首页 > 论文发表知识库 > 深度学习研究论文源码

深度学习研究论文源码

发布时间:

深度学习研究论文源码

不是的。1、对评审非常不友好。某些论文作者中只给伪代码,但是用伪代码去复现论文的结果是很困难的。因为对于深度学习来说,每个细微的参数都很重要,一点差别就可能导致结果无法复现。而开放代码更容易让你的论文通过评审。从2019年开始,ICML增加了论文可重复性作为评审考察的因素。2、对科研人员不公平。一些科研人员无法获得大量的计算资源。如果某个大团队发布了一篇论文,而一个研究生需要用到其中的结果应该怎么办?指望他一个人复现上百人工程团队的的研究成果吗?这显然是不现实的。公开代码能让科研人员紧跟最新研究成果,对保持学术界的竞争力至关重要。

打开app软件就行。深度学习的概念源于人工神经网络的研究,如果追溯深度学习的概念还是要回到2006年Hinton那篇论文,基于深信度网(DNB)提出非监督贪心逐层训练算法,未解决深层结构相关的优化难题出现的论文。

论文小学生数学深度学习研究

小学深度就是奥数了,这个要看学生接受能力

深度学习,翻转课堂瞄向核心素养 ——读马LL地理翻转课堂案例有感苏州市电化教育馆 金陵 X省X高级中学地理教师马莉莉在“翻转课堂本土创新暨微课程教学法教学观摩会” 借班执教翻转课堂示范课之后写了一篇文章:《“微课程教学法”地理翻转课堂的设计、过程与反思》。读这篇文章你会发现:翻转课堂不是“玩视频”,而是课前在任务单的引领和微视频的支持下,打好深度学习的基础;课堂在检测、进阶的基础上开展以“微项目学习”为代表的深度学习,促进学生内化知识,发展面向未来挑战的核心素养。梳理马LL设计与施教中的关键点,大致有三:其一,贯彻微课程教学法目标管理的实施导向。首先对学习材料作清晰的梳理,为提炼达成目标创造条件。然后,把课程标准转变为可量化的课前和课中各有侧重的达成目标,使目标管理从课前贯彻到课堂,保证微观课程实施纲举目张,保证视频不会纵马跑偏,用活了微课程教学法的系统设计观。进而,把学习内容转化为一系列问题,形成学习任务,方便学生在教材和技术的支持下,开展发现式学习。这些学习任务与达成目标具有一一对应的关系,保证只要按要求完成学习任务,就能达成学习目标,为保证课堂检测这一课前学习评价的质量创造条件。其二,贯彻微课程教学法需求导向的视频开发方法。马LL根据学生完成学习任务可能遇到的困难确定视频开发的主题,力求学生通过自主学习完成学习任务。因此,视频始终与学习任务如影随形,技术硬生生介入教学的拼凑感已经荡然无存。这与把课程学习变成学习微课的糟糕做法是截然不同的。其三,深度学习指向核心素养。微课程教学法不提倡课堂上玩技术,认为只有在互动和质疑讨论中才能达到深度学习。马LL用活了微课程教学法创意的微项目学习,检测、进阶之后,开始“S州城市化”主题探究:让学生动手绘制S州城镇人口占总人口比重变化图;以“S州城市化,让生活更美好还是更糟糕”为题展开讨论;以“S州是我家,建设靠大家”的形式,让学生学以致用,为S州新型城镇化建设献计献策,使课堂成为聚会智慧的场所。我们发现,在这样的学习过程中,学生不仅完成了知识内化,而且,发展了合作与交流能力、信息与通讯技术运用能力、公民素养、创造性、批判性思维等核心素养。就这样,微课程教学法直指核心素养,促进教学质量提升,为翻转课堂探索出极具魅力的发展前景。值得一提的是,马LL涉足翻转课堂实验之后,很快发现“翻转课堂倒逼我再次成长”(马LL语),于是一头扎进微课程教学法——翻转课堂本土创新的理论与方法的研究与实践之中。2015年,她的地理翻转课堂案例参加“一师一优课,一课一名师”活动获部优;2016年,她被评为S州市高中地理学科带头人。

