• 回答数

    3

  • 浏览数

    253

猪猪钕神
首页 > 学术期刊 > 人脸关键点检测论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

腊八醋w

已采纳

摘 要 人体识别是计算机视觉领域的一大类热点问题,其研究内容涵盖了人体的监测与跟踪、手势识别、动作识别、人脸识别、性别识别和行为与事件识别等,有着非常广泛的应用价值。随机森林以它自身固有的特点和优良的分类效果在众多的机器学习算法中脱颖而出。随机森林算法的实质是一种树预测器的组合,其中每一棵树都依赖于一个随机向量,森林中的所有的向量都是独立同分布的。本文简单介绍了随机森林的原理,并对近几年来随机森林在姿势识别和人脸识别中的应用进行讨论。 1.人体识别概述 人体识别是计算机视觉领域的一大类热点问题,其研究内容涵盖了人体的监测与跟踪、手势识别、动作识别、人脸识别、性别识别和行为与事件识别等。其研究方法几乎囊括了所有的模式识别问题的理论与技术,例如统计理论,变换理论,上下文相关性,分类与聚类,机器学习,模板匹配,滤波等。人体识别有着非常广泛的应用价值。 绝大多数人脸识别算法和人脸表情分析算法在提取人脸特征之前,需要根据人脸关键点的位置(如眼角,嘴角)进行人脸的几何归一化处理。即使在已知人脸粗略位置的情况下,人脸关键点精确定位仍然是一个很困难的问题,这主要由外界干扰和人脸本身的形变造成。 当前比较流行的算法有:基于启发式规则的方法、主成分分析(PCA)、独立元分析(ICA)、基于K-L 变换、弹性图匹配等。 2.随机森林综述 随机森林顾名思义,使用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的死后,就让森林的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一类能被选择最多,就预测这个样本为那一类。 随机森林是一种统计学习理论,其随机有两个方面:首先是在训练的每一轮中,都是对原始样本集有放回的抽取固定数目的样本点,形成k个互不相同的样本集。第二点是:对于每一个决策树的建立是从总的属性中随机抽取一定量的属性作分裂属性集,这样对于k个树分类器均是不相同的。由随机生成的k个决策树组成了随机森林。 对于每一个决策树来讲,其分裂属性是不断的选取具有最大信息增益的属性进行排列。整个随机森林建立后,最终的分类标准采用投票机制得到可能性最高的结果。 下图是随机森林构建的过程: 图1 随机森林构建过程 3.随机森林在人体识别中的应用 3.1 随机森林应用于姿势识别 以[1]一文来讨论,论文中所涉及到的人体识别过程主要分为两步,首先是,身体部位标记:对于从单张景深图像中对人体进行分段,并标记出关键节点。之后进行身体关节定位,将标记的各个人体部分重新映射到三维空间中,对关键节点形成高可靠的空间定位。 图2 深度图像-身体部位标记-关节投影 文的最主要贡献在于将姿势识别的问题转化成了物体识别的问题,通过对身体不同部位的空间位置的确定来实现,做到了低计算消耗和高精确度。在身体部位标记的过程中,将问题转化成了对每个像素的分类问题,对于每个像素点,从景深的角度来确定该点的局域梯度特征。该特征是点特征与梯度特征的良好结合。 举个例子,对于不同点的相同属性值的判别,如下图,图a中的两个测量点的像素偏移间均具有较大的景深差,而图b中的景深差则明显很小。由此看出,不同位置像素点的特征值是有明显差别的,这就是分类的基础。 图3 景深图像特质示例 文中对于决策树的分裂属性的选择来说。由于某两个像素点、某些图像特征选取的随意性,将形成大量的备选划分形式,选择对于所有抽样像素对于不同的分裂属性划分前后的信息熵增益进行比较,选取最大的一组ψ=(θ, τ)作为当前分裂节点。(信息增益与该图像块最终是否正确地分类相关,即图像块归属于正确的关键特征点区域的概率。) 图4 决策时分类说明 决策树的建立后,某个叶子节点归属于特定关键特征点区域的概率可以根据训练图像最终分类的情况统计得到,这就是随机森林在实际检测特征点时的最重要依据。 在人体关节分类中,我们由形成的决策森林,来对每一个像素点的具体关节属性进行判断,并进行颜色分类。随机森林这种基于大量样本统计的方法能够对由于光照、变性等造成的影响,实时地解决关键特征点定位的问题。 如图所示,是对于景深图像处理后的结果展示。 图5 姿势识别处理结果 应该这样说,这篇文章在算法的层面对随机森林没有太大的贡献。在划分函数的形式上很简单。这个团队值得称道的地方是通过计算机图形学造出了大量的不同体型不同姿势的各种人体图像,用作训练数据,这也是成为2011年CVPR Best Paper的重要原因。正是因为论文的成果运用于Kinect,在工业界有着巨大的作用,落实到了商用的硬件平台上,推动了随机森林在计算机视觉、多媒体处理上的热潮。 