首页 > 论文发表知识库 > 三重积分计算方法毕业论文

三重积分计算方法毕业论文

发布时间:

三重积分计算方法毕业论文

其实,三重积分,就是把一重积分和二重积分的扩展 三重积分及其计算 一,三重积分的概念 将二重积分定义中的积分区域推广到空间区域,被积函数推广到三元函数,就得到三重积分的定义 其中 dv 称为体积元,其它术语与二重积分相同 若极限存在,则称函数可积 若函数在闭区域上连续, 则一定可积 由定义可知 三重积分与二重积分有着完全相同的性质 三重积分的物理背景 以 f ( x, y, z ) 为体密度的空间物体的质量 下面我们就借助于三重积分的物理背景来讨论其计算方法. 二,在直角坐标系中的计算法 如果我们用三族平面 x =常数,y =常数, z =常数对空间区域进行分割那末每个规则小区域都是长方体 其体积为 故在直角坐标系下的面积元为 三重积分可写成 和二重积分类似,三重积分可化成三次积分进行计算 具体可分为先单后重和先重后单 ①先单后重 ——也称为先一后二,切条法( 先z次y后x ) 注意 用完全类似的方法可把三重积分化成其它次序下的三次积分. 化三次积分的步骤 ⑴投影,得平面区域 ⑵穿越法定限,穿入点—下限,穿出点—上限 对于二重积分,我们已经介绍过化为累次积分的方法 例1 将 化成三次积分 其中 为长方体,各边界面平行于坐标面 解 将 投影到xoy面得D,它是一个矩形 在D内任意固定一点(x ,y)作平行于 z 轴的直线 交边界曲面于两点,其竖坐标为 l 和 m (l < m) o x y z m l a b c d D .(x,y) 例2 计算 其中 是三个坐标面与平面 x + y + z =1 所围成的区域 D x y z o 解 画出区域D 解 除了上面介绍的先单后重法外,利用先重后单法或切片法也可将三重积分化成三次积分 先重后单,就是先求关于某两个变量的二重积分再求关于另一个变量的定积分 若 f(x,y,z) 在 上连续 介于两平行平面 z = c1 , z = c2 (c1 < c2 ) 之间 用任一平行且介于此两平面的平面去截 得区域 则 ②先重后单 易见,若被积函数与 x , y 无关,或二重积分容易计算时,用截面法较为方便, 就是截面的面积,如截面为圆,椭圆,三角形,正方形等,面积较易计算 尤其当 f ( x , y , z ) 与 x , y 无关时 希望对你有帮助

三重积分的计算,首先要转化为“一重积分+二重积分”或“二重积分+一重积分”。

适用于被积区域Ω不含圆形的区域,且要注意积分表达式的转换和积分上下限的表示方法:

先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。

区域条件:对积分区域Ω无限制;

函数条件:对f(x,y,z)无限制。

先二后一法(截面法):先计算底面积分,再计算竖直方向上的积分。

区域条件:积分区域Ω为平面或其它曲面(不包括圆柱面、圆锥面、球面)所围成

函数条件:f(x,y)仅为一个变量的函数。

三重积分特点:

当然如果把其中的“二重积分”再转化为“累次积分”代入,则三重积分就转化为了“三次积分”,这个属于二重积分化累次积分。

与二重积分类似,三重积分仍是密度函数在整个Ω内每一个点都累积一遍,且与累积的顺序无关(按任意路径累积)。当积分函数为1时,就是其密度分布均匀且为1,三维空间质量值就等于其体积值;当积分函数不为1时,说明密度分布不均匀。

投影法:投影法是先进行一次积分在进行二重积分。一次积分的上下限是由投影区域内的点做垂直于投影面的直线,与积分区域的交点确定,要保证所有的投影点都满足这个上下限,否则就要进行切割,之后再对投影区域进行二重积分即可。一般适用于带棱角的矩形区域。截面法:截面法是先进行二重积分在进行一次积分。这个要求知道垂直于某个轴的平面所截积分区域的横截面的函数方程,一般适用于鸡蛋形的区域。

