首页 > 论文发表知识库 > 研究生论文的数据处理

研究生论文的数据处理

发布时间:

研究生论文的数据处理

写作点拨:

一、 开题报告封面

论文题目、系别、专业、年级、姓名、导师

二、 论文的背景、目的和意义(目的要明确,充分阐明该课题的重要性):

论文的背景、理论意义、现实意义

三、国内外研究概况(应结合毕业设计题目,与参考文献相联系,是参考文献的概括):

理论的渊源及演进过程、国内有关研究的综述、国外有关研究的综述

四、论文的理论依据、研究方法、研究内容(思想明确、清晰,方法正确、到位,应结合所要研究内容,有针对性)

五、研究条件和可能存在的问题

六、预期的结果

七、论文拟撰写的主要内容 (论文提纲)

八、论文工作进度安排(内容要丰富,不要写得太简单,要充实,按每周填写,可2-3周,但至少很5个时间段,任务要具体,能充分反映研究内容)

开题报告的内容一般包括:题目、理论依据(毕业论文选题的目的与意义、国内外研究现状)、研究方案(研究目标、研究内容、研究方法、研究过程、拟解决的关键问题及创新点)、条件分析(仪器设备、协作单位及分工、人员配置)、课题负责人、起止时间、报告提纲等。

综述开题报告的综述部分应首先提出选题,并简明扼要地说明该选题的目的、相关课题研究情况、理论适用、研究方法。  提纲 开题报告包含的论文提纲可以是粗线条的,是一个研究构想的基本框架。

可采用整句式或整段式提纲形式。在开题阶段,提纲的目的是让人清楚论文的基本框架,没有必要像论文目录那样详细。

大学毕业论文的数据,因为实验条件、实验周期、调研局限、数据不理想等条件下完全是可以编的但这种编也不是胡编乱造,起码要符合三个基本取向其一,就是与主流文献的研究成果数据和结果保持一致;其二,数据具有较好的重复性和统计学价值其三,数据符合你论文的设计及预期的结论在这样的条件下,完全可以编造数据,但还需要注意的是,编数据分为初阶、进阶和高阶初阶就是没有原始数据,直接编造的是论文图表所需的数据呈现,这种经不起推敲,但如果导师没有高标准要求的话,完全可以过进阶是在图表数据的基础上编造了原始数据,也就是说,论文的图表数据是初阶的,只不过为了应付导师的检查,随机编纂了一些原始数据但如果原始数据需要经过专门的软件,比如SPSS、STATA、AMOS等软件运行的话肯定得不出图表的结论数据。高阶的话就是水平比较高的编造了,这种是先编好原始数据然后在原始数据的基础上,按照文章的脉络和呈现方法用专门的软件运行一遍,并不断调整,得到理想的结果这种编造的数据,是审查都审查不出来的,也是最高等级的编造其实目前学术界的专家编造数据,都不会用前面两种方法而是用后面的高阶方法,别人如果质疑的话,只会说无法重复你的实验和结果但这种程度,对硕博研究生来说都不会有影响,对本科生更无影响。

研究生论文数据处理方法

在论文中,三年的数据处理方法不应该简单地使用平均值代替。数据处理应该分为不同的阶段,针对不同的数据类型和目的采用不同的方法。 首先,对于连续性数据,可以使用平均值、中位数或众数等方法进行汇总和分析。但是,需要注意异常值的存在和处理方法,可以采用剔除或替换的方法进行处理。 其次,对于离散型数据,可以使用频数分布表和百分比分布表进行分析。在处理离散型数据时,需要注意数据的类别和分组方法,避免信息的丢失和误解。 最后,对于时间序列数据,可以使用趋势分析、季节性分析和周期性分析等方法进行处理。在处理时间序列数据时,需要注意数据的平稳性和周期性,以及预测模型的选择和效果评估。 综上所述,论文中三年的数据处理应该根据不同的数据类型和目的采用不同的方法,避免简单地使用平均值代替,以保证数据的准确性和可靠性。

1、注意语言表达虽然科研论文可以说是对他人“讲故事”。但与一般的故事不同之处,个人认为,主要在于逻辑性与连贯性。表达方式应以顺叙为佳,不宜像诗歌、散文、小说之类的文艺作品,使用倒叙、插叙等手法。内容详略得当。该简略之处就要言简意赅,该详尽之处就要清晰全面,不要写成“流水账”,也不要写成“意识流”。结构要合理。可以按“提出问题(立论)→分析问题(讨论)→解决问题(结论)”的总体思路来谋篇布局。摘要、正文和结论的相关内容,要前后呼应。语言通俗易懂。论文是给别人看的,不要认为自己知道的,别人就一定知道。要使用书面语言,避免使用网络语言。语句长短合适,少用累赘的长句与跳跃的短句。遣词要恰当得体。比如,“推测”、“推断”与“推定”,语气是有所不同的(在英文文献中,常用的是suggest、indicate、maybe之类“容他性”的词语)。注意错别字。避免因一时的疏忽大意,而留下缺憾。比如,将“风云二号”写成“风韵二号”,“碳酸盐”写成“碳酸岩”。一字之差,天壤之别。正确使用标点符号。不要分号与顿号不分,一“逗(号)”到底等。建议同学们在闲暇时,可以多看看汉语言工具书。同时,也呼吁素质教育阶段,要切实重视母语—汉语的教学质量。2、数据、术语严谨规范严谨规范,是科研论文的主要特征之一。数据分析,避免“张冠李戴”。对数据进行判别时,不要将属性为A的对象,用B作为参照标准。计量单位,要符合国家标准或者相关行业规范。注意有效数字的取舍。并不是小数点之后位数越多就越精确,而是要与获得数据的方法手段结合起来。比如,利用一台精度为5%的仪器进行观测,数据应写成“19”,而不是“”。不能简单地照搬仪器报出值。高于检测上限、或低于检测下限的数据,应该用“>检测限”、“<检测限”、“未检出”或相应的英文缩写等表示。标注要详实。比如,采样位置图,应该有比例尺、方位、坐标、图例及说明等参数。图版中使用专业符号、代码表示对象时,应该附注相应的文字说明。