课堂中如何开展深度学习是新一轮课改的关键,作为数学如何开展深度学习更是迫在眉睫的事情.结合本人的教学,我想这样操作也许更好些?一、 课前预习是实施深度学习的基础性前提。让学生们课前学习,通过读书、勾圈画知识点,明确课文知识的基本内容,理解课文的基本精神,这是提高学生接受新知识、强化要点知识达成的基础。然后学有余力的同学开展做题练习,进行巩固、强化、提升的工作,加强对基础知识的理解与认同,产生对所学知识的同向强化。这个环节是关键,保证基础知识的学习,保证基本技能的熟练,甚至强化。这些工作为我们开展深度学习奠定基础,由此可以进行选择兴趣点,开展深度学习。二、 根据学生的兴趣和爱好选择开展深度学习的课题。这是我们最为需要的策略,这样能够提升学习的动力和学习的效率,学生愿意学习,愿意开展工作,也愿意付出自己的精力和时间。例如我在教授学生三角形的稳定性问题时,让学生自制三角形和四边形,在材质相同的情况下,试一试那个图形的东西具有更强的稳定性的问题,学生做出不同材质的图形实物,通过给不同实物的外力,观察那个图形的实物容易变形?有的同学还把圆形的东西参与了比较,最后在课堂交流中,学生排列出相同材质的不同实物,三角形是最为稳定的结论。 实际上,我们应该根据所学内容,结合现实条件,做出最为切合实际的探索,这样能够保证学生思考问题的可行性,实效性,和可操作性。 引导学生根据兴趣、爱好、及其现实条件开展深度学习和探索能够激发学生学习知识、探索知识、应用知识的热情,从而做到学以致用,用以带学的目的。三、 教师设计深度学习的课题,引导学生开展研究,也能够更好地调动学生学习知识、应用知识的积极性。 可以这样说:我们教学的最终目的是为了学生学习知识、应用知识、形成能力,变成学生自身发展技能。因此,我们让学生把知识变成可以看得到,想得出、用得上的知识技能。这样我们就选择合适的切入点进行教学,引导学生开展知识的应用探索之旅,这样学生的学习动能就能被激发出来,兴趣也就能够坚持下去,一切的困难也就变得轻松,变得自如,他们不再把学习知识、应用知识看作是一件痛苦的事情了。 教师设计题目的最佳方向是:看得见、找得着、用得上;再次一点的是:借助仪器能够达到以上标准;最为差点是,借助网络能够达到以上标准。这样就能够让大多数的同学都能够开展深度学习,同时也能达到最佳化的程度。 以上几点,是我对深度学习的思考和工作开展中的点滴认识,不当之处,望各位领导、同仁斧正。

小学数学深度学习的教学设计,要考虑小学学生的接受度,以及和教学大纲的一个贴合度

游戏中的深度学习研究论文

能解决教师在自主游戏中师幼互动的随意性和盲目性,寻找“师幼互动”的有效性,使自由游戏的开展能够把幼儿的探索兴趣引向对问题的深入研究,使“师幼互动”成为促进儿童有效学习的过程。师幼互动不仅成为评价教师专业素养能力的重要指标,也是衡量幼儿园教育过程质量的重要依据。