适用于被积区域Ω不含圆形的区域,且要注意积分表达式的转换和积分上下限的表示方法⑴先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。①区域条件:对积分区域Ω无限制;②函数条件:对f(x,y,z)无限制。⑵先二后一法(截面法):先计算底面积分,再计算竖直方向上的积分。①区域条件:积分区域Ω为平面或其它曲面(不包括圆柱面、圆锥面、球面)所围成;②函数条件:f(x,y,)仅为一个变量的函数。 适用被积区域Ω的投影为圆时,依具体函数设定,如设x2+y2=a2,x=asinθ,y=acosθ①区域条件:积分区域Ω为圆柱形、圆锥形、球形或它们的组合;②函数条件:f(x,y,z)为含有与x2+y2(或另两种形式)相关的项。 适用于被积区域Ω包含球的一部分。①区域条件:积分区域为球形或球形的一部分,锥面也可以;②函数条件:f(x,y,z)含有与x2+y2+z2相关的项。

复积分的计算方法毕业论文

复变函数通常作曲线积分,因此下面讨论的也是曲线积分

(1)这是形式上的变换 上式的第二行末尾可以看出,积分结果的实部和虚部都是关于函数实部和虚部的第二型曲线积分,如果有曲线C的参数方程 那么上式就可以化为定积分 当然要求x(t)和y(t)满足一阶可导另外当然第二型曲线积分可以化为第一形曲线积分,这一点不作深入讨论如果要问积分的意义是什么,关于第二型曲线积分,就可以理解为变力对做曲线运动的物体所做的功把第二型曲线积分化为定积分,就是用变力乘上路径导数得到功率,再由功率对时间积分,得到变力所做的功实变函数的积分是这样,复变函数的积分也可以这样理解

(2) 这里△zk可以看作曲线C的一个小段,那么f(zk)是该段曲线上一点的“复线密度”,因此积分的结果可以看作整段曲线的“复质量”

(3)如果积分是平面积分或者多重积分,那么通常是关于实变量的积分,这时就可以看作实部虚部分别积分即可

论文发表写作指导:

列几个题目引导一下你吧,呵呵,我不是学这能帮助你的也只能这样了。抽象代数中的若干问题[数学专业论文]复变函数积分方法探究[数学专业论文]高阶微分方程解的分布问题[数学专业论文]几类函数的留数定理[数学与应用数学]与复积分有关的几个定理[数学与应用数学]证明等边三角形的几种复数方法[数学与应用数学]浅谈新课标下小学数学应用题的改革对了,要查更多的内容的话,在网站关键字输入“数学”就可以如果对你有帮助,请加分哦。

复合函数的积分如下:

一般而言,复合函数的积分的是:∫udv =uv-∫vdu。其实就本质而言,复合函数相当于将其中一个初等函数(次级函数)镶嵌在另外一个初等函数(主体函数)中。复合函数的积分一般可以利用换元法来解。换元后不仅积分变量要随之改变,积分限也要随这改变。

复合函数的定义域:

当为整式或奇次根式时,R的值域。

当为偶次根式时,被开方数不小于0(即≥0)。

当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0。

当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。

当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。

三重积分的计算与应用毕业论文

计算三重积分的方法如下:

一、直角坐标系法

适用于被积区域Ω不含圆形的区域,且要注意积分表达式的转换和积分上下限的表示方法

1、先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。

区域条件:对积分区域Ω无限制;

函数条件:对f(x,y,z)无限制。

2、先二后一法(截面法):先计算底面积分,再计算竖直方向上的积分。

区域条件:积分区域Ω为平面或其它曲面(不包括圆柱面、圆锥面、球面)所围成

函数条件:f(x,y)仅为一个变量的函数。

二、柱面坐标法

1、适用被积区域Ω的投影为圆时,依具体函数设定,如设

区域条件:积分区域Ω为圆柱形、圆锥形、球形或它们的组合;

函数条件:f(x,y,z)为含有与(或另两种形式)相关的项。

三、球面坐标系法

1、适用于被积区域Ω包含球的一部分。

区域条件:积分区域为球形或球形的一部分,锥面也可以;

函数条件:f(x,y,z)含有与相关的项。

扩展资料:

三重积分的几何意义:

三重积分就是立体的质量。

当积分函数为1时,就是其密度分布均匀且为1,质量就等于其体积值。

当积分函数不为1时,说明密度分布不均匀。

## 球坐标系积分 奇偶对称性

涉及两部分知识点:

首先由奇偶对称性判定∫∫∫x^3dv=∫∫∫y^3dv=0

其次确定球坐标系各变量的积分区间:

