• 回答数

    6

  • 浏览数

    355

豆豆侠3
首页 > 期刊论文 > 矩阵的基本运算的研究论文

6个回答 默认排序
  • 默认排序
  • 按时间排序

yeting1976

已采纳

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

217 评论

密果儿Fiona

什么叫作矩阵矩阵乘法是线性代数中最常见的运算之一,它在数值计算中有广泛的应用。若A和B是2个nn的矩阵,则它们的乘积C=AB同样是一个nn的矩阵。A和B的乘积矩阵C中的元素C[i,j]定义为:若依此定义来计算A和B的乘积矩阵C,则每计算C的一个元素C[i,j],需要做n个乘法和n-1次加法。因此,求出矩阵C的n2个元素所需的计算时间为0(n3)。60年代末,Strassen采用了类似于在大整数乘法中用过的分治技术,将计算2个n阶矩阵乘积所需的计算时间改进到O(nlog7)=O()。首先,我们还是需要假设n是2的幂。将矩阵A,B和C中每一矩阵都分块成为4个大小相等的子矩阵,每个子矩阵都是n/2n/2的方阵。由此可将方程C=AB重写为:(1)由此可得:C11=A11B11 A12B21(2)C12=A11B12 A12B22(3)C21=A21B11 A22B21(4)C22=A21B12 A22B22(5)如果n=2,则2个2阶方阵的乘积可以直接用(2)-(3)式计算出来,共需8次乘法和4次加法。当子矩阵的阶大于2时,为求2个子矩阵的积,可以继续将子矩阵分块,直到子矩阵的阶降为2。这样,就产生了一个分治降阶的递归算法。依此算法,计算2个n阶方阵的乘积转化为计算8个n/2阶方阵的乘积和4个n/2阶方阵的加法。2个n/2n/2矩阵的加法显然可以在c*n2/4时间内完成,这里c是一个常数。因此,上述分治法的计算时间耗费T(n)应该满足:这个递归方程的解仍然是T(n)=O(n3)。因此,该方法并不比用原始定义直接计算更有效。究其原因,乃是由于式(2)-(5)并没有减少矩阵的乘法次数。而矩阵乘法耗费的时间要比矩阵加减法耗费的时间多得多。要想改进矩阵乘法的计算时间复杂性,必须减少子矩阵乘法运算的次数。按照上述分治法的思想可以看出,要想减少乘法运算次数,关键在于计算2个2阶方阵的乘积时,能否用少于8次的乘法运算。Strassen提出了一种新的算法来计算2个2阶方阵的乘积。他的算法只用了7次乘法运算,但增加了加、减法的运算次数。这7次乘法是:M1=A11(B12-B22)M2=(A11 A12)B22M3=(A21 A22)B11M4=A22(B21-B11)M5=(A11 A22)(B11 B22)M6=(A12-A22)(B21 B22)M7=(A11-A21)(B11 B12)做了这7次乘法后,再做若干次加、减法就可以得到:C11=M5 M4-M2 M6C12=M1 M2C21=M3 M4C22=M5 M1-M3-M7以上计算的正确性很容易验证。例如:C22=M5 M1-M3-M7=(A11 A22)(B11 B22) A11(B12-B22)-(A21 A22)B11-(A11-A21)(B11 B12)=A11B11 A11B22 A22B11 A22B22 A11B12-A11B22-A21B11-A22B11-A11B11-A11B12 A21B11 A21B12=A21B12 A22B22由(2)式便知其正确性。至此,我们可以得到完整的Strassen算法如下:procedureSTRASSEN(n,A,B,C);beginifn=2thenMATRIX-MULTIPLY(A,B,C)elsebegin将矩阵A和B依(1)式分块;STRASSEN(n/2,A11,B12-B22,M1);STRASSEN(n/2,A11 A12,B22,M2);STRASSEN(n/2,A21 A22,B11,M3);STRASSEN(n/2,A22,B21-B11,M4);STRASSEN(n/2,A11 A22,B11 B22,M5);STRASSEN(n/2,A12-A22,B21 B22,M6);STRASSEN(n/2,A11-A21,B11 B12,M7);;end;end;其中MATRIX-MULTIPLY(A,B,C)是按通常的矩阵乘法计算C=AB的子算法。Strassen矩阵乘积分治算法中,用了7次对于n/2阶矩阵乘积的递归调用和18次n/2阶矩阵的加减运算。由此可知,该算法的所需的计算时间T(n)满足如下的递归方程:按照解递归方程的套用公式法,其解为T(n)=O(nlog7)≈O()。由此可见,Strassen矩阵乘法的计算时间复杂性比普通矩阵乘法有阶的改进。有人曾列举了计算2个2阶矩阵乘法的36种不同方法。但所有的方法都要做7次乘法。除非能找到一种计算2阶方阵乘积的算法,使乘法的计算次数少于7次,按上述思路才有可能进一步改进矩阵乘积的计算时间的上界。但是Hopcroft和Kerr(197l)已经证明,计算2个22矩阵的乘积,7次乘法是必要的。因此,要想进一步改进矩阵乘法的时间复杂性,就不能再寄希望于计算22矩阵的乘法次数的减少。或许应当研究33或55矩阵的更好算法。在Strassen之后又有许多算法改进了矩阵乘法的计算时间复杂性。目前最好的计算时间上界是O()。而目前所知道的矩阵乘法的最好下界仍是它的平凡下界Ω(n2)。因此到目前为止还无法确切知道矩阵乘法的时间复杂性。关于这一研究课题还有许多工作可做。关于应用简单一点的表格,像考试分数求和复杂一点的魔方的解决方法,用矩阵代换方法