研究生的论文通常都会用到画图和数据处理软件,比如说著名的画图软件的话,论证就是研究生论文需要用到的还有CAD。

利用网络搜集资源有两种情况:

论文研究过程中的原始数据处理

1. 原始数据的解释及相关概念 原始数据的概念: A.测序仪完成测序后生产的测序文件,经过单样品拆分后,获得的单样品测序文件。 B.或者  测序仪测序完成后,由测序仪直接拆分的单样品测序文件。 ——我们常常称之为“Rawdata” 原始数据展示(illumina测序平台、Fastq格式文件): Fastq格式文件:基于文本的,保存生物序列(通常是核酸序列)和其质量信息的标准格式,其实质是一种数据存储格式,其序列以及质量都是使用一个ASCII字符标示,最初有Sanger公司开发,目的是将Fasta序列和质量数据放在一起,目前已经成为高通量测序结果的事实标准。对于Fastq格式文件内容相关解释: 1)第一行以“@”开头,由文件识别标志和读段名(ID)组成; 2)第二行为碱基序列; 3)第三行以“+” 开头,也是由文件识别标志和读段名(ID)组成,其ID可以省略,但“+”不能省略; 4)第四行是第二行中的序列内容每个碱基所对应的测序质量值。 2.  数据质控 高通量测序下机的原始数据raw reads中存在一些低质量数据、接头以及barcode序列等,为消除其对后续分析准确性产生的影响,在数据下机以后对原始数据进行质控处理就成了至关重要的环节。 数据质控的概念: 将原始数据通过系列步骤(或同时进行)质量控制筛选的过程。 质控筛选后的数据,我们常常称之为“Cleandata”,也称之为“可以进行后续分析的序列”。 因各服务商提供的质控标准会略有不同,但大体包含(但不限于)如下几方面:   1)通过index提取序列,并作测序质量控制,质量达不到设置要求的去除,将序列与样本对应;   2)通过overlap完成拼接,去除index序列,overlap长度和错配要达到设置的要求,拼接不上的舍弃;   3)拼接完成且长度达不到设定要求的舍弃。 ?问题:Cleandata(可用于分析的序列)跟最终参与分析的序列数量相等吗?    我们将在OTU聚类环节给出答案。 3.  原始数据的重要性 原始数据一切数据分析的根本。分析过程文件、结果文件可以丢失,原始数据在,分析结果可以重现;原始数据一旦丢失,分析结果则不可重现;  原始数据应及时索取或保存。  获取方式     1)服务商提供:硬盘、网盘、U盘、邮件等数据载体。     2)自留保存:硬盘、上传NCBI等数据载体。 文章发表时,均需要上传NCBI,并获得唯一项目号。

论文原始数据的获取有以下几种方法:

科研论文写作时收集资料是整个研究过程中很具体的工作环节,通过各种测量、问卷调查和观察等方法从研究对象身上直接收集到的科研资料,称为原始资料,记录必须可靠,不可自行更改。

资料的真实性和准确与否直接关系到研究结果的真实性和科学性,所以应严格按照设计方案规定的方法和要求,进行资料收集。收集资料的方法常用的有观察法、问卷法和测量法等。在研究中收集到的原始资料和数据,先要进行科学分类和归纳,使资料系统化,便于分析和叙述。然后采用适当的统计学方法进行分析,才能找出规律性的答案,得到有意义的结论。

原始数据就是指一手资料,指自己直接经过搜集整理和直接经验所得,包括原创的文献资料和实物资料、口述资料。像在科研时用到的原始文件、档案、信函、日记、回忆录、照片、文物古迹和其它实物,科研过程中的调查问卷、实验数据、访谈记录等等。

中国数据网就是进入“中华人民共和国国家统计局”官网找数据,接着可以在“数据查询”里点相关数据查询,有年度、季度、月度数据,也有普查、国际和部门数据,里面还有细分指标数据查询。如年度数据指标有国民经济、人口、对外经济贸易、能源、财政、价格指数、工农业、社会服务、固定资产投资和房地产等,可以搜索最近5年、10年、20年的数据资料。

雷达数据并行处理研究论文

工程地质是一门认知工程-地质相互作用规律和过程的科学,它的使命是保障人类工程活动的安全。下面是我为大家整理的工程地质论文,供大家参考。

工程地质论文 范文 一:隧道工程地质雷达检测分析

【摘要】通过实际工程应用,介绍地质雷达的特点、原理和探测解析 方法 ;在隧道工程的超前地质探测预报以及隧道结构检测的应用中,证明了地质雷达的实用性、先进性及其实际应用中的重要作用。

