• 回答数

    5

  • 浏览数

    350

麦兜爱李公主
首页 > 期刊论文 > 机械类英语论文及翻译3000

5个回答 默认排序
  • 默认排序
  • 按时间排序

依钱钱512

已采纳

IntroductionMachining aims to generate the shape of work-piece form a solid body,or to improve the tolerances and surface finish of a previously formed work-piece,by removing excess materials in the form of chips. Machining is capable of creating geometric configurations,tolerances, and surface finishes often unobtainable by any other , machining removes materials, which has already been paid for, in the form of relatively small particles that are more difficult to recycle and are in greater danger of becoming mixed. Therefore,developments often aim at reducing or-if at all possible-eliminating machining, especially in mass these reasons, machining has lost some important markets, yet, at the same time, it has also been developing and especially having captured new markets with the application of numerical feel for the important of machining may be gained from the observation that in 1983 there were about 2 million metal-cutting machine tools in the unite states ( of which some 5% were numerically controlled ) and that labor and overhead costs amounted to $125 billion, or 3% of the GNP.

239 评论

轻轻空空

Abstract— Cobots是连续地使用机器人的类 开发高保真度可编程序的variable传输 constraint表面。 Cobots消耗很少电能 ,既使当提供高产力量和他们的传输横跨各种各样是非常有效率的transmission比率。 Cobotic传输也有能力 to作为闸或变得完全地自由。 设计 Cobotic手控制器的and表现,最近a developed六程度自由触觉显示,被回顾。 This设备说明高力学范围和低功率 consumption可达成由cobots。 彻底的比较 the一个cobotic系统的出力效率对常规 提供electro-mechanical系统。机器人技术的Three关键要求使用为 prosthetics和修复是低重量,低功率 consumption和安全。 我们提出cobotic技术作为a 可能论及所有这些问题的transmission建筑学。 Cobots是运用nonholonomic限制的机器人 of 操纵 轮子 关连 相对 速度 mechanism链接。 cobotic传输连续地是a variable传输(CVT)在正面和阴性之间 ratios, 并且 能 关连 二 平移 速度, 二 rotational速度或者对平移的旋转的速度 velocity [1]。 我们最近介绍了Cobotic手 Controller (图 1), a 供给动力的六程度自由 cobot和描述它的能力作为一个触觉接口[2, 3]。 通过本文路线,我们显示出, mechanical 建筑学 并且 传输 使用 在 Cobotic手控制器地址全部三在上面 机器人学的mentioned要求的弭补科和 rehabilitation.

142 评论

抬头走我路

摘要- Cobots是一类机器人的使用不断 无级变速发展高保真可编程 约束的表面。 Cobots消耗很少的电力 即使在提供高输出部队,其传输效率高众多的 传动比。 Cobotic变速箱也有能力 采取行动作为一个制动器或将成为完全免费。设计 和性能Cobotic手控制器,最近 发达国家六自由度触觉显示器,是审查。 这个装置表明,高动态范围和低功耗 消费实现的cobots 。彻底的比较 电源效率cobotic系统与传统的 机电系统提供。 三个关键要求机器人技术用于 假肢和康复是低体重,低功耗 消费和安全性。我们建议cobotic技术作为 传输架构,可以处理这些问题。 Cobots是机器人利用非完整约束 的指导车轮的相对速度有关的 机制的联系。阿cobotic传播是一个不断 无级变速器(无级变速器)之间的积极和消极 比率,可以涉及两个平移速度,两个 旋转速度,或旋转速度为平移 速度[ 1 ] 。我们最近推出了Cobotic手 控制器(图1 ) ,六自由度动力 合作机器人,并阐述其能力作为触觉界面[ 2 , 3 ] 。通过本论文中,我们表明, 机械结构和传输中使用 Cobotic手控制器处理所有三个以上 上述要求的假肢和机器人 康复。