3.2 随机森林应用于人脸识别 基于回归森林的脸部特征检测通过分析脸部图像块来定位人脸的关键特征点,在此基础上条件回归森林方法考虑了全局的脸部性质。对于[2]进行分析,这篇论文是2012年CVPR上的论文,本文考虑的是脸部朝向作为全局性质。其主要描述的问题是如何利用条件随机森林,来确定面部10个关键特征点的位置。与之前不同的是,在随机森林的基础上,加入了面部朝向的条件约束。 图6 脸部10个特征点 对于面部特征标记的问题转化成了对大量图像块的分类问题。类似于人体识别中的局域梯度特征识别。本文中,对于每一个图像块来说,从灰度值、光照补偿、相位变换等图像特征,以及该图像块中心与各个特征点的距离来判断图像块的位置特征。在决策树的分裂属性确定过程,依然使用“最大信息熵增益”原则。 图7 条件随机森林算法说明 文中提出了更进一步基于条件随机森林的分类方法,即通过设定脸部朝向的约束对决策树分类,在特征检测阶段能够根据脸部朝向选择与之相关的决策树进行回归,提高准确率和降低消耗。此论文还对条件随机森林,即如何通过脸部朝向对决策进行分类进行了说明,但这与随机森林算法没有太大关系,这里就不再继续讨论了。随机森林这种基于大量样本统计的方法能够对由于光照、变性等造成的影响,实时地解决关键特征点定位的问题。 另一篇文章[3]对于脸部特征标记,提出了精确度更高、成本更低的方法。即,基于结构化输出的随机森林的特征标记方式。文中将面部划分为20个特征点,对于各个特征点来说,不仅有独立的图像块分类标记,还加入了例如,点4,对于其他嘴唇特征点3,18,19的依赖关系的判断。这样的方法使特征点标记准确率大大增加。 该方法依然是使用随机森林的方法,有所不同的是引入了如式中所示的与依赖节点之间的关系。对于决策树的建立依然是依赖信息熵增益原则来决定,叶子节点不仅能得到特征的独立划分还会得到该特征对依赖特征的贡献,最终特征节点的判断会综合原始投票及空间约束。 图8 脸部特征标记 图9 决策树依赖关系 例如当对下图中人脸特征点进行分类时,使用简单的随机森林方法,经过判断会将各个点进行标注,可以看到 红色的点,标注出的鼻子特征。如果利用依赖节点进行判断,鼻子的点会被局限在其他鼻子特征点的周围,进行叠加后,得到了这个结果。显然,对于此节点的判断,利用结构输出的方式,准确度更高了。 图10 结构化输出结果 4.随机森林总结 大量的理论和实证研究都证明了RF具有很高的预测准确率,对异常值和噪声具有很好的容忍度,且不容易出现过拟合。可以说,RF是一种自然的非线性建模工具,是目前数据挖掘算法最热门的前沿研究领域之一。具体来说,它有以下优点: 1.通过对许多分类器进行组合,它可以产生高准确度的分类器; 2.它可以处理大量的输入变量; 3.它可以在决定类别时,评估变量的重要性; 4.在建造森林时,它可以在内部对于一般化后的误差产生不偏差的估计; 5.它包含一个好方法可以估计遗失的资料,并且,如果有很大一部分的资料遗失,仍可以维持准确度。 6.它提供一个实验方法,可以去侦测变量之间的相互作用; 7.学习过程是很快速的; 8.对异常值和噪声具有很好的容忍度,且不容易出现过拟合; 随机森林的缺点: 1.对于有不同级别的属性的数据,级别划分较多的属性会对随机森林产生更大的影响,所以随机森林在这种数据上产出的属性权值是不可信的; 2.单棵决策树的预测效果很差:由于随机选择属性,使得单棵决策树的预测效果很差。 参考文献: [1] Shotton, J.; Fitzgibbon, A.; Cook, M.; Sharp, T.; Finocchio, M.; Moore, R.; Kipman, A.; Blake, A., “Real-time human pose recognition in parts from single depth images,”Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on , vol., no., pp.1297,1304, 20-25 June 2011 [2] Dantone M, Gall J, Fanelli G, et al. Real-time facial feature detection using conditional regression forests[C]//Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012: 2578-2585. [3] Heng Yang, Ioannis Patras, “Face Parts Localization Using Structured-output Regression Forests”, ACCV2012, Dajeon, Korea. 本文转自:,仅供学习交流