多谢邀请。关于gym可参考我的知乎专栏帖子:强化学习实战 第一讲 gym学习及二次开发 - 知乎专栏。关注该专栏,可以学到很多强化学习的知识(理论知识和实践知识)。下面正式回答你的问题:搞深度强化学习,训练环境的搭建是必须的,因为训练环境是测试算法,训练参数的基本平台(当然,也可以用实际的样机进行训练,但时间和代价是相当大的)。现在大家用的最多的是openai的gym( ),或者universe(),。这两个平台非常好,是通用的平台,而且与tensorflow和Theano无缝连接,虽然目前只支持python语言,但相信在不久的将来也会支持其他语言。下面我根据自己的理解,讲下关于gym的一些事情。Gym的原理是什么?它是新东西吗?在我看来,gym并不是完全的新东西,它不过是用python语言写的仿真器。对于仿真器大家肯定并不陌生。学控制的人都用过或听过matlab的simulink,学机械的人应该用过动力学仿真软件adams,gym在本质上和simulink,adams没什么区别。如果把Gym,simulink,adams等等这些仿真器去掉界面显示(如动画显示),剩下的本质不过是一组微分方程。所以Gym,simulink,adams等等一切仿真器的本质是微分方程。比如,运动学微分方程,动力学微分方程,控制方程等。Gym在构造环境时,主要的任务就是构建描述你模型的微分方程。我们举例说明:Gym中的CartPole环境是如何构建的:下面的链接是gym中CartPole环境模型:在该环境模型中,最核心的函数是def _step(self, action)函数,该函数定义了CartPole的环境模型,而在该函数中最核心的代码如下:图中方框中又是这段代码中最核心的地方,这两行代码便决定了CartPole的模型。简单的模型,通过手工推导便可完成。那么对于复杂的模型,比如战斗机器人,各种大型游戏怎么办呢?这就需要专门的多刚体仿真软件了,这些软件背后的核心技术都是物理引擎。大家可以搜下物理引擎这个词,游戏以及各种仿真软件都要用到物理引擎,用的多的而且开源的物理引擎有:ODE, Bullet, Havok, Physx等。原则上来说利用这些物理引擎都可以搭建训练环境。Gym在搭建机器人仿真环境用的是mujoco,ros里面的物理引擎是gazebo。下面针对你的问题,逐条回答:1. gym中CartPole, MountainCar这种环境的构建原理是怎样的?答:这种简单的环境只需要手动推导便可写出动力学方程,然后可以人为编写环境模型。只是,gym中除了给出了动力学方程,还加入了界面程序,将结果更直观地显示出来。2. gym中的环境源代码能不能查看和修改?Gym是开源开发工具,所有代码都可查看和修改。可以模仿gym已有的例子自己创建环境。Gym创建环境很方便,只需要编写你的环境模型,并将你的环境模型注册到环境文件中即可,至于如何构建新的环境,请关注我的知乎专栏,我会在后面讲一讲。我的专栏中深入剖析了gym并给出了创建自己环境的实例,强化学习实战 第一讲 gym学习及二次开发 - 知乎专栏。

幼儿园自主性区域游戏以自主性为核心,以探究为主要方式,通过深层、中层、浅层三种层次的建构,萌发各种探究内容,使区域游戏中产生无数深度学习的契机。文章通过行动研究法从已有的区域游戏及深度学习理论出发,探索自主性区域游戏三种层次及特点,通过过程中的游戏案例解读幼儿深度学习的行为,思考教师支持策略,进一步提升幼儿区域活动质量,凸显"游戏中学习,游戏中发展"的意义,揭示自主性区域游戏的独特价值。

这个具体就要学深度学习和强化学习的相关知识了,可以拿最简单的DQN举例,DQN就是用神经网络去代替了传统的Q表,从而进行训练。

论文深度学习模板

如何开启深度学习之旅?这三大类125篇论文为你导航(附资源下载)

如果你现在还是个深度学习的新手,那么你问的第一个问题可能是「我应该从哪篇文章开始读呢?在 G上,s准备了一套深度学习阅读清单,而且这份清单在随时更新。

项目地址:

这份清单依照下述 4 条原则建立:

从整体轮廓到细节

从过去到当代

从一般到具体领域

聚焦当下最先进技术

你会发现很多非常新但很值得一读的论文。这份清单我会持续更新。

1、深度学习的历史与基础知识

书籍

[0] Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. 深度学习(Deep learning), An MIT Press book. (2015). (这是深度学习领域的圣经,你可以在读此书的同时阅读下面的论文)。

调查类:

[1] LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 深度学习 (Deep learning), Nature (2015): 436-444. (深度学习三位大牛对各种学习模型的评价)

深度信念网络(DBN)(深度学习前夜的里程碑)

[2] Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. 一个关于深度信念网络的快速学习算法(A fast learning algorithm for deep belief nets), (深度学习的前夜)

[3] Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. 使用神经网络降低数据的维度(Reducing the dimensionality of data with neural networks), (里程碑式的论文,展示了深度学习的可靠性)

ImageNet 的演化(深度学习从这里开始)

[4] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. 使用深度卷积神经网络进行 ImageNet 分类任务(Imagenet classification with deep convolutional neural networks)(AlexNet, 深度学习的突破)

[5] Simonyan, Karen, and Andrew Zisserman. 针对大尺度图像识别工作的的超深卷积网络(Very deep convolutional networks for large-scale image recognition) (VGGNet, 神经网络开始变得非常深!)