其实,三重积分,就是把一重积分和二重积分的扩展 三重积分及其计算 一,三重积分的概念 将二重积分定义中的积分区域推广到空间区域,被积函数推广到三元函数,就得到三重积分的定义 其中 dv 称为体积元,其它术语与二重积分相同若极限存在,则称函数可积 若函数在闭区域上连续, 则一定可积 由定义可知 三重积分与二重积分有着完全相同的性质 三重积分的物理背景 以 f ( x, y, z ) 为体密度的空间物体的质量 下面我们就借助于三重积分的物理背景来讨论其计算方法. 二,在直角坐标系中的计算法 如果我们用三族平面 x =常数,y =常数, z =常数对空间区域进行分割那末每个规则小区域都是长方体 其体积为 故在直角坐标系下的面积元为 三重积分可写成 和二重积分类似,三重积分可化成三次积分进行计算 具体可分为先单后重和先重后单

投影法:投影法是先进行一次积分在进行二重积分。一次积分的上下限是由投影区域内的点做垂直于投影面的直线,与积分区域的交点确定,要保证所有的投影点都满足这个上下限,否则就要进行切割,之后再对投影区域进行二重积分即可。一般适用于带棱角的矩形区域。截面法:截面法是先进行二重积分在进行一次积分。这个要求知道垂直于某个轴的平面所截积分区域的横截面的函数方程,一般适用于鸡蛋形的区域。

定积分计算方法论文文献

换元积分法和分部积分法。常用的计算方法有四种:1、定义法。2、牛顿—莱布尼茨公式。3、定积分的分部积分法。4、定积分的换元积分。定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿·莱布尼茨公式)。

定积分分解为两个,其中前面一个为奇函数。而奇函数在对称区间上的定积分为零

高中定积分的计算方法在书上会有特别多的计算公式,把它拿来套一下就可以了。

首先我来复述一下问题:定积分与不定积分是如何计算的?现在凡是学过高等数学的大学生,可能对这样的问题,已经不屑于回答了,或者说大家觉得这已经.