293 评论

linalingxj

python使用dlib进行人脸检测与人脸关键点标记

Dlib简介:

首先给大家介绍一下Dlib

Dlib是一个跨平台的C++公共库,除了线程支持,网络支持,提供测试以及大量工具等等优点,Dlib还是一个强大的机器学习的C++库,包含了许多机器学习常用的算法。同时支持大量的数值算法如矩阵、大整数、随机数运算等等。

Dlib同时还包含了大量的图形模型算法。

最重要的是Dlib的文档和例子都非常详细。

Dlib主页:

这篇博客所述的人脸标记的算法也是来自Dlib库,Dlib实现了One Millisecond Face Alignment with an Ensemble of Regression Trees中的算法

这篇论文非常出名,在谷歌上打上One Millisecond就会自动补全,是CVPR 2014(国际计算机视觉与模式识别会议)上的一篇国际顶级水平的论文。毫秒级别就可以实现相当准确的人脸标记,包括一些半侧脸,脸很不清楚的情况,论文本身的算法十分复杂,感兴趣的同学可以下载看看。

Dlib实现了这篇最新论文的算法,所以Dlib的人脸标记算法是十分先进的,而且Dlib自带的人脸检测库也很准确,我们项目受到硬件所限,摄像头拍摄到的画面比较模糊,而在这种情况下之前尝试了几个人脸库,识别率都非常的低,而Dlib的效果简直出乎意料。

相对于C++我还是比较喜欢使用python,同时Dlib也是支持python的,只是在配置的时候碰了不少钉子,网上大部分的Dlib资料都是针对于C++的,我好不容易才配置好了python的dlib,这里分享给大家:

Dlib for python 配置:

因为是用python去开发计算机视觉方面的东西,python的这些科学计算库是必不可少的,这里我把常用的科学计算库的安装也涵盖在内了,已经安装过这些库的同学就可以忽略了。

我的环境是Ubuntu14.04:

大家都知道Ubuntu是自带python2.7的,而且很多Ubuntu系统软件都是基于python2.7的,有一次我系统的python版本乱了,我脑残的想把python2.7卸载了重装,然后……好像是提醒我要卸载几千个软件来着,没看好直接回车了,等我反应过来Ctrl + C 的时候系统已经没了一半了…

所以我发现想要搞崩系统,这句话比rm -rf 还给力…

sudo apt-get remove python2.71

首先安装两个python第三方库的下载安装工具,ubuntu14.04好像是预装了easy_install

以下过程都是在终端中进行:

1.安装pip

sudo apt-get install python-pip1

2.安装easy-install

sudo apt-get install python-setuptools1

3.测试一下easy_install

有时候系统环境复杂了,安装的时候会安装到别的python版本上,这就麻烦了,所以还是谨慎一点测试一下,这里安装一个我之前在博客中提到的可以模拟浏览器的第三方python库测试一下。

sudo easy_install Mechanize1

4.测试安装是否成功

在终端输入python进入python shell

python1

进入python shell后import一下刚安装的mechanize

>>>import mechanize1

没有报错,就是安装成功了,如果说没有找到,那可能就是安装到别的python版本的路径了。

同时也测试一下PIL这个基础库

>>>import PIL1

没有报错的话,说明PIL已经被预装过了

5.安装numpy

接下来安装numpy

首先需要安装python-dev才可以编译之后的扩展库

sudo apt-get install python-dev1

之后就可以用easy-install 安装numpy了

sudo easy_install numpy1

这里有时候用easy-install 安装numpy下载的时候会卡住,那就只能用 apt-get 来安装了:

sudo apt-get install numpy1

不推荐这样安装的原因就是系统环境或者说python版本多了之后,直接apt-get安装numpy很有可能不知道装到哪个版本去了,然后就很麻烦了,我有好几次遇到这个问题,不知道是运气问题还是什么,所以风险还是很大的,所以还是尽量用easy-install来安装。

