首页 > 论文发表知识库 > 雷达数据并行处理研究论文

雷达数据并行处理研究论文

发布时间:

雷达数据并行处理研究论文

工程地质是一门认知工程-地质相互作用规律和过程的科学,它的使命是保障人类工程活动的安全。下面是我为大家整理的工程地质论文,供大家参考。

工程地质论文 范文 一:隧道工程地质雷达检测分析

【摘要】通过实际工程应用,介绍地质雷达的特点、原理和探测解析 方法 ;在隧道工程的超前地质探测预报以及隧道结构检测的应用中,证明了地质雷达的实用性、先进性及其实际应用中的重要作用。

【关键词】公路隧道;地质雷达;检测;超前预报;应用

1、工程概况

小北山二号隧道为长隧道,按左、右线分离布设。左线隧道起讫里程ZK19+571~ZK21+091,长1520m,揭阳端洞口采用削竹式,洞口设计标高,惠来端洞门采用削竹式,洞口设计标高,坡高~,隧道最大埋深约209m。右线隧道起讫里程ZK19+599~ZK21+081,长1482m,揭阳端洞口采用削竹式,洞口设计标高,惠来端洞门采用削竹式,洞口设计标高,坡度~,隧道最大埋深约212m。隧道位于丘陵地区,山体地形陡峭,山体植被较发育,山体发育花岗岩孤石,大小不一。隧址区基底主要为燕山期花岗岩,局部见辉绿岩岩脉,覆盖层由粘土、全~强风岩组成,基岩由中~微风化岩组成。隧址区地下水类型主要为 潜水 ,含水层主要为第四系松散层的孔隙及中~微风化岩的风化裂隙。

2、地质雷达的发展及其应用

随着社会的高速发展,有很多的方便加上很多的仪器可以在岩土勘察中使用,重要的方法有弹性波法及其电磁波法。在实际工程当中经常使用的电磁波法就是地质雷达,隧道地震探测仪比较适合远距离宏观的地质问题探测;并且地质雷达方法可以结合高频电磁波而进行非常快的无损伤探测,因此频段非常高的话可以在隧道结构当中进行检测。公路的隧道工程埋深、规模以及数量随着时间的增加而不断地变多,而在施工的过程当中也遇到了很多复杂的工程地质条件。虽然说在设计以前都作了非常详细地质勘察,但是在隧道实际的开挖施工当中,还会有非常多的问题发生的。从这些方面就可以很好地说明,在隧道施工过程当中的围岩稳定性状况以及一些掌子面前方的实际情况,并且做出及时地超前预报。当隧道发生一些事故或者竣工以后,应该结合现行的规范上面要求以及隧道本身的结构特性,不但应该在隧道的表面进行观测以及净空断面进行测量,需要的时候还应该采用地质雷达进行一些更深入的检测,例如围岩的密实完整稳定的情况、钢拱架的分布情况、有无离析以及蜂窝麻面、衬砌混凝土的均匀一致性以及相对应的完整性以及衬砌有效厚度等等。经过实际的情况可以证明,地质雷达技术可以在隧道的施工当中作出非常详细的超前地质预报。现在,地质雷达检测技术已经发展到了单点探测以及连续探测的实时自动成图。而国外的国家探地雷达基本上是单脉冲雷达,其工作的频率在50到2G赫兹,最为代表性的国家是美国和加拿大。我们国家所生产的一系列地质雷达,结合地下工程的超前预报的特点,采用的是脉冲调制式,这个的探测距离非常大,而且分辨率也非常高,其工作的频率大约在160到220兆赫兹,其探测的距离可以达到40到60米,可以很好地适应超前地质预报以及部分的工程检测。

3、探测的原理以及方法

结合设计的图纸以及设计的任务书按照规定进行开展地质超前预报的工作,其预测应该是沿着隧道纵向三十米的范围以内对一些不安全的地质问题进行检查,对前面的地层岩性变化以及水文地质特征(软弱岩层的分布、断层发育及其影响带、水的赋存情况等)进行探测,对隧道围岩的级别进行分析,并列出一些施工的建议,确保隧道施工的安全,减少一些不必要的损失,为动态的设计提供所需要的地质参数,从而可以更好地为隧道施工进行服务。本次的地质预报使用的是地质雷达系统,运用了空气耦合型100兆赫兹的天线,结合探测的前方岩石的特点以及现场施工的条件,对距离30米左右进行详细地探测。而这次预报的工作面位于ZK19+735里处的地方,使用一些点测的方式,使用一系列的方法对工作面的正前方进行详细地预测。

4、数据的处理以及得出来的结果

对实际测量出来的资料用一系列的软件进行处理分析,再结合现场的岩性所具体的实际情况,选择一个比较适合的相对介电常数,进而得出来一些成果,在成果的解释当中,开始的时候,假如发现了有非常明显的反相位反射波组出现的话,就应该岩性变坏的一个表现;假如发现了有非常明显的正相位强波反射波组出现的话,就应该是岩层岩性变好的一个表现,结合反射波反射强度的实际大小就可以区分反射界面前方介质的一系列的特征。依据雷达数据处理结果并结合地质资料分析得出以下预报结果:(1)掌子面为强风化花岗岩,上方自稳能力差,中部伴随严重掉块,局部潮湿明显,推断围岩级别为Ⅴ级。(2)掌子面右侧前方4~10m(ZK19+739~ZK19+745)区域反射信号强烈,同相轴紊乱,推测此区域与掌子面情况类似,有明显破碎带,围岩完整性差,推断围岩级别为Ⅴ级。(3)掌子面前方10~15m(ZK19+745~ZK19+750)区域反射信号衰退稳定,同相轴平稳但仍存在断开处,推测此区域岩性略微好转,但依旧破碎且含水,推断围岩级别为IV级。(4)掌子面前方15~30m(ZK19+750~ZK19+765)区域信号较弱,加大增益后发现同相轴较为连续,推测此区域岩性好转,级别应为IV级。依据结果给出的建议:(1)ZK19+735掌子面围岩为强风化花岗岩,自稳能力差,局部潮湿明显,中部掉块严重,应严格控制进尺,加强支护,预防坍塌。(2)掌子面前方10m区域围岩与掌子面情况相似,稳定性差,破碎带明显,容易坍塌。严格控制进尺,及时做好初期支护工作并保证强度,防止掉块与坍塌,同时做好排水工作。(3)掌子面前方20m区域后,岩性有所好转。建议采用上下台阶方法,并严格控制进尺,及时做好初期支护工作并保证强度,防止掉块与坍塌,同时做好排水工作。

5、结束语

地质雷达在隧道工程施工或者是后期的运营过程当中,可以很好地对工程的质量进行详细地检测,可以更严格地控制工程的质量,更好地检查工程的缺陷。假如说天线的频率特性以及工作的方法有一定的影响,而地质雷达在对介质参数的探测当中,还存在很多的争议,那么经过不断地完善以及发展,地质雷达在隧道工程检测当中一定有一个非常重要的角色。综上所述,应用地质雷达在地质超前预报当中可以精准地探测预报隧道施工当中危害的工程施工安全的相关地质灾害。而地质雷达可以探测出来隧道的结构中重要的施工缺陷,可以为有问题的隧道提供一些非常可靠的依据,这样就可以提高工作的效率,并且节省一些资金。

工程地质论文范文二:福仁山隧道工程地质研究

【摘要】福仁山隧道是中国水电十四局承建的西成铁路西安至江油段(陕西境内)站前工程XCZQ-5标段的一座典型隧道工程。该隧道地处秦岭南麓低中山区,位于商丹断裂带和勉略-巴山弧形断裂构造带夹持的南秦岭构造带,内部组成与构造变形十分复杂,工程地质现象较为特殊,具有一定的研究意义。