161 评论

小崔崔shining

英文部分 Rotary pumps These are built in many different designs and are extremely popular in modern fluid-power system. The most common rotary-pump designs used today are spur-gear, generated-rotary , sliding-vane ,and screw pump ,each type has advantages that make it the most suitable for a given application .Spur-gear pumps. these pumps have two mating gears are turned in a closely fitted casing. Rotation of one gear ,the driver causes the second ,or follower gear, to turn . the driving shaft is usually connected to the upper gear of the pump .When the pump is first started ,rotation of gears forces air out the casing and into the discharge pipe. this removal of air from the pump casing produces a partial vacuum on the pump inlet ,here the fluid is trapped between the teeth of the upper and lower gears and the pump casing .continued rotation of the gears forces the fluid out of the pump discharge .Pressure rise in a spur-gear pump is produced by the squeezing action on the fluid ad it is expelled from between the meshing gear teeth and casing ,.a vacuum is formed in the cavity between the teeth ad unmesh, causing more fluid to be drawn into the pump ,a spur-gear pump is a constant-displacement unit ,its discharge is constant at a given shaft speed. the only way the quantity of fluid discharge by a spur-gear pump of type in figure can be regulated is by varying the shaft speed .modern gear pumps used in fluid-power systems develop pressures up to about shows the typical characteristic curves of a spur-gear rotary pump. These curves show the capacity and power input for a spur-gear pump at various speeds. At any given speed the capacity characteristic is nearly a flat line the slight decrease in capacity with rise in discharge pressure is caused by increased leakage across the gears from the discharge to the suction side of the pump. leakage in gear pumps is sometimes termed slip. Slip also increase with arise pump discharge pressure .the curve showing the relation between pump discharge pressure and pump capacity is often termed the head-capacity or HQ curve .the relation between power input and pump capacity is the power-capacity or PQ curve .Power input to a squr-gear pump increases with both the operating speed and discharge pressure .as the speed of a gear pump is increased. Its discharge rate in gallons per minute also rise . thus the horsepower input at a discharge pressure of 120psi is 5hp at 200rpm and about 13hp at corresponding capacities at these speed and pressure are 40 and 95gpm respectively, read on the 120psi ordinate where it crosses the 200-and 600-rpm HQ curves .Figure is based on spur-gear handing a fluid of constant viscosity , as the viscosity of the fluid handle increases (. ,the fluid becomes thicker and has more resistance to flow ),the capacity of a gear pump decreases , thick ,viscous fluids may limit pump capacity t higher speeds because the fluid cannot into the casing rapidly enough fill it completely .figure shows the effect lf increased fluid biscosity on the performance of rotary pump in fluid-power system .at 80-psi discharge pressure the pp has a capacity lf 220gpm when handling fluid of 100SSU viscosity lf 500SSU . the power input to the pump also rises ,as shown by the power lf rotary pump is often expressed in gallons per revolution of the gear or other internal element .if the outlet of a positive-displacement rotary pump is completely closed, the discharge pressure will increase to the point where the pump driving motor stalls or some part of the pump casing or discharge pipe ruptures .because this danger of rupture exists systems are filled with a pressure –relief valve. This relief valve may be built as of the pump or it may be mounted in the discharge PumpsThese pumps have a number of vanes which are free to slide into or out of slots in the pup rotor . when the rotor is turned by the pump driver , centrifugal force , springs , or pressurized fluid causes the vanes to move outward in their slots and bear against the inner bore of the pump casing or against a cam ring . as the rotor revolves , fluid flows in between the vanes when they pass the suction port. This fluid is carried around the pump casing until the discharge port is reached. Here the fluid is forced out of the casing and into the discharge the sliding-vane pump in Figure the vanes in an oval-shaped bore. Centrifugal force starts the vanes out of their slots when the rotor begins