【关键词】公路隧道;地质雷达;检测;超前预报;应用

1、工程概况

小北山二号隧道为长隧道,按左、右线分离布设。左线隧道起讫里程ZK19+571~ZK21+091,长1520m,揭阳端洞口采用削竹式,洞口设计标高,惠来端洞门采用削竹式,洞口设计标高,坡高~,隧道最大埋深约209m。右线隧道起讫里程ZK19+599~ZK21+081,长1482m,揭阳端洞口采用削竹式,洞口设计标高,惠来端洞门采用削竹式,洞口设计标高,坡度~,隧道最大埋深约212m。隧道位于丘陵地区,山体地形陡峭,山体植被较发育,山体发育花岗岩孤石,大小不一。隧址区基底主要为燕山期花岗岩,局部见辉绿岩岩脉,覆盖层由粘土、全~强风岩组成,基岩由中~微风化岩组成。隧址区地下水类型主要为 潜水 ,含水层主要为第四系松散层的孔隙及中~微风化岩的风化裂隙。

2、地质雷达的发展及其应用

随着社会的高速发展,有很多的方便加上很多的仪器可以在岩土勘察中使用,重要的方法有弹性波法及其电磁波法。在实际工程当中经常使用的电磁波法就是地质雷达,隧道地震探测仪比较适合远距离宏观的地质问题探测;并且地质雷达方法可以结合高频电磁波而进行非常快的无损伤探测,因此频段非常高的话可以在隧道结构当中进行检测。公路的隧道工程埋深、规模以及数量随着时间的增加而不断地变多,而在施工的过程当中也遇到了很多复杂的工程地质条件。虽然说在设计以前都作了非常详细地质勘察,但是在隧道实际的开挖施工当中,还会有非常多的问题发生的。从这些方面就可以很好地说明,在隧道施工过程当中的围岩稳定性状况以及一些掌子面前方的实际情况,并且做出及时地超前预报。当隧道发生一些事故或者竣工以后,应该结合现行的规范上面要求以及隧道本身的结构特性,不但应该在隧道的表面进行观测以及净空断面进行测量,需要的时候还应该采用地质雷达进行一些更深入的检测,例如围岩的密实完整稳定的情况、钢拱架的分布情况、有无离析以及蜂窝麻面、衬砌混凝土的均匀一致性以及相对应的完整性以及衬砌有效厚度等等。经过实际的情况可以证明,地质雷达技术可以在隧道的施工当中作出非常详细的超前地质预报。现在,地质雷达检测技术已经发展到了单点探测以及连续探测的实时自动成图。而国外的国家探地雷达基本上是单脉冲雷达,其工作的频率在50到2G赫兹,最为代表性的国家是美国和加拿大。我们国家所生产的一系列地质雷达,结合地下工程的超前预报的特点,采用的是脉冲调制式,这个的探测距离非常大,而且分辨率也非常高,其工作的频率大约在160到220兆赫兹,其探测的距离可以达到40到60米,可以很好地适应超前地质预报以及部分的工程检测。

3、探测的原理以及方法

结合设计的图纸以及设计的任务书按照规定进行开展地质超前预报的工作,其预测应该是沿着隧道纵向三十米的范围以内对一些不安全的地质问题进行检查,对前面的地层岩性变化以及水文地质特征(软弱岩层的分布、断层发育及其影响带、水的赋存情况等)进行探测,对隧道围岩的级别进行分析,并列出一些施工的建议,确保隧道施工的安全,减少一些不必要的损失,为动态的设计提供所需要的地质参数,从而可以更好地为隧道施工进行服务。本次的地质预报使用的是地质雷达系统,运用了空气耦合型100兆赫兹的天线,结合探测的前方岩石的特点以及现场施工的条件,对距离30米左右进行详细地探测。而这次预报的工作面位于ZK19+735里处的地方,使用一些点测的方式,使用一系列的方法对工作面的正前方进行详细地预测。

4、数据的处理以及得出来的结果

对实际测量出来的资料用一系列的软件进行处理分析,再结合现场的岩性所具体的实际情况,选择一个比较适合的相对介电常数,进而得出来一些成果,在成果的解释当中,开始的时候,假如发现了有非常明显的反相位反射波组出现的话,就应该岩性变坏的一个表现;假如发现了有非常明显的正相位强波反射波组出现的话,就应该是岩层岩性变好的一个表现,结合反射波反射强度的实际大小就可以区分反射界面前方介质的一系列的特征。依据雷达数据处理结果并结合地质资料分析得出以下预报结果:(1)掌子面为强风化花岗岩,上方自稳能力差,中部伴随严重掉块,局部潮湿明显,推断围岩级别为Ⅴ级。(2)掌子面右侧前方4~10m(ZK19+739~ZK19+745)区域反射信号强烈,同相轴紊乱,推测此区域与掌子面情况类似,有明显破碎带,围岩完整性差,推断围岩级别为Ⅴ级。(3)掌子面前方10~15m(ZK19+745~ZK19+750)区域反射信号衰退稳定,同相轴平稳但仍存在断开处,推测此区域岩性略微好转,但依旧破碎且含水,推断围岩级别为IV级。(4)掌子面前方15~30m(ZK19+750~ZK19+765)区域信号较弱,加大增益后发现同相轴较为连续,推测此区域岩性好转,级别应为IV级。依据结果给出的建议:(1)ZK19+735掌子面围岩为强风化花岗岩,自稳能力差,局部潮湿明显,中部掉块严重,应严格控制进尺,加强支护,预防坍塌。(2)掌子面前方10m区域围岩与掌子面情况相似,稳定性差,破碎带明显,容易坍塌。严格控制进尺,及时做好初期支护工作并保证强度,防止掉块与坍塌,同时做好排水工作。(3)掌子面前方20m区域后,岩性有所好转。建议采用上下台阶方法,并严格控制进尺,及时做好初期支护工作并保证强度,防止掉块与坍塌,同时做好排水工作。