【关键词】福仁山隧道;工程地质特征;地质构造

1福仁山隧道工程概述

目前在建的西成客运专线按国铁Ⅰ级、双线建设,设计时速250公里每小时,功能以客运为主,从西安出发,穿越秦岭经陕西汉中、翻越米仓山进入四川境内,经四川广元至江油与绵成乐客运专线相接直抵成都,预计线路通车后,将大大缩短西安到成都的直线距离。从西安到汉中仅需1小时、到成都需3小时。该项目由西安至四川江油段和成绵乐城际铁路两段组成,全长660公里,项目投资估算总额约为688亿元。西成客专陕西段全长公里,建设工期5年。中国水电十四局负责西成铁路西安至江油段(陕西境内)站前工程XCZQ-5标段,正线全长。该标段主要包括:罗曲隧道进出口路基工程,隧道工程4座(包括部分得利隧道6330m、福仁山隧道、罗曲隧道、范家咀隧道)总长度,桥梁3座(金水河特大桥、酉水河大桥、金龙河大桥)总长度。福仁山隧道地处秦岭南麓低中山区,隧道范围平均海拔1200m,最高海拔为,洞身地表起伏较大,地表自然坡度为30°~40°,分布有众多基岩“V”形侵蚀谷,多为南北展布,隧道区域山高坡陡,基岩裸露,沟壑纵横,地形复杂,植被茂密。隧道起讫里程为DK159+。进口位于金水河牛角坝,出口位于酉水河宋家堰,最大埋深929m,最小埋深46m,洞身均位于直线以上,隧道以3‰上坡进洞至DK162+900后以8‰下坡出洞。进口位于金水河右岸坡地上,隧道中含有一座斜井,为本标段重点控制隧道。本隧道建筑限界采用《高速铁路设计规范》(TB10621—2009)中规定的限界尺寸,隧道内采用“通隧(2008)0201”中的衬砌内轮廓,轨面有效面积为92m2,隧道内线间距为.曲线上隧道衬砌内轮廓不加宽,施工针对围岩情况采取短进尺、分部开挖和初期支护,二次衬砌及时跟进,以确保施工安全。

2沿线气候条件

本区域为亚热带湿润季风气候,特点是温暖湿润,四季分明,降水量多集中在夏秋季节,常有暴雨灾害,年平均气温℃,极端最高气温℃,极端最低气温℃,年平均降水量,年平均蒸发量,最大积雪厚度4cm。

3工程地质特征

地层岩性

隧道通过的地层主要有第四系全新统(Q4),志留系下统(S1),元古界中上统(Pt2-3)及太古界(Ar)的构造岩类。(1)第四系全新统(Q4)主要包括:膨胀土(Q4d19)、卵石土(Q4d17)、碎石土(Q4d17、p17)、块石土(Q4d18),多为灰黄色,粒径小于或等于2-60mm的约占10%,大于60-100mm的约占25%,大于200mm的约占55%。(2)志留系下统(S1):片岩夹大理岩(S1Sc+Mb),大理岩(S1Mb)、片岩(S1Sc)、主要为灰黄青灰色变晶结构,片状块状构造。(3)元古界中上统(Pt2-3):变粒岩夹大理岩(Pt2-3Gr+Mb),大理岩夹片麻岩(Pt2-3Mb+Mb)。多为灰褐色,浅灰色,风化厚度约为1-10mm。(4)太古界(Ar):片麻岩夹大理岩(Pt2-3Gr+Mb),灰褐色,浅灰色粒状变晶结构,块状结构,风化厚度2-8mm。(5)构造岩类主要包括:碎裂岩,多为青灰色、灰褐色,宽度约20-65m,工程地质较差。

地质构造

福仁山隧道位于商丹断裂带和勉略-巴山弧形断裂构造带夹持的南秦岭构造带,相当于秦岭造山带的蜂腰部位,隧道主体位于佛坪窟窿的南半部,历经多次地质构造活动的影响,其内部组成与构造变形十分复杂。目前已经发现的主要断层包括:f66、f67、f68、f69、f70、f70-1、f71、f71-1、f71-2,其中f66为逆断层,产状N65°-N80°W(65°-N75°),破碎带宽约为10-30m,断层带物质成分为碎裂岩,局部夹断层角砾岩,断裂带内部岩体较为破碎,隧道洞身通过地段为DK159+856~DK159+。f67为逆断层,产状N60°-N80°W(50°-N65°),断裂带宽30~40m,内部成分为断层角砾,洞身通过地段为DK160+281~DK160+318。另外,隧道段还发育两处背斜及一处向斜,背斜核部洞身中心里程为DK165+543~DK169+062,岩体破碎,节理发育,向斜核部未穿过洞身,富水,岩体破碎,节理发育,由于隧道区各地质体的发育时代,构造运动强烈,区域性大断裂贯穿东西,发育数条低序次断裂,岩石节理裂隙较发育,分布较多节理密节带,岩体较破碎-较完整。

不良地质及特殊岩土

(1)隧道范围内不良地质为隧道进口处左侧分布的大理岩岩溶,岩溶现象主要发育在隧道进口左侧金水河右岸的大理岩中,以溶洞形式发育,溶洞直径约1-3m,可见延伸深度大于10m,不完全填充,充填物为角砾及杂砂土。(2)隧道范围内的特殊岩土为膨胀土,具弱-中等膨胀性。

4工程设计情况

针对福仁山隧道地层岩性多样、地质构造复杂、不良地质现象多发的工程地质特点,施工单位在详细的实地勘察和室内研究的基础上,制定了较为科学合理的设计方案:(1)洞口工程采用斜切式洞门,并设置明洞段,出口采用倒斜切式洞口边仰坡设置截水天沟,边坡采用锚网喷支护。(2)洞身工程隧道内部采用“通隧(2008)0201”中的衬砌内轮廓,轨面有效面积为92m2,隧道采用复合式衬砌,初期支护采用喷锚支护设置喷混凝土,锚杆,钢筋网,钢架,二次衬砌等,各衬砌类型预留变形量,特殊地形地质地段对支护 措施 采用管棚,小导管等措施进行了加强。

参考文献:

[1]王毅才.隧道工程[M].北京:人民交通出版社,2013.

[2]兰州铁道学院.隧道工程[M].北京:人民铁道出版社,1977.

[3]张咸恭.工程地质学[M].北京.地质出版社,1983.

[4]高速铁路设计规范(TB10621—2009)[S].2009.