turning. The vanes are held out by pressure which is bled into the cavities behind the vanes from a distributing ring at the end of the vane slots. Suction is through two ports A and AI, placed diametrically opposite each other. Two discharge ports are similarly placed. This arrangement of ports keeps the rotor in hydraulic balance, reliving the bearing of heavy loads. When the rotor turns counterclockwise, fluid from the suction pipe comes into ports A and AI is trapped between the vanes, and is carried around and discharged through ports B and BI. Pumps of this design are built for pressures up to 2500 psi. earlier models required staging to attain pressures approximating those currently available in one stage. Valving , uses to equalize flow and pressure loads as rotor sets are operated in series to attain high pressures. Speed of rotation is usually limited to less than 2500rpm because of centrifugal forces and subsequent wear at the contact point of vanes against the cam-ring surface.. Two vanes may be used in each slot to control the force against the interior of the casing or the cam ring. Dual vanes also provide a tighter seal , reducing the leakage from the discharge side to the suction side of the pump . the opposed inlet and discharge port in this design provide hydraulic balance in the same way as the pump, both these pumps are constant-displacement delivery or capacity of a vane-type pump in gallons per minute cannot be changed without changing the speed of rotation unless a special design is used. Figure shows a variable-capacity sliding-vane pump. It dose not use dual suction and discharge ports. The rotor rums in the pressure-chamber ring, which can be adjusted so that it is off-center to the rotor. As the degree of off-center or eccentricity is changed, a variable volume of fluid is discharged. Figure shows that the vanes create a vacuum so that oil enters through 180 of shaft rotation. Discharge also takes place through 180 of rotation. There is a slight overlapping of the beginning of the fluid intake function and the beginning of the fluid shows how maximum flow is available at minimum working pressure. As the pressure rises, flow diminishes in a predetermined pattern. As the flow decreases to a minimum valve, the pressure increases to the maximum. The pump delivers only that fluid needed to replace clearance floes resulting from the usual slide fit in circuit relief valve is not essential with a variable-displacement-type pump of this design to protect pumping mechanism. Other conditions within the circuit may dictate the use of a safety or relief valve to prevent localized pressure buildup beyond the usual working automatic control of the discharge , an adjustable spring-loaded governor is used . this governor is arranged so that the pump discharge acts on a piston or inner surface of the ring whose movement is opposed by the spring . if the pump discharge pressure rises above that for which the by governor spring is set , the spring is compressed. This allows the pressure-chamber ring to move and take a position that is less off center with respect to the rotor. The pump theb delivers less fluid, and the pressure is established at the desired level. The discharge pressure for units of this design varies between 100 and characteristics of a variable-displacement-pump compensator are shown in figure. Horsepower input values also shown so that the power input requirements can be accurately computed. Variable-volume vane pumps are capacity of multiple-pressure levels in a predetermined pattern. Two-pressure pump controls can provide an efficient method of unloading a circuit and still hold sufficient pressure available for pilot black area of the graph of figure shows a variable-volume pump maintaining a pressure of 100psi against a closed circuit. Wasted power is the result of pumping oil at 100psi through an unloading or relief valve to maintain a source of positive pilot pressure. Two-pressure –type controls include hydraulic, pilot-operated types and solenoid-controlled, pilot-operated types. The pilot oil obtained from the pump discharge cannot assist the governor spring. Minimum pressure will result. The plus figure shows the solenoid energized so that pilot oil assists compensator spring. The amount of assistance is determined by the small ball and spring, acting as a simple relief valve. This provides the predetermined maximum operating type of two-pressure system employs what is termed