同样import numpy 进行测试

python>>>import numpy1234

没有报错的话就是成功了

下面的安装过程同理,我就从简写了,大家自己每步别忘了测试一下

6.安装scipy

sudo apt-get install python-scipy1

7.安装matplotlib

sudo apt-get install python-matplotlib1

8.安装dlib

我当时安装dlib的过程简直太艰辛,网上各种说不知道怎么配,配不好,我基本把stackoverflow上的方法试了个遍,才最终成功编译出来并且导入,不过听说18.18更新之后有了setup.py,那真是极好的,18.18我没有亲自配过也不能乱说,这里给大家分享我配置18.17的过程吧:

1.首先必须安装libboost,不然是不能使用.so库的

sudo apt-get install libboost-python-dev cmake1

2.到Dlib的官网上下载dlib,会下载下来一个压缩包,里面有C++版的dlib库以及例子文档,Python dlib库的代码例子等等

我使用的版本是dlib-18.17,大家也可以在我这里下载:

之后进入python_examples下使用bat文件进行编译,编译需要先安装libboost-python-dev和cmake

cd to dlib-18.17/python_examples./compile_dlib_python_module.bat 123

之后会得到一个dlib.so,复制到dist-packages目录下即可使用

这里大家也可以直接用我编译好的.so库,但是也必须安装libboost才可以,不然python是不能调用so库的,下载地址:

将.so复制到dist-packages目录下

sudo cp dlib.so /usr/local/lib/python2.7/dist-packages/1

最新的dlib18.18好像就没有这个bat文件了,取而代之的是一个setup文件,那么安装起来应该就没有这么麻烦了,大家可以去直接安装18.18,也可以直接下载复制我的.so库,这两种方法应该都不麻烦~

有时候还会需要下面这两个库,建议大家一并安装一下

9.安装skimage

sudo apt-get install python-skimage1

10.安装imtools

sudo easy_install imtools1

Dlib face landmarks Demo

环境配置结束之后,我们首先看一下dlib提供的示例程序

1.人脸检测

dlib-18.17/python_examples/face_detector.py 源程序:

#!/usr/bin/python# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt##   This example program shows how to find frontal human faces in an image.  In#   particular, it shows how you can take a list of images from the command#   line and display each on the screen with red boxes overlaid on each human#   face.##   The examples/faces folder contains some jpg images of people.  You can run#   this program on them and see the detections by executing the#   following command:#       ./face_detector.py ../examples/faces/*.jpg##   This face detector is made using the now classic Histogram of Oriented#   Gradients (HOG) feature combined with a linear classifier, an image#   pyramid, and sliding window detection scheme.  This type of object detector#   is fairly general and capable of detecting many types of semi-rigid objects#   in addition to human faces.  Therefore, if you are interested in making#   your own object detectors then read the train_object_detector.py example#   program.  ### COMPILING THE DLIB PYTHON INTERFACE#   Dlib comes with a compiled python interface for python 2.7 on MS Windows. If#   you are using another python version or operating system then you need to#   compile the dlib python interface before you can use this file.  To do this,#   run compile_dlib_python_module.bat.  This should work on any operating#   system so long as you have CMake and boost-python installed.#   On Ubuntu, this can be done easily by running the command:#       sudo apt-get install libboost-python-dev cmake##   Also note that this example requires scikit-image which can be installed#   via the command:#       pip install -U scikit-image#   Or downloaded from . import sysimport dlibfrom skimage import iodetector = dlib.get_frontal_face_detector()win = dlib.image_window()print("a");for f in sys.argv[1:]:print("a");print("Processing file: {}".format(f))img = io.imread(f)# The 1 in the second argument indicates that we should upsample the image# 1 time.  This will make everything bigger and allow us to detect more# faces.dets = detector(img, 1)print("Number of faces detected: {}".format(len(dets)))    for i, d in enumerate(dets):print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(i, d.left(), d.top(), d.right(), d.bottom()))win.clear_overlay()win.set_image(img)win.add_overlay(dets)dlib.hit_enter_to_continue()# Finally, if you really want to you can ask the detector to tell you the score# for each detection.  The score is bigger for more confident detections.# Also, the idx tells you which of the face sub-detectors matched.  This can be# used to broadly identify faces in different orientations.if (len(sys.argv[1:]) > 0):img = io.imread(sys.argv[1])dets, scores, idx = detector.run(img, 1)    for i, d in enumerate(dets):print("Detection {}, score: {}, face_type:{}".format(d, scores[i], idx[i]))123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081