工程地质论文相关 文章 :

1. 工程地质勘探中的钻探技术应用论文

2. 地理地质论文

3. 环境工程地质在城市规划中的作用分析

4. 地质矿产经济发展论文

5. 探析煤矿地质测绘重点及地质因素研究论文

6. 探究当代水工环地质现状及发展趋势论文

学号:20000300056    姓名:刘照标 【嵌牛导读】        量子成像又称为双光子关联成像、强度关联成像、鬼成像等,是利用量子纠缠现象发展起来的一种新型成像技术。由于微观客体的关联具有非局域的性质,可以延伸到很远的距离,在这种纠缠状态下即使分布于空间两个分离点的粒子也表现出相同的性质,如电荷、频率、极化等。         在军事和科学应用需求的牵引下,国内外在可见光、红外波段主被动强度关联遥感成像、微波关联成像雷达的研究方面竞争激烈,同时尝试将其应用于对地观测领域,以突破常规光学遥感和微波遥感的性能局限。         量子雷达是量子度量学的另一个重要研究方向,其本质是将光量子作为光频电磁波微观粒子对目标进行探测,利用它不同于常规雷达电磁波的物理特性,提升对目标的探测性能,同时提高雷达的抗干扰和抗欺能力。量子现象能够大幅度提高传感器灵敏度,促使量子传感器得到优先研发,如磁力计、光电探测器和密度计等。量子雷达比传统雷达的目标能见度更高,且量子旁瓣为射频隐身目标的探测提供了一种新方法。量子雷达具有优越的电子对抗性能,非常适合军事应用,因此受到各国军方的高度重视。 【嵌牛鼻子】 量子成像、量子雷达 一、量子成像的原理和优势         量子成像是基于双光子符合探测恢复待测物体空间信息的一种新型成像技术,其物质基础是纠缠的光子对。产生纠缠光子的方法很多,其中自发参量下转换(SPDC)方法是最常用的一种。自发参量下转换双光子场是一种非经典场,它由单色泵浦光子流(Ar量子激光器)和量子真空噪声对非中心对称的非线性晶体的综合作用,使得每个入射光子以一定概率自发地分裂为能量较低的两个光子,由这些在时间和空间上高度相关的光子对所构成的场就是自发参量下转换双光子场。它具有从泵浦波频率一直到晶格共振频率的宽范围光谱分布。         现有的研究结果表明,光量子的纠缠特性并不是实现量子成像的必要条件,热光源同样可以实现量子成像。但是,由于光场关联形式的差异,热光量子成像的可见度较低且热光量子成像遵循的高斯成像公式与纠缠量子成像公式不同。当物体和成像透镜都在同一个光路中时,纠缠量子成像与两个光路的纵向距离之和有关,而热光量子成像和两个系统的纵向距离之差有关。对于相同的物距,两种量子成像的放大率是相同的,但是成像的位置不同。         量子成像比常规的激光全息成像更方便。但是,量子成像需要的成像时间较长,一般要几秒钟时间,不适于快速成像的场合,而且就目前的技术而言,产生大量的纠缠光子对还有困难,不过随着量子信息技术的发展,这些问题都有望解决,因此量子成像将成为成像领域中的一个重要分支。要在红外波段获得高分辨率图像很难,使用量子成像却能很容易获得成像效果良好的图像,所以量子成像技术将以其高清晰的图像在航空探测、军事侦察、远红外成像等领域发挥重要作用。 二、量子雷达的原理和优势         传统雷达利用电磁波的波动性,通过测量目标回波的幅度、频率、相位、极化等参数来获取目标信息,但由于它们不能详细反映目标信息的空间序列特性,因此探测能力有限。根据电磁波的波粒二象性,如果对其粒子性进行测量,可以获得信号的动量和位移,其中包含了目标信息的空间序列特性。以此作为目标探测的信息载体,将会获得目标状态的大量精准信息,这就是量子雷达的工作机理。凡是采用微波光子进行远程目标探测,利用光子的某些特性来提高其探测、识别和分辨目标能力的电子系统就称之为量子雷达。         量子雷达的探测信号是原子中的电子从一个能级跃迁到另一个能级时辐射的电磁波,它具有特定的状态,一般是指电子的自旋。多个已知自旋状态(相当于信号编码)的电子辐射电磁波,该电磁波经目标反射后被接收机接收。接收机通过分析电子吸收反射波后自旋状态的改变规律,可以获取目标信息。所以,电磁波与电子自旋状态之间的关系及其持续时间很重要,它决定了量子雷达的探测能力和探测距离。 一个典型量子雷达的工作原理图,如图所示。         量子雷达具有常规雷达无法比拟的灵敏性,这是因为信息以量子信息的形式调制在单个光子状态上,接收机识别单个光子的能量模式,而常规雷达的信息是调制在大量光子组成的电磁波上,接收机识别大量光子组成的能量模式,因此量子接收机对信息的感知更灵敏。当量子光特性转换成真空波动时,会影响到电磁场幅度的测量,所以现代大多数传感器的灵敏度都受到标准量子极限的限制。而量子雷达采用纠缠光子时,可以克服标准量子极限限定的相位测量极限,达到海森堡极限,这就是其重要的超灵敏性。         量子雷达的另一个显著优势是其固有的抗干扰性。这来源于光量子的一个奇异特性,即在测量光子的同时往往会改变其量子特性,通过对量子特性的检测可以发现是否受到干扰,这对雷达对抗日益严重的欺式干扰非常有效。         量子雷达未来的工作频段最可能处于微波频段(如X波段),从而继承了微波的许多优点,如微波光子能够穿透云层和雾气,具有全天时、全天候的工作能力,比光学传感器具有更好的穿透性,使导弹制导、海事监测、气象、地面警戒和机场交通导航等成为其潜在的应用领域。 三、量子成像的研究现状         1994年,巴西的Ribeiro等人通过参量下转换的动量纠缠光源,以符合计数的方式观测到第一例双光子干涉条纹,1995年美国马里兰大学史砚华小组也通过参量下转换获得的动量纠缠光源,观察到鬼干涉和衍射,这些工作揭开了量子成像研究的序幕。         2002 年,Rochester大学的Bennink等人巧妙利用一个随机旋转的反射镜反射激光,得到了和量子符合成像类似的结果,虽然没有解释经典光源实现鬼成像的原因,但这项工作却引起了人们的极大关注。         2004年Bennink等人又通过经典相关光重现了物体的衍射图,但在实验中对实验装置做了改变,如成像物体的位置、棱镜设备等,以确定量子纠缠是否是实现鬼成像和鬼干涉实验的必要条件。         上海光机所的程静、韩申生从理论上分析了利用高斯随机分布光源做关联成像,并提出X-Ray光源的实现方案。2004年底,类热光作为光源实现了关联成像的实验。吴令安等人完成了真正热光的符合成像实验。关于经典热光源和量子纠缠光源成像的讨论还在继续。最终会形成统一结论。由于热光场量子成像在现有技术条件下更容易转化为实际技术,因此更引人关注。         量子成像受到国际学术界的广泛重视,据不完全统计,目前世界上已有10 多个著名实验室在开展量子成像理论与技术的研究,欧盟从2001 年起就专门设立了包括12个子课题在内的欧盟量子成像研究计划(QUANTIM项目) ,并于近期又启动了后续研究计划。目的是研究量子纠缠光束的空间性质对光学成像和信息并行处理的影响,并探索利用量子成像技术突破当前成像品质极限的方法,以达到最终的量子极限。美国国家自然科学基金会、美国海军研究局、国家航空和宇宙航行局以及美国国防部的国防先进技术研究计划署等机构均给予量子成像研究大量的资助。2005年,美国国防部组织美国多所国际一流大学,启动了针对国防应用需求、包含量子成像系统及量子成像技术两个层次共8个子课题的量子成像大学联合研究计划(MURI 计划),美国波士顿大学还成立了专门的量子成像实验室。         在上述欧美各国的量子成像研究计划中,强度关联成像都是其中的重要研究方向。2005 年美国马里兰大学的史砚华小组提出了将强度关联成像技术应用于空间对地观测的设想,并获得了美国军方的大力支持。2009 年11 月美国国防部新闻网站又报道了美国陆军装备研究实验室(ARL)开展强度关联遥感成像研究的最新进展。此外,从美国麻省理工学院量子成像课题组的报告及其它相关课题组研究论文中披露的信息来看,除被动式强度关联遥感成像研究外,美国有可能也已经开展了(或即将开展)主动式光学强度关联遥感成像雷达及新概念微波强度关联凝视成像雷达的研究工作。         将量子成像应用于遥感探测领域,可以同时对目标进行探测和识别,并具有成像速度快,抗侦察、抗干扰、抗反辐射导弹能力强的优势,还可以对动、静目标成像,因此具有很好应用前景。 四、量子雷达的研究现状         量子雷达的概念是量子信息理论在遥感探测领域的具体应用,通过对量子不同物理特性的观测和测量,可以构成不同原理和形式的量子雷达。根据系统采用的量子效应的不同,可以把量子雷达分成三种基本类型,即发射非纠缠态光子的量子雷达、发射量子态光并与接收机中的光量子纠缠的量子雷达、发射经典态光但使用量子光探测提升性能的量子雷达。         