三角形,有可能会变成一个钝角三角形。 而且三角形的角,可以这样代表:(钝角直角锐角三角形都可以。)画一个小小的角,然后在旁边写角几就可以了,而且如果你要这样写,你旁边的是那个三角形每个角的边上也要写上去角几,这样才行。

1证明一个三角形是直角三角形 2用于直角三角形中的相关计算 3有利于你记住余弦定理,它是余弦定理的一种特殊情况。中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话: 周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子能上去,地也没法用尺子去一段一段丈量,那么如何才能得到关于天地得到数据呢?” 商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。” 从上面所引的这段对话中,我们能清楚地看到,我国古代的人民早在多少千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面多少何饿读者都清楚,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方 用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得: 勾2+股2=弦2 亦即: a2+b2=c2 勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年第一发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则能确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。 在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便能得到弦。”把这段话列成算式,即为: 弦=(勾2+股2)(1/2) 即: c=(a2+b2)(1/2) 定理: 如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方; 即直角三角形两直角边的平方和等于斜边的平方。 如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是3*3+4*4=X*X,X=5。那么这个三角形是直角三角形。(称勾股定理的逆定理) 来源: 毕达哥拉斯树是一个基本的多少何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。 文章来源: 原文链接: 满意请采纳

  • 索引序列
  • 有关全等三角形的论文题目
  • 关于全等三角形的论文范文
  • 全等三角形证明毕业论文
  • 全等三角形数学论文800字
  • 有关三角形的毕业论文
  • 返回顶部