5、结束语

地质雷达在隧道工程施工或者是后期的运营过程当中,可以很好地对工程的质量进行详细地检测,可以更严格地控制工程的质量,更好地检查工程的缺陷。假如说天线的频率特性以及工作的方法有一定的影响,而地质雷达在对介质参数的探测当中,还存在很多的争议,那么经过不断地完善以及发展,地质雷达在隧道工程检测当中一定有一个非常重要的角色。综上所述,应用地质雷达在地质超前预报当中可以精准地探测预报隧道施工当中危害的工程施工安全的相关地质灾害。而地质雷达可以探测出来隧道的结构中重要的施工缺陷,可以为有问题的隧道提供一些非常可靠的依据,这样就可以提高工作的效率,并且节省一些资金。

工程地质论文范文二:福仁山隧道工程地质研究

【摘要】福仁山隧道是中国水电十四局承建的西成铁路西安至江油段(陕西境内)站前工程XCZQ-5标段的一座典型隧道工程。该隧道地处秦岭南麓低中山区,位于商丹断裂带和勉略-巴山弧形断裂构造带夹持的南秦岭构造带,内部组成与构造变形十分复杂,工程地质现象较为特殊,具有一定的研究意义。

【关键词】福仁山隧道;工程地质特征;地质构造

1福仁山隧道工程概述

目前在建的西成客运专线按国铁Ⅰ级、双线建设,设计时速250公里每小时,功能以客运为主,从西安出发,穿越秦岭经陕西汉中、翻越米仓山进入四川境内,经四川广元至江油与绵成乐客运专线相接直抵成都,预计线路通车后,将大大缩短西安到成都的直线距离。从西安到汉中仅需1小时、到成都需3小时。该项目由西安至四川江油段和成绵乐城际铁路两段组成,全长660公里,项目投资估算总额约为688亿元。西成客专陕西段全长公里,建设工期5年。中国水电十四局负责西成铁路西安至江油段(陕西境内)站前工程XCZQ-5标段,正线全长。该标段主要包括:罗曲隧道进出口路基工程,隧道工程4座(包括部分得利隧道6330m、福仁山隧道、罗曲隧道、范家咀隧道)总长度,桥梁3座(金水河特大桥、酉水河大桥、金龙河大桥)总长度。福仁山隧道地处秦岭南麓低中山区,隧道范围平均海拔1200m,最高海拔为,洞身地表起伏较大,地表自然坡度为30°~40°,分布有众多基岩“V”形侵蚀谷,多为南北展布,隧道区域山高坡陡,基岩裸露,沟壑纵横,地形复杂,植被茂密。隧道起讫里程为DK159+。进口位于金水河牛角坝,出口位于酉水河宋家堰,最大埋深929m,最小埋深46m,洞身均位于直线以上,隧道以3‰上坡进洞至DK162+900后以8‰下坡出洞。进口位于金水河右岸坡地上,隧道中含有一座斜井,为本标段重点控制隧道。本隧道建筑限界采用《高速铁路设计规范》(TB10621—2009)中规定的限界尺寸,隧道内采用“通隧(2008)0201”中的衬砌内轮廓,轨面有效面积为92m2,隧道内线间距为.曲线上隧道衬砌内轮廓不加宽,施工针对围岩情况采取短进尺、分部开挖和初期支护,二次衬砌及时跟进,以确保施工安全。

2沿线气候条件

本区域为亚热带湿润季风气候,特点是温暖湿润,四季分明,降水量多集中在夏秋季节,常有暴雨灾害,年平均气温℃,极端最高气温℃,极端最低气温℃,年平均降水量,年平均蒸发量,最大积雪厚度4cm。

3工程地质特征

地层岩性

隧道通过的地层主要有第四系全新统(Q4),志留系下统(S1),元古界中上统(Pt2-3)及太古界(Ar)的构造岩类。(1)第四系全新统(Q4)主要包括:膨胀土(Q4d19)、卵石土(Q4d17)、碎石土(Q4d17、p17)、块石土(Q4d18),多为灰黄色,粒径小于或等于2-60mm的约占10%,大于60-100mm的约占25%,大于200mm的约占55%。(2)志留系下统(S1):片岩夹大理岩(S1Sc+Mb),大理岩(S1Mb)、片岩(S1Sc)、主要为灰黄青灰色变晶结构,片状块状构造。(3)元古界中上统(Pt2-3):变粒岩夹大理岩(Pt2-3Gr+Mb),大理岩夹片麻岩(Pt2-3Mb+Mb)。多为灰褐色,浅灰色,风化厚度约为1-10mm。(4)太古界(Ar):片麻岩夹大理岩(Pt2-3Gr+Mb),灰褐色,浅灰色粒状变晶结构,块状结构,风化厚度2-8mm。(5)构造岩类主要包括:碎裂岩,多为青灰色、灰褐色,宽度约20-65m,工程地质较差。

地质构造

福仁山隧道位于商丹断裂带和勉略-巴山弧形断裂构造带夹持的南秦岭构造带,相当于秦岭造山带的蜂腰部位,隧道主体位于佛坪窟窿的南半部,历经多次地质构造活动的影响,其内部组成与构造变形十分复杂。目前已经发现的主要断层包括:f66、f67、f68、f69、f70、f70-1、f71、f71-1、f71-2,其中f66为逆断层,产状N65°-N80°W(65°-N75°),破碎带宽约为10-30m,断层带物质成分为碎裂岩,局部夹断层角砾岩,断裂带内部岩体较为破碎,隧道洞身通过地段为DK159+856~DK159+。f67为逆断层,产状N60°-N80°W(50°-N65°),断裂带宽30~40m,内部成分为断层角砾,洞身通过地段为DK160+281~DK160+318。另外,隧道段还发育两处背斜及一处向斜,背斜核部洞身中心里程为DK165+543~DK169+062,岩体破碎,节理发育,向斜核部未穿过洞身,富水,岩体破碎,节理发育,由于隧道区各地质体的发育时代,构造运动强烈,区域性大断裂贯穿东西,发育数条低序次断裂,岩石节理裂隙较发育,分布较多节理密节带,岩体较破碎-较完整。

