• 回答数

    4

  • 浏览数

    311

小予乖乖
首页 > 毕业论文 > 矩阵秩的应用毕业论文

4个回答 默认排序
  • 默认排序
  • 按时间排序

shop移民Shero

已采纳

这个可以继续化简:1.用第3行把的1把所有的第四列的数都化为012-900-1500001(下面的不写了)2.用第2行的-1把第1行的2消去10100-1500001(当然你也可以把第2行乘以-1)这个矩阵的非零行就是3行,所以秩就是3因为第一行的以一个1他下面的全部是0所以这个1是消不去le第2行的-1他的那一列也全部是0同理第三行

233 评论

一脚踢飞你

矩阵的秩就是该矩阵不为零子式的最高阶数.或是它的行向量组的秩或列向量组的秩.如果要求矩阵的秩可以用矩阵的初等行变换把矩阵变为阶梯形矩阵,此时秩就是阶梯形矩阵非零行的行数.

310 评论

再遇见67

求解矩阵的秩的办法包括初等变换,行列式的乘积以及相似寻找特征值。那么下面我就简单的介绍一个例题进行求解。

1.例如向量组组成的a1(a,1,1...1),a2(1,a,1...1)...an(1,1,1...n)求它的秩。第一种用初等变换的办法,因为矩阵经过初等变换秩是不变的。最后得到一个新的矩阵,b1(a+n-1,0,0...0),b2(1,a-1),b3(1,0,a-1...0)...bn(1,0,0...a-1)。

2.用行列式进行求解,因为矩阵是方的,可以使用。先将各行的元素加到第一列,第一列的元素就为a=n-1,提出来然后将每一行的元素减去第一行的元素,得到一个上三角的行列式。那么行列式就为(a+n-1)(a-1)n-1次方。

3.用相似从矩阵A的特征多项式我们得到一个关于矩阵的特征值以及特征方程。re-A的行列式求得r的特征方程,解得r是一个a-1的n-1次方,以及1-n的一次。那么向量对角化也就是初等变成为一个对角矩阵。

4.对于矩阵的组合运用,并且求未知常数,例如矩阵A以及元素都一一给出,B矩阵元素也一一给出,并且知道矩阵A+AB的秩为2,但是B矩阵是3阶矩阵。根据矩阵的分配关系等到A(E+B)矩阵,那么只需要计算E+B矩阵的行列式。

5.发现E+B矩阵是可逆矩阵,那么我们得到AB矩阵的秩是等于A矩阵的秩。也就是说A矩阵的秩也是2,那么这个矩阵的行列式以及初等变换的秩是2,计算得到未知元素为9。

6.矩阵的秩考察的范围以及应用比向量组的考察不一样。向量组一般都跟线性相关以及无关,线性表示结合在一起。但是矩阵尤其是证明也是从齐次以及非齐次中结合的。

307 评论

百合海鸥

找点文献给你自己看看吧,需要就发邮件给我[1]高朝邦,祝宗山.关于矩阵的秩的等价描述[J].成都大学学报(自然科学版),2006,25(1)从行列式、矩阵的等价、线性方程组、线性空间、线性映射等角度来刻画矩阵的秩,进而用这些命题来证明与矩阵的秩有关的一些命题.[2]费绍金.用矩阵的秩判断空间中平面与平面、直线与直线及直线与平面间的位置关系[J].牡丹江教育学院学报,2007,(6)利用线性方程组解的理论讨论空间中平面与平面、直线与直线及直线与平面间的位置关系,给出用矩阵的秩判定以上关系的方法及结论.[3]严坤妹.一类矩阵的秩[J].福建商业高等专科学校学报,2005,(4)矩阵的秩是矩阵的一个重要不变量,根据两个重要的矩阵的秩的不等式以及分块矩阵的初等变换的性质,本文研究了一类矩阵的秩的特征.[4]戴红霞.关于矩阵的秩的例题教学[J].南京审计学院学报,2005,2(2)本文通过三个典型例题的具体讲解,加深学生对抽象概念"矩阵的秩"的理解和掌握.[5]余航.试论分块矩阵的秩[J].桂林师范高等专科学校学报,2001,15(3)任一矩阵都可求得它的秩,而在矩阵运算中,矩阵的分块是一个很重要的技巧.本文从不同角度,从特殊到一般地探求了分块矩阵的秩.[6]徐兰.利用分块矩阵探讨矩阵的秩的有关定理[J].昌吉学院学报,2003,(4)矩阵是线性代数的主要研究对象之一,利用分块矩阵,研究高阶矩阵的秩及矩阵在运算后秩的变化,得到有关的定理.[7]邹晓光.互素多项式矩阵的秩的一个简单结论及其应用[J].金华职业技术学院学报,2006,6(1)本文给出了互素多项式在矩阵的秩讨论中的一个简单结果:定理:设f(x),g(x)∈P[x],A是n阶方阵,若(f(x),g(x))=1,则n+r[f(A)g(A)]=r(f(A))+r(g(A)).以及结果的一些简单应用,对文献[1]中的一些结论进一步讨论.[8]张丽梅,乔立山,李莹.可逆坡矩阵与坡矩阵的秩[J].山东大学学报(理学版),2007,42(9)坡是两个元素的乘积小于等于每个因子的加法幂等半环.讨论了可逆坡矩阵的若干性质,证明了可逆坡矩阵必是满秩的.讨论了坡矩阵的行秩、列秩与Schein秩.给出了坡矩阵的Schein秩的一个重要性质.

242 评论

相关问答

  • 毕业论文的协方差矩阵

    协方差矩阵的计算公式如下: Conv=frac {1} {n-1}tilde {X} tilde {X}^ {T}\ ktimes n 和 ntimes k 的

    威武的灰姑娘 2人参与回答 2023-12-08
  • 矩阵秩的不等式毕业论文

    设在矩阵中有一个非零的r阶子式,且所有r+1阶子式的值均为零。则的值称为矩阵的秩为r,记为r(A)或rank(A)。 矩阵秩的不等式关系: 1、矩阵A的秩等于矩

    mujiontheway 3人参与回答 2023-12-08
  • 矩阵秩的应用毕业论文

    这个可以继续化简:1.用第3行把的1把所有的第四列的数都化为012-900-1500001(下面的不写了)2.用第2行的-1把第1行的2消去10100-1500

    小予乖乖 4人参与回答 2023-12-07
  • 矩阵的对角化毕业论文

    不可以的.矩阵的对角化不是只用初等变换把它变成对角线形式就叫对角化了,而是对角线必须为特征值.如果把它变成对角线形式就叫对角化,那可以在任一行乘个数,结果就变了

    新驰销售一部 5人参与回答 2023-12-08
  • 伴随矩阵的应用毕业论文

    矩阵在许多领域都应用广泛。有些时候用到矩阵是因为其表达方式紧凑,例如在博弈论和经济学中,会用收益矩阵来表示两个博弈对象在各种决策方式下的收益。文本挖掘和索引典汇

    为食猫88 4人参与回答 2023-12-12