a differential unloading governor. It is applied in a high-low or two-pump circuit. The governor automatically, Through pressure sensing, unloads the large volume pump to a minimum deadhead pressure setting. Deadhead pressure refers to a specific pressure level established as resulting action of the variable-displacement-pump control mechanism. The pumping action and the resulting flow at deadhead condition are equal to the leakage in the system and pilot-control flow requirements. No major power movement occurs at this time, even though the hydraulic system may be providing a clamping or holding action while the pump is in deadhead position The governor is basically a hydraulically operated, two-pressure control with a differential piston that allows complete unloading when sufficient external pilot pressure is applied to pilot unload minimum deadhead pressure setting is controlled by the main governor spring A. the maximum pressure is controlled by the relief-valve adjustment B. the operating pressure for the governor is generated by the large-volume pump and enters through orifice C. To use this device let us assume that the circuit require a maximum pressure of 1000psi, which will be supplied by a 5-gpm pump. It also needs a large flow (40gpm) at pressure up to 500psi; it continues to 1000pso at the reduced flow rate. A two-pump system with an unloading governor on the 40-gpm pump at 500psi to a minimum pressure setting of 200psi (or another desired value) , which the 5-gpm pump takes the circuit up to1000psi or in figure that two sources of pilot pressure are required. One ,the 40-gpm pump, provides pressure within the housing so that maximum pressure setting can be obtained. The setting of the spring, plus the pressure within the governor housing, determines the maximum pressure capacity of the 40-gpm pump. The second pilot source is the circuit proper, which will go to 1000psi. this pilot line enters the governor through orifice D and acts on the unloading piston E . the area of piston E is 15 percent greater than the effective area of the relief poppet F. the governor will unload at 500psi and be activated at 15percent below 500psi, or 425psi. By unloading, we mean zero flow output of the 40-gpm pressure in the circuit increases from zero to 500psi, the pressure within the governor housing also increases until the relief-valve setting is reached, at which time the relief valve cracks open, allowing flow to the pressure drop in the hosing is a maximum additive value, allowing the pump to deadhead. Meanwhile, the system pressure continues to rise above 700psi, resulting in a greater force on the bottom of piston E than on the top. The piston then completely unseats poppet F, which results in a further pressure drop within the governor horsing to zero pressure because of the full-open position of the relief poppet F. flow entering the housing through orifice is directed to the tank pass the relief poppet without increasing the pressure in housing. The deadhead pressure of the 40-gpm pump then decreases to the lower set value. Thus , at the flow rate to the unloading governor ,the 40gpm pump goes to deadhead. The flow rate to the circuit decreases to 5gpm as the pressure to 1000psi, the 5-gpm pump is also at its deadhead setting, thus only holding system 4-gpm pump unloads its volume at 500psi. It requires a system pressure of 600psi to unload the 40-gpm pump to its minimum pressure of 200psi. the 600-psi pilot supply enters through orifice D and acts on the differential piston E. The pumps volume is reduced to zero circuit-flow output at 500psi. The additional 100-psi pilot pressure is required to open poppet F completely and allow the pressure within the housing to decrease to circuit pressure decreases ,both pumps come back into service in a similar pattern.

184 评论

lily完美lily

你好,可以告诉我这篇文章的出处(来自哪本杂志)和作者是谁吗

319 评论

相关问答

  • 机械类英语相关论文

    Abstract— Cobots是连续地使用机器人的类 开发高保真度可编程序的variable传输 constraint表面。 Cobots消耗很少电能 ,既使

    岚岛全屋定制 3人参与回答 2023-12-05
  • 英语文章翻译在线翻译翻译器

    1、《网易有道词典》 这款翻译软件可以进行超100种狱中的翻译服务。软件提供多种翻译场景,包括拍照翻译、在线翻译、离线翻译等,而且可以把翻译结果一键生成word

    点評狂魔 3人参与回答 2023-12-11
  • 机械论文参考文献英文翻译

    Thereferencereference包括了以下几种意思Anoteinapublicationreferringthereadertoanotherpass

    曰月無塵 6人参与回答 2023-12-05
  • 英语论文3000字带翻译

    In recent years, people often complain about dishonesty in our society. In newsp

    妖精狮子 3人参与回答 2023-12-07
  • 机械类论文摘要翻译

    只有去看专业英语词典咯。

    基斯颠奴86 3人参与回答 2023-12-06