不良地质及特殊岩土

(1)隧道范围内不良地质为隧道进口处左侧分布的大理岩岩溶,岩溶现象主要发育在隧道进口左侧金水河右岸的大理岩中,以溶洞形式发育,溶洞直径约1-3m,可见延伸深度大于10m,不完全填充,充填物为角砾及杂砂土。(2)隧道范围内的特殊岩土为膨胀土,具弱-中等膨胀性。

4工程设计情况

针对福仁山隧道地层岩性多样、地质构造复杂、不良地质现象多发的工程地质特点,施工单位在详细的实地勘察和室内研究的基础上,制定了较为科学合理的设计方案:(1)洞口工程采用斜切式洞门,并设置明洞段,出口采用倒斜切式洞口边仰坡设置截水天沟,边坡采用锚网喷支护。(2)洞身工程隧道内部采用“通隧(2008)0201”中的衬砌内轮廓,轨面有效面积为92m2,隧道采用复合式衬砌,初期支护采用喷锚支护设置喷混凝土,锚杆,钢筋网,钢架,二次衬砌等,各衬砌类型预留变形量,特殊地形地质地段对支护 措施 采用管棚,小导管等措施进行了加强。

参考文献:

[1]王毅才.隧道工程[M].北京:人民交通出版社,2013.

[2]兰州铁道学院.隧道工程[M].北京:人民铁道出版社,1977.

[3]张咸恭.工程地质学[M].北京.地质出版社,1983.

[4]高速铁路设计规范(TB10621—2009)[S].2009.

工程地质论文相关 文章 :