在量子雷达领域出现的单光子量子雷达采用了非纠缠态光子,工作过程与传统雷达类似,由量子雷达发射机向目标发射单个光子,经过目标反射后被雷达接收机接收并进行测量。这种量子雷达的优点是,当发生的脉冲中包含的光子数目较少时,目标的雷达散射界面被放大,有利于探测小尺寸目标,而且信号几乎不受干扰,效率极高。基于光的纠缠态的量子雷达可以发挥量子雷达的最大优势,发射机向目标辐射纠缠光子对中的一个光子,另一个光子留在雷达系统中,辐射出去的光子经目标反射后被雷达接收机接收,测量光子纠缠态所包含的相关性,可以提高系统的探测性能。 1)干涉量子雷达         干涉量子雷达类似于一个干涉仪,目的是测量两个输出波束的光子数来计算相位延迟。目前研究的测量方法有量子干涉测量法、衰减量子干涉测量法、可分离态测量法、大气量子干涉测量法等。理论研究表明,使用高纠缠态的干涉相位测量可以达到海森伯极限;只有在无衰减的情况下衰减量子干涉测量法才能获得海森伯极限;而对于可分离态法即使没有衰减也无法突破标准量子极限。研究人员仔细研究了大气衰减对量子干涉测量相位误差的影响,结果表明采用NOON状态的基本量子干涉测量法进行远程相位估计可能受到大气衰减的严格限制,单独的NOON态不足以建立实用的干涉测量的量子雷达。         由于大气衰减的影响,NOON状态的使用不足以保证量子雷达的超级灵敏度,因此美国海军研究室(NRL)的开发了一种自适应光学校正方法,在大气的电磁性能发生显著变化时可使超级灵敏度的范围达到5000km。 2)量子照明         量子照明是MTI的发明的一个革命性的远程光子量子传感技术,它提高了光在嘈杂和耗散环境中的光电探测灵敏度。理论上,量子照明不局限于任何特定的频率,可以被量子雷达使用。研究结果表明,纠缠可以提高检测系统的灵敏度,而且在嘈杂和耗散的环境中表现更明显。 3)量子雷达散射界面         在量子信息技术提高常规雷达探测性能的激励下,一些研究者提出了实现量子雷达的方案,并申请了专利。如Lockheed Martin在其专利中提出了一个基于量子纠缠原理的扫描仪概念;专利号为EP1750145的一项欧洲专利描述的量子雷达是“使用纠缠量子的雷达系统和方法”。为验证这些方案和雷达性能的提高,研究人员们作了一系列有益的实验探索。         2012年,美国罗彻斯特大学光学研究所的Mehul Malik等人建立了一个成像系统,利用光子的位置或飞行时间信息对目标进行成像,利用光子的极化检测来发现欺干扰。其基本原理是,干扰者在实施欺干扰时,必然会扰乱成像光子微妙的量子态,从而在极化特性检测时引入误差,根据误差可以判断是非受到干扰。         这个安全成像系统的结构如图所示。HeNe激光器发出一个极化单光子脉冲,经目标反射后,通过干扰滤波器(IF)进入电子增强CCD相机(EMCCD),其中的半波平板(HWP)和极化波束分解器(PBS)用于适当的极化基测量,EMCCD作为单光子检测器可以得到四个极化测量的图像。             图:基于光子极化检测的安全成像系统结构图         联合这四个极化图像可以得到目标的图像,如图所示。图(a)为一个隐身飞机的真实图  像,其中不同颜色的像素点对应于不同的极化;图(b)为受到欺干扰后的成像结果。通过检测光子的极化误差率,成像系统很容易检测到人为干扰的存在与否,如图(a)的平均误差率为,远小于25%的安全限,因此成像结果是安全的,而图(b)的平均误差率高达,表明受到了人为干扰,图像不可信。                     图:基于光子极化检测的安全成像系统的结果         量子的远距离传输一直是影响量子通信和量子雷达发展的关键技术之一,近年来研究人员通过各种试验装置增加量子的传输距离,已由最初的16Km扩展到97Km。研究人员用紫外光激发水晶,制造出纠缠光子,使其穿越了青海湖,达到了前所未有的传输距离,进一步研究光子的远距离传输,达到通信和雷达工作所需要的传输距离仍是今后的研究课题。         美国等军事大国和一些著名的研究结构非常重视量子雷达的研究,如美国国防高级研究局(DARPA)提出了“量子传感器计划(QSP)”;美国海军研究办公室(ONR)近期专门组织了一场研讨会,讨论量子雷达的科学性;美国海军实验室(NRL)的研究发现,即使考虑大气衰减,工作于9GHz的量子雷达理论上也可以提高目标探测能力;荷兰莱顿大学的一个研究小组提出了一种机械装置方案,可利用量子点产生纠缠态的微波光子;西班牙Pais Vasco大学已经开发出多个工作在微波的单光子探测器的理论模型。 五、量子成像的关键技术         作为一类正在探索的全新概念的成像技术,量子成像虽然在突破奈奎斯特采样定理限定的图像获取效率和成像孔径衍射极限的超分辨能力方面的得到了实验验证,并逐渐进入应用实验阶段,但仍有大量的基础性问题需要研究,这些问题包括: 1)基于图像稀疏特性的量子成像的超分辨理论极限 。主、被动量子成像原理方案的超分辨能力已经获得实验验证,并对其机理做了定性解释,但还缺乏一个经过实验考核的定量理论。 2)主动量子成像中的线性无关光源数、目标图像稀疏度和成像分辨率之间的关系 。在量子成像的应用模式中,稀疏阵列发射和接收将会大大降低系统复杂度,提高目标图像的获取速度,其原理演示已经完成,但是还缺乏一个可以将其与MIMO雷达和稀疏阵列天线理论统一起来的完整的理论体系。 3)量子成像中时域-空域探测模式的自由转换和实现方法 。传统的强度关联成像的一个缺点是只能通过时域的多次测量来获取目标图像,在遥感应用中更适合于凝视成像。该技术在更多遥感场合中的应用很大程度上依赖于其时域-空域探测模式的自由转换程度,即可以单点探测/多次采样成像,也可以多点探测/一次采样成像。 4)强干扰环境下量子成像的高效数据图像复原算法、欠采样和临界采样时的图像复原以及探测模式的最优化问题。 5)可直接进行目标识别的量子成像方案 。因为利用目标稀疏先验的量子成像可以直接探测压缩后的目标图像,因此可以将其与目标特征识别结合起来,在目标探测阶段直接进行目标特征识别。 6)量子成像探测灵敏度的量子极限 。在压缩感知中可以直接探测压缩后的图像数据,因此(特别对遥感应用而言)其探测灵敏度的量子极限就是一个需要重新研究的新课题。 六、量子雷达的关键技术 1)量子信息调制         量子信息调制包括量子信道编码、量子信息调制和量子信号发射。其中,量子信息编码又包括电子自旋态辨识和量子信息编码,电子自旋态辨识就是要通过一定的方法产生100%单一极化的自旋状态,目前的方法还不能满足这一要求;量子信息编码的目的是通过量子编码纠正或防止量子信息论中普遍存在的消相干引起的量子错误。量子信息调制就是将电子的自旋与激发出的电磁波特性进行关联(如电磁波的频率和极化形式),实现电子自旋态在电磁波上的调制。由于在解调量子信息时要测量微观粒子的状态,这会引起量子状态的变化,从而模糊原有的调制信息,因此在调制量子信息时必须考虑如何消除量子态的变化引起的调制信息丢失,这也是量子信息调制要解决的关键问题之一。 2)量子信息解调         量子信息解调包括量子信息解调和量子信息解码,其中量子信息解调就是从发射的光子(电磁波)中辨识出电子的自旋态。目前主要是通过光学方法或电学方法来探测自旋极化,其中光学方法包括光致/电致发光、Hanle效应、时间分辨的Faraday旋转和Kerr效应,电学方法是利用铁磁材料和半导体界面的自旋以来的输运性质,比如测量通过不同磁化方向的铁磁电极的电阻差来给出自旋极化度。量子信息解码主要是纠正微观粒子状态变化引起的编码错误。所以,电子自旋态辨识和编码纠错是量子信息解调要解决的关键问题。 3)量子信息处理         量子雷达通过调制、传输、解调所传递的目标信息,最终要通过量子信息处理器提取出来。由于信息载体和传递的信息量均不同于传统雷达,因此在处理内容、处理方法和处理速度上也不同于传统信号处理器,主要取决于量子计算和量子计算机技术的发展。当前的量子信息处理是通过构造量子算法和量子神经网络来获得一定的应用,远不能满足量子雷达的要求。因此,构建新的量子信息处理方法和体系结构是实现量子雷达的一个关键问题。         无论量子雷达的系统结构如何变化,其工作过程都包括量子信息的调制、解调和传输过程,与这些过程有关的量子态特殊性都需要研究,如量子的纠缠特性、相干性、量子微弱能量的接收与处理等。 结 语         量子信息技术是当前科学攻关的主要领域之一,美国、日本、欧洲等国家很早就意识到它的军事和民用价值,不断加大投入,促进理论研究成果向实用技术转化。近几年来,有关量子计算、量子通信、量子雷达等方面的研究论文突然增多,昭示着该领域研究热潮的到来。未来量子信息技术的主要应用领域将瞄准安全信息传输、高速信息处理、武器控制、网络攻击、目标探测以及更深入的思维模拟与攻击等方面。