[6] Szegedy, Christian, et al. 更深的卷积(Going deeper with convolutions)(GoogLeNet)

[7] He, Kaiming, et al. 图像识别的深度残差学习(Deep residual learning for image recognition)(ResNet,超级超级深的深度网络!CVPR--IEEE 国际计算机视觉与模式识别会议-- 最佳论文)

语音识别的演化

[8] Hinton, Geoffrey, et al. 语音识别中深度神经网络的声学建模(Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups)(语音识别中的突破)

[9] Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hinton. 用深度循环神经网络进行语音识别(Speech recognition with deep recurrent neural networks)(RNN)

[10] Graves, Alex, and Navdeep Jaitly. 面向端到端语音识别的循环神经网络(Towards End-To-End Speech Recognition with Recurrent Neural Networks)

[11] Sak, Ha?im, et al. 语音识别中快且精准的循环神经网络声学模型(Fast and accurate recurrent neural network acoustic models for speech recognition)(语音识别系统)

[12] Amodei, Dario, et al. Deep speech 2:英语和汉语的端到端语音识别(Deep speech 2: End-to-end speech recognition in english and mandarin)(百度语音识别系统)

[13] W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, G. Zweig,在对话语音识别中实现人类平等(Achieving Human Parity in Conversational Speech Recognition)

当你读完了上面给出的论文,你会对深度学习历史有一个基本的了解,深度学习建模的基本架构(包括了 CNN,RNN,LSTM)以及深度学习如何可以被应用于图像和语音识别问题。下面的论文会让你对深度学习方法,不同应用领域中的深度学习技术和其局限有深度认识。

2 深度学习方法

模型

[14] Hinton, Geoffrey E., et al. 通过避免特征检测器的共适应来改善神经网络(Improving neural networks by preventing co-adaptation of feature detectors)(Dropout)

[15] Srivastava, Nitish, et al. Dropout:一种避免神经网络过度拟合的简单方法(Dropout: a simple way to prevent neural networks from overfitting)

[16] Ioffe, Sergey, and Christian Szegedy. Batch normalization:通过减少内部协变量加速深度网络训练(Batch normalization: Accelerating deep network training by reducing internal covariate shift)(2015 年一篇杰出论文)

[17] Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton.层归一化(Layer normalization)(批归一化的升级版)

[18] Courbariaux, Matthieu, et al. 二值神经网络:训练神经网络的权重和激活约束到正 1 或者负 1(Binarized Neural Networks: Training Neural Networks with Weights and Activations Constrained to+ 1 or?1)(新模型,快)

[19] Jaderberg, Max, et al. 使用合成梯度的解耦神经接口(Decoupled neural interfaces using synthetic gradients)(训练方法的发明,令人惊叹的文章)

[20] Chen, Tianqi, Ian Goodfellow, and Jonathon Shlens. Net2net:通过知识迁移加速学习(Net2net: Accelerating learning via knowledge transfer) (修改之前的训练网络以减少训练)

[21] Wei, Tao, et al. 网络形态(Network Morphism)(修改之前的训练网络以减少训练 epoch)

优化

[22] Sutskever, Ilya, et al. 有关深度学习中初始化与动量因子的研究(On the importance of initialization and momentum in deep learning) (动量因子优化器)

[23] Kingma, Diederik, and Jimmy Ba. Adam:随机优化的一种方法(Adam: A method for stochastic optimization)(可能是现在用的最多的一种方法)

[24] Andrychowicz, Marcin, et al. 通过梯度下降学习梯度下降(Learning to learn by gradient descent by gradient descent) (神经优化器,令人称奇的工作)

[25] Han, Song, Huizi Mao, and William J. Dally. 深度压缩:通过剪枝、量子化训练和霍夫曼代码压缩深度神经网络(Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding) (ICLR 最佳论文,来自 DeePhi 科技初创公司,加速 NN 运行的新方向)

[26] Iandola, Forrest N., et al. SqueezeNet:带有 50x 更少参数和小于 1MB 模型大小的 AlexNet-层级精确度(SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 1MB model size.) (优化 NN 的另一个新方向,来自 DeePhi 科技初创公司)