复变积分的计算方法研究论文摘要

对虚数存在意义的两次认知早在一周前,便写了以论复数中虚数部分存在性为题的一篇论文,由于时间较为紧张,不得要领,颇为浅薄,甚至有很多不科学的漏洞。之前对虚数域的认识,完全在于一个虚字。因为对于复变产生的意义,书中是这样给出的:由于解代数方程的需要,人们引出了复数。复数的出现,使得基本运算中的开方运算不再存在无解情况,n此多项式也不再存在增根,这为人类在某些逻辑领域的运算提供了帮助。为了说明两次认知所进行的探索,以下便是我在之前的论文中所论述的部分内容(这一部分是在我认为虚数是完全虚构的认知下的论述):“复数的集合——复平面是一个二维平面,但却并非我们所在的三维世界中的任何一个二维平面。可以说复平面在现实世界中完全找不到具体的一一对应,是一个纯粹缔造出来的二维平面。对这种想法的抽象性我颇为好奇,故希望找到正解。而就在最近我通过一个论坛的争论弄清了两个概念:数学与科学。结论为:数学不是科学。数学不属于科学的范畴,是一种逻辑学,作为工具的学科;而科学则是理论的集合。哪怕是假命题如地心说,也是科学。而区别一个学科是否是科学的,则需要另一门学科作为其判定依据:证伪学。最终令我信服秉洁说的一个理论是:可被证明或证伪的属于科学;而数学,是不可被证伪的。这一定程度上说明了数学是一门形而上学的学科,甚至包括几何学在内。而在数学当中,在我看来复数领域的形而上学兴则更加突出。曾见过有人在论述形而上学时拿虚数和量子理论作为例证。我也曾一度认为量子理论中无观察者的不可知的事物量子状态可以用虚数来表示。当然现在看来,这是一种很浅薄的想法。就好比将著名的佯谬——薛定谔的猫的生死与否映射到复数域上。我高中时曾对此作过一个很粗浅而缺乏科学性的类似性形而上学的证明,若将猫的生死,即铀的衰变与否映射到复数域上,那么为了对应铀的衰变概率分布的均匀,不妨将其对应到一队共轭复数上。当观察者出现,猫的生死被确定,不确定性即消失,那么其映射的复数的不存在性也应该消失,即将复数反映到实数域上,相应的运算即取模,可知共轭复数的模是相等的,这与确定后猫的生死的不同是矛盾的。当然,这种简单的推理本身便不甚科学。但结论应为正解:不确定不等于不存在,二者不可相互映射。这至少说明了数学领域外的学科中,复数的存在有可能是孤立的。世界观的完全形而上学化是不现实的。”以上。在这篇想法很幼稚的论文完成后,感到自己对复平面及虚数的存在意义并没有做任何深入的知识性的理解,仅为一些个人想法,颇觉不妥。为了更加准确而科学地对这个问题进行深入的认知,我查阅了一些相关资料。首先,虚数的发展历史是这样的:Pt 世纪意大利米兰学者卡当(1501—1576)在1545年发表的《重要的艺术》一书中,公布了三次方程的一般解法,被后人称之为“卡当公式”。他是第一个把负数的平方根写到公式中的数学家。给出“虚数”这一名称的是法国数学家笛卡尔(1596—1650),他在《几何学》(1637年发表)中使“虚的数”与“实的数”相对应,从此,虚数才流传开来。数系中发现一颗新星——虚数,于是引起了数学界的一片困惑,很多大数学家都不承认虚数。德国数学家菜不尼茨(1664—1716)在1702年说:“虚数是神灵遁迹的精微而奇异的隐避所,它大概是存在和虚妄两界中的两栖物”。瑞士数学大师欧拉(1707—1783)说;“一切形如 ,的数字都是不可能有的,想象的数,因为它们所表示的是负数的平方根。对于这类数,我们只能断言,它们纯属虚幻。”然而,真理性的东西一定可以经得住时间和空间的考验,最终占有自己的一席之地。法国数学家达兰贝尔(1717—1783)在1747年指出,如果按照多项式的四则运算规则对虚数进行运算,那么它的结果总是 的形式(a、b都是实数)。法国数学家棣莫佛(1667—1754)在1730年发现著名的探莫佛定理。欧拉在1748年发现了有名的关系式 ,并且是他在《微分公式》(1777年)一文中第一次用i来表示一1的平方根,首创了用符号i作为虚数的单位。挪威的测量学家成塞尔(1745—1818)在1779年试图给于这种虚数以直观的几何解释,并首先发表其作法,然而没有得到学术界的重视。德国数学家高斯(1777—1855)在1806年公布了虚数的图象表示法。象这样,由各点都对应复数的平面叫做“复平面”,后来又称“高斯平面”。高斯在1831年,用实数组(a,b)代表复数a+bi,并建立了复数的某些运算,使得复数的某些运算也象实数一样地“代数化”。他又在1832年第一次提出了“复数”这个名词,还将表示平面上同一点的两种不同方法——直角坐标法和极坐标法加以综合。统一于表示同一复数的代数式和三角式两种形式中,并把数轴上的点与实数—一对应,扩展为平面上的点与复数—一对应。高斯不仅把复数看作平面上的点,而且还看作是一种向量,并利用复数与向量之间—一对应的关系,阐述了复数的几何加法与乘法。至此,复数理论才比较完整和系统地建立起来了。Pt 2.“虚数”是人类在发展数学上的解题技术时,以人为定义方式发明的一种虚拟的数,在现实生活中不存在,在实务的商用数学中也用不着。“复数”可以解决一些物理数学上的问题,解题到最后经过转化所得到的实数解,才有物理上的意义,带有虚数的复数届时没有意义的。至此,虚数在物理学中不存在的理论在我的认识中仍然是正确的。至到看到时间的空间矢量代数法则:时间有空间的方向性,它能做矢量代数。过去我们做代数运算时,虚数就是时间。多普勒效应是证明四维时间存在的实验基础之一。虚数是的确不存在于三维世界中的,但却被定义为第四维的时间。虚数时间只是用数学呈现的方法,是一种处理方式。就像RCL电路我们也用虚数去处理相角关系,但电感本身并不是虚的。这是人为的定义,但这也在一定意义上揭示了虚数有可能存在的某些物理特征。之后我又得到了物理学中有关快子的概念:快子是理论上预言的粒子。它具有超过光速的局部速度(瞬时速度)。它的质量是虚数,但能量和动量是实数。有人认为这种粒子无法检测,但实际未必如此。影子和光斑的例子就说明超过光速的东西也是可以观测到的。目前尚无快子存在的实验证据,绝大多数人怀疑它们的存在。有人声称在测氚的贝塔衰变放出的中微子质量的实验中有证据表明这些中微子是快子。这很让人怀疑,但不能完全排除这种可能。快子虽未被科学界认可,但至少已经人类已将虚数应用到物理学中。其一旦被证明,虚数不存在物理意义的观点即被打破。这无疑是人类对虚数存在意义的两次深入的探索!下面这段话我认为很客观而积极的展现了虚数的现实意义:“代数学的主要任务就是对这个问题给出尽可能多的答案。通过引入虚数,那些‘没有意义”的根式就根本不成其为一个问题。可是在历史上虚数的存在性及它的意义曾经引起一场激烈的论战。虚数被讥笑为‘数的鬼魂’,一些象笛卡尔这样的大数学也拒绝承认它。这场争论一直要到一八零零年左右几何解释虚数成功后才慢慢平静下来。对实用主义者而言,虚数当然是一个计算的工具,只要它有用就行了,但对于严肃的数学家来说却并非如此。高斯就曾经说过,关键不在于应用,而在于如果歧视这些虚量,整个分析学就会失去大量的美和灵活性。为什么认为“歧视虚数”就不美呢?我想这是由于数学中第二个关于美的法则在起作用:对称性法则。当我们把虚数和实数认为是同样真实,只是分别属于一个统一的复平面的横轴和竖轴时,所有的代数方程的解对于实数和虚数而言就具有了一种对称性。而任何人为的‘歧视’都将打破这种对称。”通过课程的学习,我们可以了解到,复数可以应用的现实中的数学建模,其在很多运算中都有者不可思议的性质和规律。复数的引入为人们解决实数域和物理科学提供了许多新的途径,打开了很多原本无法畅通的道路,无论是神奇的留数,还是保角映射,都为人类在解决非复领域上的问题提供了全新的思路与方便。虚数,无论其客观存在与否,都是美丽的!我的一点见解,你再整理下啊,我也要写复变的论文,但我还要写积分变换的