雷达信号处理论文题目

基于FPGA的红外图像处理算法的设计与实现

基于FPGA的数字下变频技术

稀疏成份分析及在雷达成像处理中的应用稀疏成份分析是一种新兴的信号分析方法。它以过完备词典为基础,能从有限的观测数据中获得信号的稀疏表示,有效地挖掘信号的自然属性和本质的驱动源,提高变换域的分辨率,为信号处理提供了有力的工具。作为信号处理的重要组成部分,雷达成像技术无论在军事还是民用上都有巨大的应用潜力。雷达成像本质上就是一个信号表示过程,由于高频区雷达目标散射行为具有局部特性,用稀疏成份分析方法能提高雷达图像的质量,有利于图像分析和目标识别。针对雷达成像的应用背景,本文研究了稀疏成份分析中稀疏性度量函数构造的一般准则等理论问题,以及基于稀疏成份分析的雷达成像算法,包括一维距离像、二维逆合成孔径雷达成像和多频段雷达信号综合技术等。研究了稀疏成份分析中度量函数的构造和算法分析等理论问题。利用稀疏成份分析方法研究了高分辨一维距离像稀疏表示的原子构造与相关算法,并对算法的参数估计性能进行了理论分析。研究了基于稀疏成份分析的逆合成孔径雷达成像算法。根据雷达目标散射信号的稀疏表示模型,研究了多频段多分辨雷达信号综合技术。根据雷达目标的理想点散射体模型和几何绕射模型,分析了多频段雷达回波观测信号的联系与差别,并利用稀疏成份分析方法提出了高分辨一维距离像的多频段信号综合成像技术。针对多频段窄带组网雷达检测海上目标的应用背景,根据雷达目标在低分辨回波中的稀疏分布特性和海杂波的分布特性,提出了多雷达距离分辨率匹配处理技术,提高了雷达回波的距离分辨率并实现了多雷达距离分辨率的匹配统一,为多频段窄带雷达信号综合提供了统一的基础。

基于FPGA的移动目标自动识别算法研究与实现 给你看下目录摘 要 IABSTRACT II1 引言 选题背景及意义 移动目标自动识别的国内外研究现状 本设计的任务和研究内容 52 移动目标检测的主要算法 移动目标检测的概念 几种典型的移动目标检测算法 帧间差分法 三帧差分法 背景减法 光流法 93 移动目标自动识别算法设计与Matlab仿真 算法设计 Matlab程序设计 视频图像采集模块 帧间差分模块 差值图像的二值化及阈值选择 移动目标检测判断 matlab总程序 matlab仿真结果 174 Verilog编程与仿真 FPGA数字系统设计流程 Verilog硬件描述语言与软件平台 Verilog硬件描述语言 Quartus II和ModelSim仿真平台 利用Verilog编制FPGA模块的原则 Verilog程序设计 仿真结果及分析 两帧灰度图像的仿真波形 连续帧灰度图像的仿真波形 数据流图 quartus II中运行结果 305 全文总结 32致谢 33参考文献 34

研究生论文的数据处理

写作点拨:

一、 开题报告封面

论文题目、系别、专业、年级、姓名、导师

二、 论文的背景、目的和意义(目的要明确,充分阐明该课题的重要性):

论文的背景、理论意义、现实意义

三、国内外研究概况(应结合毕业设计题目,与参考文献相联系,是参考文献的概括):

理论的渊源及演进过程、国内有关研究的综述、国外有关研究的综述

四、论文的理论依据、研究方法、研究内容(思想明确、清晰,方法正确、到位,应结合所要研究内容,有针对性)

五、研究条件和可能存在的问题

六、预期的结果

七、论文拟撰写的主要内容 (论文提纲)

八、论文工作进度安排(内容要丰富,不要写得太简单,要充实,按每周填写,可2-3周,但至少很5个时间段,任务要具体,能充分反映研究内容)

开题报告的内容一般包括:题目、理论依据(毕业论文选题的目的与意义、国内外研究现状)、研究方案(研究目标、研究内容、研究方法、研究过程、拟解决的关键问题及创新点)、条件分析(仪器设备、协作单位及分工、人员配置)、课题负责人、起止时间、报告提纲等。

综述开题报告的综述部分应首先提出选题,并简明扼要地说明该选题的目的、相关课题研究情况、理论适用、研究方法。  提纲 开题报告包含的论文提纲可以是粗线条的,是一个研究构想的基本框架。