无监督学习/深度生成模型

[27] Le, Quoc V. 通过大规模无监督学习构建高级特征(Building high-level features using large scale unsupervised learning.) (里程碑,吴恩达,谷歌大脑,猫)

[28] Kingma, Diederik P., and Max Welling. 自动编码变异贝叶斯(Auto-encoding variational bayes.) (VAE)

[29] Goodfellow, Ian, et al. 生成对抗网络(Generative adversarial nets.)(GAN, 超酷的想法)

[30] Radford, Alec, Luke Metz, and Soumith Chintala. 带有深度卷曲生成对抗网络的无监督特征学习(Unsupervised representation learning with deep convolutional generative adversarial networks.)(DCGAN)

[31] Gregor, Karol, et al. DRAW:一个用于图像生成的循环神经网络(DRAW: A recurrent neural network for image generation.) (值得注意的 VAE,杰出的工作)

[32] Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu. 像素循环神经网络(Pixel recurrent neural networks.)(像素 RNN)

[33] Oord, Aaron van den, et al. 使用像素 CNN 解码器有条件地生成图像(Conditional image generation with PixelCNN decoders.) (像素 CNN)

RNN/序列到序列模型

[34] Graves, Alex. 带有循环神经网络的生成序列(Generating sequences with recurrent neural networks.)(LSTM, 非常好的生成结果,展示了 RNN 的力量)

[35] Cho, Kyunghyun, et al. 使用 RNN 编码器-解码器学习词组表征用于统计机器翻译(Learning phrase representations using RNN encoder-decoder for statistical machine translation.) (第一个序列到序列论文)

[36] Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. 运用神经网路的序列到序列学习(Sequence to sequence learning with neural networks.」)(杰出的工作)

[37] Bahdanau, Dzmitry, KyungHyun Cho, and Yoshua Bengio. 通过共同学习来匹配和翻译神经机器翻译(Neural Machine Translation by Jointly Learning to Align and Translate.)

[38] Vinyals, Oriol, and Quoc Le. 一个神经对话模型(A neural conversational model.)(聊天机器人上的序列到序列)

神经图灵机

[39] Graves, Alex, Greg Wayne, and Ivo Danihelka. 神经图灵机器(Neural turing machines.)arXiv preprint arXiv: (2014). (未来计算机的基本原型)

[40] Zaremba, Wojciech, and Ilya Sutskever. 强化学习神经图灵机(Reinforcement learning neural Turing machines.)

[41] Weston, Jason, Sumit Chopra, and Antoine Bordes. 记忆网络(Memory networks.)

[42] Sukhbaatar, Sainbayar, Jason Weston, and Rob Fergus. 端到端记忆网络(End-to-end memory networks.)

[43] Vinyals, Oriol, Meire Fortunato, and Navdeep Jaitly. 指示器网络(Pointer networks.)

[44] Graves, Alex, et al. 使用带有动力外部内存的神经网络的混合计算(Hybrid computing using a neural network with dynamic external memory.)(里程碑,结合上述论文的思想)

深度强化学习

[45] Mnih, Volodymyr, et al. 使用深度强化学习玩 atari 游戏(Playing atari with deep reinforcement learning.) (第一篇以深度强化学习命名的论文)

[46] Mnih, Volodymyr, et al. 通过深度强化学习达到人类水准的控制(Human-level control through deep reinforcement learning.) (里程碑)

[47] Wang, Ziyu, Nando de Freitas, and Marc Lanctot. 用于深度强化学习的决斗网络架构(Dueling network architectures for deep reinforcement learning.) (ICLR 最佳论文,伟大的想法 )

[48] Mnih, Volodymyr, et al. 用于深度强化学习的异步方法(Asynchronous methods for deep reinforcement learning.) (当前最先进的方法)

[49] Lillicrap, Timothy P., et al. 运用深度强化学习进行持续控制(Continuous control with deep reinforcement learning.) (DDPG)

[50] Gu, Shixiang, et al. 带有模型加速的持续深层 Q-学习(Continuous Deep Q-Learning with Model-based Acceleration.)