在复变函数的分析理论中,复积分是研究解析函数的重要工具,解析函数的许多重要性质都要利用复积分来表述和证明的,因此,对复积分及其计算的研究显得尤为重要。本文介绍了复变函数积分常规的计算方法、利用级数法、拉普拉斯变换法及对数留数与辐角原理进行复积分计算方法。利用这些方法可以使一些复杂的复积分计算变得简单、快捷。接下来要介绍计算复积分的常见的一些方法。

注:柯西积分公式与解析函数的无穷可微性在计算复积分时的主要区别在于被积函数分母的次数,

二者在计算时都常与柯西积分定理相结合。

1、楼主的这两道题,涉及到:

A、复变函数积分,转化为留数的计算;

B、然后又转化为求导计算;

第一道题,需要求导一次;第二次不需要求导。

.

2、具体解答如下,如有疑问,欢迎追问,有问必答。

.

3、若点击放大,图片更加清晰。

.

.

|z|=2的内部有两个奇点,z=±i,而且都是一阶极点.

原式=2πi[Res(f(z),i)+Res(f(z),-i)]

=2πi[lim(z→i)sinz/(z+i)+lim(z→-i)sinz/(z-i)]

=2πi(sini/2i+sin(-i)/(-2i))

=2πi*2sini/2i

=2πi*[e^(i*i)-e^(-i*i)]/2i²

=π/i*(1/e-e)

设f(z)=(z^10)/(z-3)。∴f(z)有一个一阶极点z1=3,但z1不在丨z丨=1内。

故,f(z)在丨z丨=1的留数Res[f(z),z1]=0。∴由柯西积分定理,有原式=(2πi)Res[f(z),z1]=0。

设f(z)=1/[(z^2)(z-1)(z+4)],∵(z^2)(z-1)(z+4)=0,则z1=0、z2=1、z3=-4,其中z1是二阶极点、z2、z3是一阶极点。∴丨z丨=3内,f(z)有两个极点z1、z2。

故,由柯西积分定理,原式=(2πi){Res[f(z),z1]+Res[f(z),z2]}。

而,Res[f(z),z1]=lim(z→z1)[(z^2)f(z)]'=-{(2z+3)/[(z-1)(z+4)]^2}丨(z=0)=-3/16、Res[f(z),z2]=lim(z→z2)(z-z2)f(z)=1/5。∴原式=πi/40。

扩展资料:

复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。

复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。

参考资料来源:百度百科-复变函数

  • 索引序列
  • 三重积分计算方法毕业论文
  • 复积分的计算方法毕业论文
  • 三重积分的计算与应用毕业论文
  • 定积分计算方法论文文献
  • 复变积分的计算方法研究论文摘要
  • 返回顶部