可采用整句式或整段式提纲形式。在开题阶段,提纲的目的是让人清楚论文的基本框架,没有必要像论文目录那样详细。

大学毕业论文的数据,因为实验条件、实验周期、调研局限、数据不理想等条件下完全是可以编的但这种编也不是胡编乱造,起码要符合三个基本取向其一,就是与主流文献的研究成果数据和结果保持一致;其二,数据具有较好的重复性和统计学价值其三,数据符合你论文的设计及预期的结论在这样的条件下,完全可以编造数据,但还需要注意的是,编数据分为初阶、进阶和高阶初阶就是没有原始数据,直接编造的是论文图表所需的数据呈现,这种经不起推敲,但如果导师没有高标准要求的话,完全可以过进阶是在图表数据的基础上编造了原始数据,也就是说,论文的图表数据是初阶的,只不过为了应付导师的检查,随机编纂了一些原始数据但如果原始数据需要经过专门的软件,比如SPSS、STATA、AMOS等软件运行的话肯定得不出图表的结论数据。高阶的话就是水平比较高的编造了,这种是先编好原始数据然后在原始数据的基础上,按照文章的脉络和呈现方法用专门的软件运行一遍,并不断调整,得到理想的结果这种编造的数据,是审查都审查不出来的,也是最高等级的编造其实目前学术界的专家编造数据,都不会用前面两种方法而是用后面的高阶方法,别人如果质疑的话,只会说无法重复你的实验和结果但这种程度,对硕博研究生来说都不会有影响,对本科生更无影响。

研究生论文数据处理方法

在论文中,三年的数据处理方法不应该简单地使用平均值代替。数据处理应该分为不同的阶段,针对不同的数据类型和目的采用不同的方法。 首先,对于连续性数据,可以使用平均值、中位数或众数等方法进行汇总和分析。但是,需要注意异常值的存在和处理方法,可以采用剔除或替换的方法进行处理。 其次,对于离散型数据,可以使用频数分布表和百分比分布表进行分析。在处理离散型数据时,需要注意数据的类别和分组方法,避免信息的丢失和误解。 最后,对于时间序列数据,可以使用趋势分析、季节性分析和周期性分析等方法进行处理。在处理时间序列数据时,需要注意数据的平稳性和周期性,以及预测模型的选择和效果评估。 综上所述,论文中三年的数据处理应该根据不同的数据类型和目的采用不同的方法,避免简单地使用平均值代替,以保证数据的准确性和可靠性。

1、注意语言表达虽然科研论文可以说是对他人“讲故事”。但与一般的故事不同之处,个人认为,主要在于逻辑性与连贯性。表达方式应以顺叙为佳,不宜像诗歌、散文、小说之类的文艺作品,使用倒叙、插叙等手法。内容详略得当。该简略之处就要言简意赅,该详尽之处就要清晰全面,不要写成“流水账”,也不要写成“意识流”。结构要合理。可以按“提出问题(立论)→分析问题(讨论)→解决问题(结论)”的总体思路来谋篇布局。摘要、正文和结论的相关内容,要前后呼应。语言通俗易懂。论文是给别人看的,不要认为自己知道的,别人就一定知道。要使用书面语言,避免使用网络语言。语句长短合适,少用累赘的长句与跳跃的短句。遣词要恰当得体。比如,“推测”、“推断”与“推定”,语气是有所不同的(在英文文献中,常用的是suggest、indicate、maybe之类“容他性”的词语)。注意错别字。避免因一时的疏忽大意,而留下缺憾。比如,将“风云二号”写成“风韵二号”,“碳酸盐”写成“碳酸岩”。一字之差,天壤之别。正确使用标点符号。不要分号与顿号不分,一“逗(号)”到底等。建议同学们在闲暇时,可以多看看汉语言工具书。同时,也呼吁素质教育阶段,要切实重视母语—汉语的教学质量。2、数据、术语严谨规范严谨规范,是科研论文的主要特征之一。数据分析,避免“张冠李戴”。对数据进行判别时,不要将属性为A的对象,用B作为参照标准。计量单位,要符合国家标准或者相关行业规范。注意有效数字的取舍。并不是小数点之后位数越多就越精确,而是要与获得数据的方法手段结合起来。比如,利用一台精度为5%的仪器进行观测,数据应写成“19”,而不是“”。不能简单地照搬仪器报出值。高于检测上限、或低于检测下限的数据,应该用“>检测限”、“<检测限”、“未检出”或相应的英文缩写等表示。标注要详实。比如,采样位置图,应该有比例尺、方位、坐标、图例及说明等参数。图版中使用专业符号、代码表示对象时,应该附注相应的文字说明。

研究生的论文通常都会用到画图和数据处理软件,比如说著名的画图软件的话,论证就是研究生论文需要用到的还有CAD。

利用网络搜集资源有两种情况:

并行处理论文参考文献

计算机技术的应用及发展探究论文

摘要: 随着现代社会全球化、信息化发展的速度加快,计算机技术获得了更广阔的发展空间,被越来越多的应用在生活生产中的方方面面,计算机技术应用的普及为人们的生活行为方式带来了极大的便利。本文针对现阶段我国计算机技术的发展情况对未来趋势进行探讨。

关键词: 计算机技术;智能;应用

引言

计算机技术是计算机领域中所运用的技术方法和技术手段,计算机技术具有明显的综合特性,它与电子工程、机械工程、现代通信技术等紧密结合,因此发展很快。现在计算机技术已成为我国综合竞争力中重要的一部分,为我国的科学发展提供了充足动力。在此基础上本文对我国计算机技术的应用进行研究,希望能促进计算机技术的快速发展和在各个领域更广泛的应用。

1 计算机科学技术的发展进程

计算机的发展过程主要包括四个阶段,1946年美国制造出了世界上的第一台电子计算机,其中应用了18800个真空管,它的出现在一定程度上改变了人类的思维和生活方式,为计算机技术的进一步发展打下了坚实的基础。所以,第一代计算机不仅体积庞大,而且耗电量巨大。1954年由美国科学家崔迪克研制出来的第二代晶体管计算机尺寸小、重量轻、效率高、功耗低,很好的弥补了第一代计算机的缺点。70年代中小规模集成电路将第三代计算机体积进一步减小,可靠性及速度进一步提高。信息产业作为技术与知识密集型产业,为了适应现代化社会建设的需要,第四代计算机便应运而生。第四代计算机的出现促进了计算机的大量生产, 计算机被广泛的应用到公司企业和人们日常生活中[1]。

2 计算机科学技术的发展现状

普及性和发展性

计算机技术正逐渐成为社会发展的重要生产力,计算机技术已经融入了人类生活中的方方面面,如视频聊天、移动支付、网络约车等,充分体现出科学技术的迅速发展。计算机技术面向的用户群体从之前的军事和科研等转变为一个个的普通家庭。毋庸置疑,计算机技术将会成为人类生活学习的重要组成部分,对社会的发展产生巨大影响。

专业化和智能化

计算机技术正朝着专业化和智能化两个方向发展。随着科学技术的进步,计算机技术在越来越多的细分领域开花结果,逐渐变得专业化,比如神经网络、人工智能、面部识别、智能家居等领域[3]。与此同时,由于网络信息技术的发展,计算机的使用更加倾向于交流互动性,网络分布式系统逐渐替代了单机模式,大大提高了计算机技术的综合性。

微型化和人性化

随着计算机技术的逐渐普及,计算机技术在许多领域都取得了突破性的进展。计算机的更新速度变快了,人们对于计算机的便携性和计算机技术的先进性也提出了更高的要求,电脑越做越小,手机越做越薄,计算机技术还可以将更多的实用功能集成到手表之内。计算机技术可根据不同人群的需求,加以创新和改进,更多的体现出计算机技术的人性化和个性化。在计算机技术的'核心功能中增加人性化功能,需要设置更多独立且相互联系的组件,这不仅是计算机微型化和人性化的难度所在,也对微型传感器等计算机相关设备提出了新的要求。