[51] Schulman, John, et al. 信赖域策略优化(Trust region policy optimization.) (TRPO)

[52] Silver, David, et al. 使用深度神经网络和树搜索掌握围棋游戏(Mastering the game of Go with deep neural networks and tree search.) (阿尔法狗)

深度迁移学习/终身学习/尤其对于 RL

[53] Bengio, Yoshua. 表征无监督和迁移学习的深度学习(Deep Learning of Representations for Unsupervised and Transfer Learning.) (一个教程)

[54] Silver, Daniel L., Qiang Yang, and Lianghao Li. 终身机器学习系统:超越学习算法(Lifelong Machine Learning Systems: Beyond Learning Algorithms.) (一个关于终生学习的简要讨论)

[55] Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. 提取神经网络中的知识(Distilling the knowledge in a neural network.) (教父的工作)

[56] Rusu, Andrei A., et al. 策略提取(Policy distillation.) (RL 领域)

[57] Parisotto, Emilio, Jimmy Lei Ba, and Ruslan Salakhutdinov. 演员模仿:深度多任务和迁移强化学习(Actor-mimic: Deep multitask and transfer reinforcement learning.) (RL 领域)

[58] Rusu, Andrei A., et al. 渐进神经网络(Progressive neural networks.)(杰出的工作,一项全新的工作)

一次性深度学习

[59] Lake, Brenden M., Ruslan Salakhutdinov, and Joshua B. Tenenbaum. 通过概率程序归纳达到人类水准的概念学习(Human-level concept learning through probabilistic program induction.)(不是深度学习,但是值得阅读)

[60] Koch, Gregory, Richard Zemel, and Ruslan Salakhutdinov. 用于一次图像识别的孪生神经网络(Siamese Neural Networks for One-shot Image Recognition.)

[61] Santoro, Adam, et al. 用记忆增强神经网络进行一次性学习(One-shot Learning with Memory-Augmented Neural Networks ) (一个一次性学习的基本步骤)

[62] Vinyals, Oriol, et al. 用于一次性学习的匹配网络(Matching Networks for One Shot Learning.)

[63] Hariharan, Bharath, and Ross Girshick. 少量视觉物体识别(Low-shot visual object recognition.)(走向大数据的一步)

3 应用

NLP(自然语言处理)

[1] Antoine Bordes, et al. 开放文本语义分析的词和意义表征的联合学习(Joint Learning of Words and Meaning Representations for Open-Text Semantic Parsing.)

[2] Mikolov, et al. 词和短语及其组合性的分布式表征(Distributed representations of words and phrases and their compositionality.) (word2vec)

[3] Sutskever, et al. 运用神经网络的序列到序列学习(Sequence to sequence learning with neural networks.)

[4] Ankit Kumar, et al. 问我一切:动态记忆网络用于自然语言处理(Ask Me Anything: Dynamic Memory Networks for Natural Language Processing.)

[5] Yoon Kim, et al. 角色意识的神经语言模型(Character-Aware Neural Language Models.)

[6] Jason Weston, et al. 走向人工智能-完成问题回答:一组前提玩具任务(Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks.) (bAbI 任务)

[7] Karl Moritz Hermann, et al. 教机器阅读和理解(Teaching Machines to Read and Comprehend.)(CNN/每日邮件完形风格问题)

[8] Alexis Conneau, et al. 非常深度卷曲网络用于自然语言处理(Very Deep Convolutional Networks for Natural Language Processing.) (在文本分类中当前最好的)

[9] Armand Joulin, et al. 诡计包用于有效文本分类(Bag of Tricks for Efficient Text Classification.)(比最好的差一点,但快很多)

看完这个就知道学什么了

1、论文引用别人的思路而不算抄袭的话,第一要看模仿思路到什么程度,是全部照搬还是有所创新,第二要看模仿的思路是否用来解决了新的问题。2、一般而言思路是没有专属所有权的,也就是思路不能作为专利,但思路如果硬来解决问题,成了方法,那就享有著作权和专利权了。3、正确的方法是受到原思路的启发,在原有思路上进行拓展和创新,上升到新的层次,并用来解决新的问题。