1. 工程地质勘探中的钻探技术应用论文

2. 地理地质论文

3. 环境工程地质在城市规划中的作用分析

4. 地质矿产经济发展论文

5. 探析煤矿地质测绘重点及地质因素研究论文

6. 探究当代水工环地质现状及发展趋势论文

学号:20000300056    姓名:刘照标 【嵌牛导读】        量子成像又称为双光子关联成像、强度关联成像、鬼成像等,是利用量子纠缠现象发展起来的一种新型成像技术。由于微观客体的关联具有非局域的性质,可以延伸到很远的距离,在这种纠缠状态下即使分布于空间两个分离点的粒子也表现出相同的性质,如电荷、频率、极化等。         在军事和科学应用需求的牵引下,国内外在可见光、红外波段主被动强度关联遥感成像、微波关联成像雷达的研究方面竞争激烈,同时尝试将其应用于对地观测领域,以突破常规光学遥感和微波遥感的性能局限。         量子雷达是量子度量学的另一个重要研究方向,其本质是将光量子作为光频电磁波微观粒子对目标进行探测,利用它不同于常规雷达电磁波的物理特性,提升对目标的探测性能,同时提高雷达的抗干扰和抗欺能力。量子现象能够大幅度提高传感器灵敏度,促使量子传感器得到优先研发,如磁力计、光电探测器和密度计等。量子雷达比传统雷达的目标能见度更高,且量子旁瓣为射频隐身目标的探测提供了一种新方法。量子雷达具有优越的电子对抗性能,非常适合军事应用,因此受到各国军方的高度重视。 【嵌牛鼻子】 量子成像、量子雷达 一、量子成像的原理和优势         量子成像是基于双光子符合探测恢复待测物体空间信息的一种新型成像技术,其物质基础是纠缠的光子对。产生纠缠光子的方法很多,其中自发参量下转换(SPDC)方法是最常用的一种。自发参量下转换双光子场是一种非经典场,它由单色泵浦光子流(Ar量子激光器)和量子真空噪声对非中心对称的非线性晶体的综合作用,使得每个入射光子以一定概率自发地分裂为能量较低的两个光子,由这些在时间和空间上高度相关的光子对所构成的场就是自发参量下转换双光子场。它具有从泵浦波频率一直到晶格共振频率的宽范围光谱分布。         现有的研究结果表明,光量子的纠缠特性并不是实现量子成像的必要条件,热光源同样可以实现量子成像。但是,由于光场关联形式的差异,热光量子成像的可见度较低且热光量子成像遵循的高斯成像公式与纠缠量子成像公式不同。当物体和成像透镜都在同一个光路中时,纠缠量子成像与两个光路的纵向距离之和有关,而热光量子成像和两个系统的纵向距离之差有关。对于相同的物距,两种量子成像的放大率是相同的,但是成像的位置不同。         量子成像比常规的激光全息成像更方便。但是,量子成像需要的成像时间较长,一般要几秒钟时间,不适于快速成像的场合,而且就目前的技术而言,产生大量的纠缠光子对还有困难,不过随着量子信息技术的发展,这些问题都有望解决,因此量子成像将成为成像领域中的一个重要分支。要在红外波段获得高分辨率图像很难,使用量子成像却能很容易获得成像效果良好的图像,所以量子成像技术将以其高清晰的图像在航空探测、军事侦察、远红外成像等领域发挥重要作用。 二、量子雷达的原理和优势         传统雷达利用电磁波的波动性,通过测量目标回波的幅度、频率、相位、极化等参数来获取目标信息,但由于它们不能详细反映目标信息的空间序列特性,因此探测能力有限。根据电磁波的波粒二象性,如果对其粒子性进行测量,可以获得信号的动量和位移,其中包含了目标信息的空间序列特性。以此作为目标探测的信息载体,将会获得目标状态的大量精准信息,这就是量子雷达的工作机理。凡是采用微波光子进行远程目标探测,利用光子的某些特性来提高其探测、识别和分辨目标能力的电子系统就称之为量子雷达。         量子雷达的探测信号是原子中的电子从一个能级跃迁到另一个能级时辐射的电磁波,它具有特定的状态,一般是指电子的自旋。多个已知自旋状态(相当于信号编码)的电子辐射电磁波,该电磁波经目标反射后被接收机接收。接收机通过分析电子吸收反射波后自旋状态的改变规律,可以获取目标信息。所以,电磁波与电子自旋状态之间的关系及其持续时间很重要,它决定了量子雷达的探测能力和探测距离。 一个典型量子雷达的工作原理图,如图所示。         量子雷达具有常规雷达无法比拟的灵敏性,这是因为信息以量子信息的形式调制在单个光子状态上,接收机识别单个光子的能量模式,而常规雷达的信息是调制在大量光子组成的电磁波上,接收机识别大量光子组成的能量模式,因此量子接收机对信息的感知更灵敏。当量子光特性转换成真空波动时,会影响到电磁场幅度的测量,所以现代大多数传感器的灵敏度都受到标准量子极限的限制。而量子雷达采用纠缠光子时,可以克服标准量子极限限定的相位测量极限,达到海森堡极限,这就是其重要的超灵敏性。         量子雷达的另一个显著优势是其固有的抗干扰性。这来源于光量子的一个奇异特性,即在测量光子的同时往往会改变其量子特性,通过对量子特性的检测可以发现是否受到干扰,这对雷达对抗日益严重的欺式干扰非常有效。         量子雷达未来的工作频段最可能处于微波频段(如X波段),从而继承了微波的许多优点,如微波光子能够穿透云层和雾气,具有全天时、全天候的工作能力,比光学传感器具有更好的穿透性,使导弹制导、海事监测、气象、地面警戒和机场交通导航等成为其潜在的应用领域。 三、量子成像的研究现状         1994年,巴西的Ribeiro等人通过参量下转换的动量纠缠光源,以符合计数的方式观测到第一例双光子干涉条纹,1995年美国马里兰大学史砚华小组也通过参量下转换获得的动量纠缠光源,观察到鬼干涉和衍射,这些工作揭开了量子成像研究的序幕。         2002 年,Rochester大学的Bennink等人巧妙利用一个随机旋转的反射镜反射激光,得到了和量子符合成像类似的结果,虽然没有解释经典光源实现鬼成像的原因,但这项工作却引起了人们的极大关注。         2004年Bennink等人又通过经典相关光重现了物体的衍射图,但在实验中对实验装置做了改变,如成像物体的位置、棱镜设备等,以确定量子纠缠是否是实现鬼成像和鬼干涉实验的必要条件。         上海光机所的程静、韩申生从理论上分析了利用高斯随机分布光源做关联成像,并提出X-Ray光源的实现方案。