3 计算机科学技术的发展展望

光计算机

与传统硅芯片计算机不同,光计算机用光信号代替电子进行信息处理和存储的新型计算机, 其在进行数据存储时主要利用的是光子和光运算,运算部分可直接对存储部分进行并行存取,运算速度极高、耗电极低[4]。光子计算机还具有很多优势,比如,不会受到电磁场的影响,信息传输中畸变和失真小,超大规模的信息存储容量及低能量消耗、低发热量等。光计算机在未来将广泛的应用于特殊领域,比如预测天气、监测气候等一些复杂而多变的过程等[5]。

化学、生物计算机

在运行机理上,化学计算机以化学制品中的微观碳分子作信息载体,来实现信息的传输与存储。生物计算机,也被称之为仿生计算机,主要原材料是生物工程技术产生的蛋白质分子,并以此作为生物芯片来替代半导体硅片,利用有机化合物存储数据。生物计算机的基本原理是用生化反应来模拟计算机操作,生物计算机的优点在于其所依托的生物体本身的多样性和复杂多变的生理现象[6]。生物计算机的运算速度要比当今最新一代计算机快10万倍,它具有很强的抗电磁干扰能力,并且能彻底消除电路之间的干扰。能量消耗仅相当于普通计算机的十亿分之一,且具有巨大的存储能力。这为生物计算机带来了很多优势,不仅表现在体积小功率高,而且存储和芯片也具有一定的可靠性[7]。

量子计算机

量子计算机的概念来源于对可逆计算机的研究,在可逆计算的模型中使用的能量很低。量子信息科学的核心目标是实现真正意义上的量子计算机和实现绝对安全的、可实用化的长程量子通信。量子计算机是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置[8]。量子计算机与现有的电子计算机和正在研究的生物计算机、光计算机等的根本区别在于,其信息单元不是比特(bit),而是量子比特(qubit),即两个状态是0和1的相应量子态叠加,因此,单个量子CPU具有非常强大的数据平行处理能力,而且其运算能力随着量子处理器的增加呈现出指数倍的增强,所以量子计算机在数据处理的运算时间大幅度减小[9]。目前,很多专家学者也在不断的研究量子计算机,研究量子计算机的目的不是要用它取代现有的计算机,而是去解决一些经典计算机无法解决的问题。

神经网络计算机

人脑总体运行速度相当于每妙1000万亿次的电脑功能,可把生物大脑神经网络看做一个大规模并行处理的、紧密耦合的、能自行重组的计算网络。从大脑工作的模型中抽取计算机设计模型,用许多处理机模仿人脑的神经元机构,将信息存储在神经元之间的联络中,并采用大量的并行分布式网络就构成了神经网络计算机[10]。神经网络计算机的信息不是存在存储器中,而是存储在神经元之间的联络网中。若有节点断裂,电脑仍有重建资料的能力,它还具有联想记忆、视觉和声音识别能力。

4 结束语

总而言之,计算机技术在社会中有着广泛的应用范围,也在社会中发挥了高效的社会功能。现阶段,我国的计算机应用水平与国际应用水平还存在着一定的差距,相信随着我国科研人员对计算机技术的不断研究,计算机技术必将得到更加高速的发展。

参考文献:

[1] 全林. 科技史简论[M]. 科学出版社, 2002.

[2] 李博洋. 关于“人机关系”的哲学思考[J]. 江淮论坛, 2008, 231(5): 127-131.

[3] 程中兴. 计算机技术对人类生物进化的影响及其机制[J]. 东华大学学报(社会科学版), 2004, 4(4):75-80.

[4] 文德春. 计算机技术发展趋势[J]. 科学论坛(下半月), 2007, (5): 78.

[5] 金翊. 走近光学计算机[J]. 上海大学学报(自然科学版), 2011, 17(4): 401-411.

[6] 沈俊杰. “细菌-噬菌体”联合生物计算机的研究[D]. 浙江大学, 2005.

[7] 许进. 生物计算机时代即将来临[J]. 中国科学院院刊, 2014, (1): 42-54.

[8] 吴楠, 宋方敏. 量子计算与量子计算机[J]. 计算机科学与探索, 2007, 1(1): 5-20.

[9] 郭光灿, 周正威, 郭国平, 等. 量子计算机的发展现状与趋势[J]. 中国科学院院刊, 2010, 25(5): 516-524.

[10] 靳蕃. 神经计算智能基础: 原理·方法[M]. 西南交通大学出版社, 2000.