深度学习图像处理研究方向论文

无可奈何需要

图像识别技术是人工智能研究的一个重要分支,也是人们日常生活中使用最广泛的人工智能技术之一。近年来,随着深度学习技术的发展,图像识别准确率显著提高。本论文研究了图像识别的传统技术和深度学习技术,分析了深度学习技术的几点不足,并给出未来可行的解决方案。【关键词】人工智能 图像识别 深度学习1 概述图像识别技术是人工智能研究的一个重要分支,其是以图像为基础,利用计算机对图像进行处理、分析和理解,以识别不同模式的对象的技术。目前图像识别技术的应用十分广泛,在安全领域,有人脸识别,指纹识别等;在军事领域,有地形勘察,飞行物识别等;在交通领域,有交通标志识别、车牌号识别等。图像识别技术的研究是更高级的图像理解、机器人、无人驾驶等技术的重要基础。传统图像识别技术主要由图像处理、特征提取、分类器设计等步骤构成。通过专家设计、提取出图像特征,对图像进行识别、分类。近年来深度学习的发展,大大提高了图像识别的准确率。深度学习从大量数据中学习知识(特征),自动完成特征提取与分类任务。但是目前的深度学习技术过于依赖大数据,只有在拥有大量标记训练样本的情况下才能够取得较好的识别效果。

矿压岩层控制“实用矿压岩层控制理论”的开创者和奠基人创造性地建立了以岩层运动为核心的理论体系,包括岩层运动预测与控制、矿山压力控制、控制效果设计与决策。我们建立并完善了以岩层移动为中心的实用矿井。

是通过建立一个模拟人脑的分析和学习的神经网络来实现的。深层学习的本质是观察数据的层次特征表示,它进一步将低级特征抽象为高级特征表示,所有这些特征都是通过神经网络实现的。深层学习主要是基于神经网络技术,神经网络最基本的单元是神经元。而且神经网络的研究更早地开始了。早期感知器模型是最早的神经网络模型,也称单层神经网络。

但是,当一个网络加入到计算层时,它不仅可以解决国外或国外的问题,而且具有很好的非线性分类效果。1986年rumelhar和Hinton提出的反向传播算法解决两级神经网络的复杂计算问题,这导致行业使用的神经网络的研究热潮的两级。

该模型简单、方便,适合大规模数据培训。该模型具有较好的切分训练算法,保证了模型的良好训练。长期以来在语音识别应用领域占据主导地位。

主要应用领域图像识别技术可能是以图像的主要特征为基础的,每个图像都有它的特征。在人类图像识别系统中,对复杂图像的识别往往要通过不同层次的信息加工才能实现。图像识别技术是立体视觉、运动分析、数据融合等实用技术的基础,在导航、地图与地形配准、自然资源分析、天气预报、环境监测、生理病变研究等许多领域可广泛应用。遥感图像识别航空遥感和卫星遥感图像通常用图像识别技术进行加工以便提取有用的信息。该技术目前主要用于地形地质探查,森林、水利、海洋、农业等资源调查,灾害预测,环境污染监测,气象卫星云图处理以及地面军事目标识别等。军事刑侦图像识别技术在军事、公安刑侦方面的应用很广泛,例如军事目标的侦察、制导和警戒系统;自动灭火器的控制及反伪装;公安部门的现场照片、指纹、手迹、印章、人像等的处理和辨识;历史文字和图片档案的修复和管理等等。生物医学图像识别在现代医学中的应用非常广泛,它具有直观、无创伤、安全方便等特点。在临床诊断和病理研究中广泛借助图像识别技术,例如CT(ComputedTomography)技术等。机器视觉作为智能机器人的重要感觉器官,机器视觉主要进行3D图像的理解和识别,该技术也是目前研究的热门课题之一。机器视觉的应用领域也十分广泛,例如用于军事侦察、危险环境的自主机器人,邮政、医院和家庭服务的智能机器人。此外机器视觉还可用于工业生产中的工件识别和定位,太空机器人的自动操作等。总结:人工智能前景不可限量,图像识别作为AI技术的支撑,是一种强有力的识别方式,随着AI在场景上的深入,图像识别应用领域会越来越广。

  • 索引序列
  • 深度学习研究论文源码
  • 论文小学生数学深度学习研究
  • 游戏中的深度学习研究论文
  • 论文深度学习模板
  • 深度学习图像处理研究方向论文
  • 返回顶部