2004年底,类热光作为光源实现了关联成像的实验。吴令安等人完成了真正热光的符合成像实验。关于经典热光源和量子纠缠光源成像的讨论还在继续。最终会形成统一结论。由于热光场量子成像在现有技术条件下更容易转化为实际技术,因此更引人关注。         量子成像受到国际学术界的广泛重视,据不完全统计,目前世界上已有10 多个著名实验室在开展量子成像理论与技术的研究,欧盟从2001 年起就专门设立了包括12个子课题在内的欧盟量子成像研究计划(QUANTIM项目) ,并于近期又启动了后续研究计划。目的是研究量子纠缠光束的空间性质对光学成像和信息并行处理的影响,并探索利用量子成像技术突破当前成像品质极限的方法,以达到最终的量子极限。美国国家自然科学基金会、美国海军研究局、国家航空和宇宙航行局以及美国国防部的国防先进技术研究计划署等机构均给予量子成像研究大量的资助。2005年,美国国防部组织美国多所国际一流大学,启动了针对国防应用需求、包含量子成像系统及量子成像技术两个层次共8个子课题的量子成像大学联合研究计划(MURI 计划),美国波士顿大学还成立了专门的量子成像实验室。         在上述欧美各国的量子成像研究计划中,强度关联成像都是其中的重要研究方向。2005 年美国马里兰大学的史砚华小组提出了将强度关联成像技术应用于空间对地观测的设想,并获得了美国军方的大力支持。2009 年11 月美国国防部新闻网站又报道了美国陆军装备研究实验室(ARL)开展强度关联遥感成像研究的最新进展。此外,从美国麻省理工学院量子成像课题组的报告及其它相关课题组研究论文中披露的信息来看,除被动式强度关联遥感成像研究外,美国有可能也已经开展了(或即将开展)主动式光学强度关联遥感成像雷达及新概念微波强度关联凝视成像雷达的研究工作。         将量子成像应用于遥感探测领域,可以同时对目标进行探测和识别,并具有成像速度快,抗侦察、抗干扰、抗反辐射导弹能力强的优势,还可以对动、静目标成像,因此具有很好应用前景。 四、量子雷达的研究现状         量子雷达的概念是量子信息理论在遥感探测领域的具体应用,通过对量子不同物理特性的观测和测量,可以构成不同原理和形式的量子雷达。根据系统采用的量子效应的不同,可以把量子雷达分成三种基本类型,即发射非纠缠态光子的量子雷达、发射量子态光并与接收机中的光量子纠缠的量子雷达、发射经典态光但使用量子光探测提升性能的量子雷达。         在量子雷达领域出现的单光子量子雷达采用了非纠缠态光子,工作过程与传统雷达类似,由量子雷达发射机向目标发射单个光子,经过目标反射后被雷达接收机接收并进行测量。这种量子雷达的优点是,当发生的脉冲中包含的光子数目较少时,目标的雷达散射界面被放大,有利于探测小尺寸目标,而且信号几乎不受干扰,效率极高。基于光的纠缠态的量子雷达可以发挥量子雷达的最大优势,发射机向目标辐射纠缠光子对中的一个光子,另一个光子留在雷达系统中,辐射出去的光子经目标反射后被雷达接收机接收,测量光子纠缠态所包含的相关性,可以提高系统的探测性能。 1)干涉量子雷达         干涉量子雷达类似于一个干涉仪,目的是测量两个输出波束的光子数来计算相位延迟。目前研究的测量方法有量子干涉测量法、衰减量子干涉测量法、可分离态测量法、大气量子干涉测量法等。理论研究表明,使用高纠缠态的干涉相位测量可以达到海森伯极限;只有在无衰减的情况下衰减量子干涉测量法才能获得海森伯极限;而对于可分离态法即使没有衰减也无法突破标准量子极限。研究人员仔细研究了大气衰减对量子干涉测量相位误差的影响,结果表明采用NOON状态的基本量子干涉测量法进行远程相位估计可能受到大气衰减的严格限制,单独的NOON态不足以建立实用的干涉测量的量子雷达。         由于大气衰减的影响,NOON状态的使用不足以保证量子雷达的超级灵敏度,因此美国海军研究室(NRL)的开发了一种自适应光学校正方法,在大气的电磁性能发生显著变化时可使超级灵敏度的范围达到5000km。 2)量子照明         量子照明是MTI的发明的一个革命性的远程光子量子传感技术,它提高了光在嘈杂和耗散环境中的光电探测灵敏度。理论上,量子照明不局限于任何特定的频率,可以被量子雷达使用。研究结果表明,纠缠可以提高检测系统的灵敏度,而且在嘈杂和耗散的环境中表现更明显。 3)量子雷达散射界面         在量子信息技术提高常规雷达探测性能的激励下,一些研究者提出了实现量子雷达的方案,并申请了专利。如Lockheed Martin在其专利中提出了一个基于量子纠缠原理的扫描仪概念;专利号为EP1750145的一项欧洲专利描述的量子雷达是“使用纠缠量子的雷达系统和方法”。为验证这些方案和雷达性能的提高,研究人员们作了一系列有益的实验探索。         2012年,美国罗彻斯特大学光学研究所的Mehul Malik等人建立了一个成像系统,利用光子的位置或飞行时间信息对目标进行成像,利用光子的极化检测来发现欺干扰。其基本原理是,干扰者在实施欺干扰时,必然会扰乱成像光子微妙的量子态,从而在极化特性检测时引入误差,根据误差可以判断是非受到干扰。         这个安全成像系统的结构如图所示。HeNe激光器发出一个极化单光子脉冲,经目标反射后,通过干扰滤波器(IF)进入电子增强CCD相机(EMCCD),其中的半波平板(HWP)和极化波束分解器(PBS)用于适当的极化基测量,EMCCD作为单光子检测器可以得到四个极化测量的图像。             图:基于光子极化检测的安全成像系统结构图         联合这四个极化图像可以得到目标的图像,如图所示。图(a)为一个隐身飞机的真实图  像,其中不同颜色的像素点对应于不同的极化;图(b)为受到欺干扰后的成像结果。通过检测光子的极化误差率,成像系统很容易检测到人为干扰的存在与否,如图(a)的平均误差率为,远小于25%的安全限,因此成像结果是安全的,而图(b)的平均误差率高达,表明受到了人为干扰,图像不可信。                     图:基于光子极化检测的安全成像系统的结果         量子的远距离传输一直是影响量子通信和量子雷达发展的关键技术之一,近年来研究人员通过各种试验装置增加量子的传输距离,已由最初的16Km扩展到97Km。