计算机在处理速度、存储容量、网络化,以及软件的精巧化方面经过数十年的发展,已经以难以想象的方式渗入科学、商业和文化领域中,而智能工程又将令其从量变转向质的飞跃。 计算功能日益变成模拟和执行。在科学领域,计算可以模拟气候变化,破解人类基因;在商业领域,低成本的计算、因特网和数字通信正在改变全球经济;在文化领域,计算类产品,如iPod、YouTube和计算机动画等无所不在。 2006年9月,美国计算机科学与通信委员会在华盛顿举办了名为“2016”的研讨会,主题是计算机未来如何发展。 会议代表来自学术界和产业界。论题有:社会网络、数字图像、网络媒体、计算机对工作及就业的影响等。讨论主要集中在两方面:计算的影响在深度上将渗入自然科学中,在广度上将进入社会科学中;政策问题突出,计算技术的功能将更加强大、无所不及。 计算机对科学研究的深刻影响主要是高速运算的巨型计算机。虽然通过网格的群体式计算,可以将许多计算机的功能通过软件联结,实现可与巨型计算机媲美的高速运算,但要解决最复杂的动态问题,尤其是涉及国家安全的问题,还必须依靠单个巨型计算机。能广泛影响社会大众的计算则从台式机向集计算、娱乐、通信于一体的手持多功能产品转变。 一、巨型计算机的发展目标 速度对于科学计算中的巨型计算机就像它对于战场上的战斗机一样重要。美国国防部高级研究计划局(DARPA)制定的高生产力计算系统(HPCS)计划,要求每秒1000万亿次浮点运算的巨型计算机在2010年前进入市场,装备美国的武器实验室及科学研究中心。 DARPA将此类巨型计算机看作是开发先进的空中飞行器、武器、军事作战的谋划和执行、美国核储备的维护、安全系统研究,以及图像处理及密码破译等的关键技术。DARPA负责该计划的主管哈罗德说,这是“满足国家安全和经济竞争力需要的关键技术”。 2006年11月,克雷公司推出了新型XT4巨型计算机,它是由3万个opteton处理器组成的系统。克雷公司声称其新系统在试验期间稳定的运算速度为每秒10万亿次浮点运算,当前可达54万亿次/秒,预计2005年底达到250万亿次/秒。XT4的新型体系结构很容易升级到1000万亿次浮点运算/秒的最高速度。 XT4的关键技术是克雷公司的SeaStar2连接芯片。系统中每个处理器有一个这样的连接芯片,而不是像其他巨型计算机那样所有处理器共用一个通信接口。这一技术使大量并行处理系统在运行中不会因其间的数据传输而减慢。橡树岭国家实验室、国家能源科学计算中心和芬兰IT科学中心都订购了XT4。公司负责政府计划的副总裁说,这种类型的计算机特别适用于空气动力学问题,也适用于其他航空航天的设计。例如,美国空军的研究人员一直用其上一代的XT3来模拟新型天线的设计与评价。 2006年11月,DARPA与克雷公司签订了亿美元,的合同,用于开发其最新的混合式体系结构的巨型计算机;这是高生产力计算系统计划第三阶段的项目之一,克雷公司称之为自适应巨型计算机。迄今,巨型计算机只用一种处理器,克雷公司的巨型计算机的混合结构是将标量、矢量不同类型的处理器集成在一起,还要加上另外两个其他处理器,将处理器和任务编制得最适合缓存,从而达到最高效率和最大利用。 IBM公司也签订了亿美元的HPCS计划第三阶段的巨型计算机合同。目标是开发实时应用的1000万亿次/秒巨型;计算机心在2006年11月公布的第28次全球最高速的500巨型计算机名单上,IBM的Gene/L系统位居榜首,是该公司为美国能源部劳伦斯·利弗莫亦国家实验室研制的,运算速度为万亿次/秒,大约是DARPA要求克雷公司和IBM于2010年前交货的原型计算机速度的1/3。克雷公司在桑迪亚国家实验室中运行的红色风暴巨型计算机为万亿次/秒,仅次于IBM的Gene/L。 二、台式计算机逐渐变成网络多媒体娱乐工具 台式计算机最终走向了移动通信领域,从光纤通信中数据量的激增可看到这一趋势。计算机用户通过接到MySpaee和ESPN的网址,正在越来越多地利用手机处理文件、短信。 先进手机操作系统的开发商、Symbian公司的副总裁帕纳格罗斯西说:“我们看到了屏幕的逐渐演变,从电影、电视、计算机屏幕发展到今天第四代的智能手机屏幕。” 最新屏幕是将台式计算机的许多功能展示出来,下一代屏幕将包含音像通信、电子邮件、短信等功能在内的多种形式的融合。为此,苹果计算机公司已更名为苹果公司,即将推出的iPhone代表公司的最新战略,即进入因特网数据处理手持装置的新领域。这种接近台式计算机的手持装置可以通过光纤及其他无线网络,简易地处理音乐、图像、娱乐、生产任务和通信。苹果公司的举动好像引发了一场核战争,诺基亚和摩托罗拉都将作出反应。不过,在此领域,苹果公司还只是后来者,其对手有:诺基亚、摩托罗拉、索尼·埃得克森、微软等商业巨头,他们都进入了娱乐电子领域。即将进入这一领域的还有Google等强大的因特网公司。他们都经不起台式计算机用户兴趣转移的诱惑。 在移动电话与台式计算机之间伪竞争还产生了新型的复合装置。诺基亚和索尼最近都推出了集创新的物理设计和各种通信功能为一体的新产品,其共同特征是比掌上机更小巧,其屏幕更便于读取。无线数据通信的软件开发也是重要的商业领域。苹果公司的优势是在无线数据通信市场中可同时开发硬件和软件,这就是其新近推出的iPhone,其新颖设计引人注目。 三、计算对科学及社会经济的影响 计算为何对科学、社会网络及人们的文化生活产生重大影响? 在计算机对科学的影响方面,加州伯克利大学教授卡普经长期探索,提出了科学理论的算法性质的概念。数学和计算机科学的核心概念就是算法。算法,简而言之就是对计算的分步求解。它擅长描述动态过程,而科学公式或方程式适于静态现象。科学研究越来越多地探索动态过程,计算机科学就是算法的系统研究。 计算机应用在当前发展最快的生物学领域尤其突出。卡普近年的研究已经超出计算机科学领域,进入到微生物领域。他认为,现在生物学已经被当作信息科学看待。科学家设法将生物过程,如蛋白质的生成用算法来描述,这“自然就是算法。” 在社会网络方面,社会科学家早在技术网络出现之前就对其分析了数十年。随着因特网的出现,社会网络和技术网络不可避免地连接起来,社会网络也就可能发展到前所未有的规模。新的社会—技术网络包括电子邮件方式、商业网站(如Amazon)的购物推荐、通信网站(如MySpace和Facebook)的短信或小帖子,还有新闻、见解、时尚、都市神话、网络商品和服务等。 当前,人们在探索,能否用算法分析为何某些网络社区兴旺而另一些则萎缩或消失?利用计算技术研究社会网络对社会学家、经济学家、人类学家、心理学家和教育家而言是丰富的宝藏,对营销人员和政客也同样有用。康乃尔大学教授克莱因伯格说:“这是将计算及算法用于社会科学和实践中的最主要的方式,当前还只是处于起步阶段。” 计算机图像和存储的未来趋势可能用于个人,将微波传输的数字装置和微型电话和摄像机组装到一起,可将人一生中的主要事件录入其中。这对于通信、媒体和个人生活意义重大。微软研究实验室主任、计算机科学家拉斯希德说,他愿意看到他的儿子如何迈出第一步,倾听几年前与他去世的父亲的对话。“我愿看到往事,在未来这是可能的。” 不过,任何技术的广泛应用都有正反两面作用。拥有跟踪群体和个人的网络行为的新工具,也会引起严重的隐私问题。2006年夏天,美国在线无意中透露了65万个用户的网络搜索日志,显然将这一问题暴露出来了。它有可能成为监视社会的工具。拉斯希德说:“我们有这种能力,但要由社会来决定如何使用它,而不是由科学家来决定。”

帮你整理了一下,请参考!参考文献:1、 and Quantum Information[M].Cambridge University Press,、 computable numbers,with an application to the Entscheidungsproblem,Proc. Lond,、Quantum Information Scienceand TechnologyQuIST program [J].Defense Advanced Research ProjectsAgency DARPA,2004,、Karl Systems (3rd ed.).Prentice 、孙凤宏.探索未来计算机技术发展与应用[J]. 青海统计, 2007,(11) . 6、蔡芝蔚. 计算机技术发展研究[J]. 电脑与电信, 2008,(02) . 7、文德春. 计算机技术发展趋势[J]. 科协论坛(下半月), 2007,(05) . 8、姚正. 计算机发展趋势展望[J]. 商情(教育经济研究), 2008,(01) . 9、许封元. 计算机发展趋势[J]. 农业网络信息, 2006,(08) .10、陈相吉. 未来计算机与计算机技术的发展[J]. 法制与社会, 2007,(10) .11、何文瑶. 计算机技术发展态势分析[J]. 科技创业月刊, 2007,(05) .12、吴功宜.计算机网络[M].北京:清华大学出版社,2003,114. 13、兰晓红.计算机专业实践教学模式改革探讨[J].重庆师范学院学报,2002,19(4):84-85. 14、张基温.基于知识和能力构建的计算机专业课程改革[J].无锡教育学院学,2003,(4):、姬志刚,韦仕江.网络信息环境下基于创新教育改革基础上的课程整合与课堂教学.商情(教育经济研究),2008,(10). 16、田莉.计算机网络教学实践与心得[J].企业技术开发,2008,(02). 17、熊静琪.计算机控制技术[M].电子工业出版社.18、杨金胜.探析网络环境下计算机辅助教学[J].华商,2008,、何克忠主编.计算机控制系统[M].清华大学出版社.1998. 20、李锡雄,陈婉儿.微型计算机控制技术[M].科学出版社.21、赖寿宏.微型计算机控制技术[M].机械工业出版社.、黄梯云,《管理信息系统导论》,机械工业出版社23、甘仞初,《信息系统开发》,北京:经济科学出版社,199624、人杰、殷人昆、陶永雷 《实用软件工程(第二版)》清华大学出版社 、伍俊良《管理信息系统(MIS) 开发与应用》北京:科学出版社,199926、郭军等《网络管理与控制技术》人民邮电出版社.、曾建潮.软件工程. 武汉理工大学出版社,、熊桂喜.王小虎.李学农.计算机网络.清华大学出版社,、孙涌.《现代软件工程》.北京希望电子出版社,、王虎,张俊.管理信息系统[M].武汉:武汉理工大学出版社,.

  • 索引序列
  • 雷达数据并行处理研究论文
  • 雷达信号处理论文题目
  • 研究生论文的数据处理
  • 研究生论文数据处理方法
  • 并行处理论文参考文献
  • 返回顶部