我把源代码精简了一下,加了一下注释: face_detector0.1.py

# -*- coding: utf-8 -*-import sysimport dlibfrom skimage import io#使用dlib自带的frontal_face_detector作为我们的特征提取器detector = dlib.get_frontal_face_detector()#使用dlib提供的图片窗口win = dlib.image_window()#sys.argv[]是用来获取命令行参数的,sys.argv[0]表示代码本身文件路径,所以参数从1开始向后依次获取图片路径for f in sys.argv[1:]:    #输出目前处理的图片地址print("Processing file: {}".format(f))    #使用skimage的io读取图片img = io.imread(f)    #使用detector进行人脸检测 dets为返回的结果dets = detector(img, 1)    #dets的元素个数即为脸的个数print("Number of faces detected: {}".format(len(dets)))    #使用enumerate 函数遍历序列中的元素以及它们的下标#下标i即为人脸序号#left:人脸左边距离图片左边界的距离 ;right:人脸右边距离图片左边界的距离#top:人脸上边距离图片上边界的距离 ;bottom:人脸下边距离图片上边界的距离for i, d in enumerate(dets):print("dets{}".format(d))print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format( i, d.left(), d.top(), d.right(), d.bottom()))    #也可以获取比较全面的信息,如获取人脸与detector的匹配程度dets, scores, idx = detector.run(img, 1)for i, d in enumerate(dets):print("Detection {}, dets{},score: {}, face_type:{}".format( i, d, scores[i], idx[i]))    #绘制图片(dlib的ui库可以直接绘制dets)win.set_image(img)win.add_overlay(dets)    #等待点击dlib.hit_enter_to_continue()1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950

分别测试了一个人脸的和多个人脸的,以下是运行结果:

运行的时候把图片文件路径加到后面就好了

python face_detector0.1.py ./data/3.jpg12

一张脸的:

两张脸的:

这里可以看出侧脸与detector的匹配度要比正脸小的很多

2.人脸关键点提取

人脸检测我们使用了dlib自带的人脸检测器(detector),关键点提取需要一个特征提取器(predictor),为了构建特征提取器,预训练模型必不可少。

除了自行进行训练外,还可以使用官方提供的一个模型。该模型可从dlib sourceforge库下载:

arks.dat.bz2

也可以从我的连接下载:

这个库支持68个关键点的提取,一般来说也够用了,如果需要更多的特征点就要自己去训练了。

dlib-18.17/python_examples/face_landmark_detection.py 源程序:

#!/usr/bin/python# The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt##   This example program shows how to find frontal human faces in an image and#   estimate their pose.  The pose takes the form of 68 landmarks.  These are#   points on the face such as the corners of the mouth, along the eyebrows, on#   the eyes, and so forth.##   This face detector is made using the classic Histogram of Oriented#   Gradients (HOG) feature combined with a linear

91 评论

龙宝宝lovyle

dlib的安装很头疼我自己折腾了好几星期才成功 要讲的话很多所以写在了word里

链接:

156 评论

相关问答

  • 基于卷积神经网络的人脸检测论文

    卷积神经网络有以下几种应用可供研究:1、基于卷积网络的形状识别物体的形状是人的视觉系统分析和识别物体的基础,几何形状是物体的本质特征的表现,并具有平移、缩放和旋

    胃食眉眉 3人参与回答 2023-12-07
  • 人脸检测论文fan

    提起人脸相似度在线测试,大家都知道,有人问ai与腾讯ai哪个准哪个好 比如人脸识别相似度?另外,还有人想问有没有可以测试两个人脸的相似度的软件?我是苹果手机!你

    内务府大总管 2人参与回答 2023-12-07
  • 人脸检测论文开题报告解读

    我倒是见过matlab基于pca法的人脸面部表情识别,个人感觉很有道理,不过我没这个能力,写不出来,lz可以考虑pca法

    江南装饰 3人参与回答 2023-12-12
  • 人脸关键点检测论文

    摘 要 人体识别是计算机视觉领域的一大类热点问题,其研究内容涵盖了人体的监测与跟踪、手势识别、动作识别、人脸识别、性别识别和行为与事件识别等,有着非常广泛

    猪猪钕神 3人参与回答 2023-12-12
  • 假脸检测论文

    提起人脸相似度在线测试,大家都知道,有人问ai与腾讯ai哪个准哪个好 比如人脸识别相似度?另外,还有人想问有没有可以测试两个人脸的相似度的软件?我是苹果手机!你

    卢卡与凯丽 3人参与回答 2023-12-11