310 评论

我的dp我做主

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合[1] ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则[2] 。矩阵的现代概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1844年,德国数学家费迪南·艾森斯坦()讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词[3] 。英国数学家凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯()于1898年给出的[2] 。1854年时法国数学家埃尔米特()使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。无限维矩阵的研究始于1884年。庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具[4] 。

232 评论

上善若水maggie

矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个述语。而实际上,矩阵这个课题在诞生之前就已经发展的很好了。从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的。在逻辑上,矩阵的概念应先于行列式的概念,然而在历史上次序正好相反。英国数学家凯莱 () 一般被公认为是矩阵论的创立者,因为他首先把矩阵作为一个独立的数学概念提出来,并首先发表了关于这个题目的一系列文章。凯莱同研究线性变换下的不变量相结合,首先引进矩阵以简化记号。 1858 年,他发表了关于这一课题的第一篇论文《矩阵论的研究报告》,系统地阐述了关于矩阵的理论。文中他定义了矩阵的相等、矩阵的运算法则、矩阵的转置以及矩阵的逆等一系列基本概念,指出了矩阵加法的可交换性与可结合性。另外,凯莱还给出了方阵的特征方程和特征根(特征值)以及有关矩阵的一些基本结果。凯莱出生于一个古老而有才能的英国家庭,剑桥大学三一学院大学毕业后留校讲授数学,三年后他转从律师职业,工作卓有成效,并利用业余时间研究数学,发表了大量的数学论文。1855 年,埃米特 () 证明了别的数学家发现的一些矩阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等。后来 ,克莱伯施 () 、布克海姆 () 等证明了对称矩阵的特征根性质。泰伯() 引入矩阵的迹的概念并给出了一些有关的结论。在矩阵论的发展史上,弗罗伯纽斯 () 的贡献是不可磨灭的。他讨论了最小多项式问题,引进了矩阵的秩、不变因子和初等因子、正交矩阵、矩阵的相似变换、合同矩阵等概念,以合乎逻辑的形式整理了不变因子和初等因子的理论,并讨论了正交矩阵与合同矩阵的一些重要性质。 1854 年,约当研究了矩阵化为标准型的问题。 1892 年,梅茨勒 () 引进了矩阵的超越函数概念并将其写成矩阵的幂级数的形式。傅立叶、西尔和庞加莱的著作中还讨论了无限阶矩阵问题,这主要是适用方程发展的需要而开始的。矩阵本身所具有的性质依赖于元素的性质,矩阵由最初作为一种工具经过两个多世纪的发展,现在已成为独立的一门数学分支——矩阵论。而矩阵论又可分为矩阵方程论、矩阵分解论和广义逆矩阵论等矩阵的现代理论。矩阵及其理论现已广泛地应用于现代科技的各个领域。相关搜索矩阵切换器矩阵运算法则矩阵公式矩阵计算基本公式视频矩阵特征向量怎么求 例题高中矩阵基本知识混合矩阵New专业百科知识,尽在搜

268 评论

摆脱拖延症

求矩阵的秩的几种方法:

1、通过对矩阵做初等变换(包括行变换以及列变换)化简为梯形矩阵求秩。此类求解一般适用于矩阵阶数不是很大的情况,可以精确确定矩阵的秩,而且求解快速比较容易掌握。

2、通过矩阵的行列式,由于行列式的概念仅仅适用于方阵的概念。通过行列式是否为0则可以大致判断出矩阵是否是满秩。

3、对矩阵做分块处理,如果矩阵阶数较大时将矩阵分块通过分块矩阵的性质来研究原矩阵的秩也是重要的研究方法。此类情况一般也是可以确定原矩阵秩的。

4、对矩阵分解,此处区别与上面对矩阵分块。例如n阶方阵A,R分解(Q为正交阵,R为上三角阵)以及Jordan分解等。通过对矩阵分解,将矩阵化繁为简来求矩阵的秩也会有应用。

基本运算:

矩阵运算在科学计算中非常重要  ,而矩阵的基本运算包括矩阵的加法,减法,数乘,转置,共轭和共轭转置 。

171 评论

mingmingsherry

LS那一长篇的,又从哪里COPY的,鄙S

290 评论

相关问答

  • 正定矩阵的毕业论文

    还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考!

    豆豆侠3 3人参与回答 2023-12-09
  • 矩阵计算的毕业论文

    还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考!

    redfishchy 3人参与回答 2023-12-12
  • 矩阵探讨与研究论文

    告诉你拟就会写吗。不如我给你写得了

    流星又来临 4人参与回答 2023-12-07
  • 矩阵论文的开题报告

    1 相关定义 定义1 设A∈,若对≠ x∈,都有AX > 0,则称A为正定矩阵,记为A∈. 记={A|≠ x∈,使AX > 0}. 定义2设

    123老吃客 4人参与回答 2023-12-10
  • 矩阵论文的研究方法

    就是你准备怎么样来完成毕业论文。写出你打算采用的方法就可以了。如:某方面的研究“课题拟采用的研究方法和手段”是:采用高等数学和微积分的方法计算,采用矩阵理论的方

    小小锅盖子 5人参与回答 2023-12-10