研究人员用紫外光激发水晶,制造出纠缠光子,使其穿越了青海湖,达到了前所未有的传输距离,进一步研究光子的远距离传输,达到通信和雷达工作所需要的传输距离仍是今后的研究课题。         美国等军事大国和一些著名的研究结构非常重视量子雷达的研究,如美国国防高级研究局(DARPA)提出了“量子传感器计划(QSP)”;美国海军研究办公室(ONR)近期专门组织了一场研讨会,讨论量子雷达的科学性;美国海军实验室(NRL)的研究发现,即使考虑大气衰减,工作于9GHz的量子雷达理论上也可以提高目标探测能力;荷兰莱顿大学的一个研究小组提出了一种机械装置方案,可利用量子点产生纠缠态的微波光子;西班牙Pais Vasco大学已经开发出多个工作在微波的单光子探测器的理论模型。 五、量子成像的关键技术         作为一类正在探索的全新概念的成像技术,量子成像虽然在突破奈奎斯特采样定理限定的图像获取效率和成像孔径衍射极限的超分辨能力方面的得到了实验验证,并逐渐进入应用实验阶段,但仍有大量的基础性问题需要研究,这些问题包括: 1)基于图像稀疏特性的量子成像的超分辨理论极限 。主、被动量子成像原理方案的超分辨能力已经获得实验验证,并对其机理做了定性解释,但还缺乏一个经过实验考核的定量理论。 2)主动量子成像中的线性无关光源数、目标图像稀疏度和成像分辨率之间的关系 。在量子成像的应用模式中,稀疏阵列发射和接收将会大大降低系统复杂度,提高目标图像的获取速度,其原理演示已经完成,但是还缺乏一个可以将其与MIMO雷达和稀疏阵列天线理论统一起来的完整的理论体系。 3)量子成像中时域-空域探测模式的自由转换和实现方法 。传统的强度关联成像的一个缺点是只能通过时域的多次测量来获取目标图像,在遥感应用中更适合于凝视成像。该技术在更多遥感场合中的应用很大程度上依赖于其时域-空域探测模式的自由转换程度,即可以单点探测/多次采样成像,也可以多点探测/一次采样成像。 4)强干扰环境下量子成像的高效数据图像复原算法、欠采样和临界采样时的图像复原以及探测模式的最优化问题。 5)可直接进行目标识别的量子成像方案 。因为利用目标稀疏先验的量子成像可以直接探测压缩后的目标图像,因此可以将其与目标特征识别结合起来,在目标探测阶段直接进行目标特征识别。 6)量子成像探测灵敏度的量子极限 。在压缩感知中可以直接探测压缩后的图像数据,因此(特别对遥感应用而言)其探测灵敏度的量子极限就是一个需要重新研究的新课题。 六、量子雷达的关键技术 1)量子信息调制         量子信息调制包括量子信道编码、量子信息调制和量子信号发射。其中,量子信息编码又包括电子自旋态辨识和量子信息编码,电子自旋态辨识就是要通过一定的方法产生100%单一极化的自旋状态,目前的方法还不能满足这一要求;量子信息编码的目的是通过量子编码纠正或防止量子信息论中普遍存在的消相干引起的量子错误。量子信息调制就是将电子的自旋与激发出的电磁波特性进行关联(如电磁波的频率和极化形式),实现电子自旋态在电磁波上的调制。由于在解调量子信息时要测量微观粒子的状态,这会引起量子状态的变化,从而模糊原有的调制信息,因此在调制量子信息时必须考虑如何消除量子态的变化引起的调制信息丢失,这也是量子信息调制要解决的关键问题之一。 2)量子信息解调         量子信息解调包括量子信息解调和量子信息解码,其中量子信息解调就是从发射的光子(电磁波)中辨识出电子的自旋态。目前主要是通过光学方法或电学方法来探测自旋极化,其中光学方法包括光致/电致发光、Hanle效应、时间分辨的Faraday旋转和Kerr效应,电学方法是利用铁磁材料和半导体界面的自旋以来的输运性质,比如测量通过不同磁化方向的铁磁电极的电阻差来给出自旋极化度。量子信息解码主要是纠正微观粒子状态变化引起的编码错误。所以,电子自旋态辨识和编码纠错是量子信息解调要解决的关键问题。 3)量子信息处理         量子雷达通过调制、传输、解调所传递的目标信息,最终要通过量子信息处理器提取出来。由于信息载体和传递的信息量均不同于传统雷达,因此在处理内容、处理方法和处理速度上也不同于传统信号处理器,主要取决于量子计算和量子计算机技术的发展。当前的量子信息处理是通过构造量子算法和量子神经网络来获得一定的应用,远不能满足量子雷达的要求。因此,构建新的量子信息处理方法和体系结构是实现量子雷达的一个关键问题。         无论量子雷达的系统结构如何变化,其工作过程都包括量子信息的调制、解调和传输过程,与这些过程有关的量子态特殊性都需要研究,如量子的纠缠特性、相干性、量子微弱能量的接收与处理等。 结 语         量子信息技术是当前科学攻关的主要领域之一,美国、日本、欧洲等国家很早就意识到它的军事和民用价值,不断加大投入,促进理论研究成果向实用技术转化。近几年来,有关量子计算、量子通信、量子雷达等方面的研究论文突然增多,昭示着该领域研究热潮的到来。未来量子信息技术的主要应用领域将瞄准安全信息传输、高速信息处理、武器控制、网络攻击、目标探测以及更深入的思维模拟与攻击等方面。

会计实证研究论文数据处理

1、如果要看一家上市公司的财报,我们先要了解一下上市公司财报的结构。

对看一家上市公司的财报来看,最重要的是第三部分会计数据和财务指标摘要;其次是董事会报告;大部分财报要陈述的内容,这两个章节基本已经涵盖了。如果对上面的数据还不能了解清楚,那么,在重要事项和财务报告中,可以进一步详查,不过,财务报告对大部分人来说相对就比较专业了。

2、从会计数据和财务指标摘要中看什么?

以下这张表是会计数据和财务指标摘要中必备的表,但每家公司披露的这张表不完全相同,但大部分内容上市公司还是一致的。

表一:

表二:

上述这张是《主要会计数据和财务指标》表,我们对重要的项目来一一作个分解。

《主要会计数据和财务指标》,其实披露了三点重要的信息,

1、报告期内的经营状况;

2、报告期内的经营现金流的状况;

3、报告期内的财务状况;

其中,这三点重要信息又以报告期内的经营状况为主。

表中涉及到报告期内的经营状况的数据有:

1、)报告期内的营业收入和上年同期的营业收入,以及本报告期比上年同期增减情况;

大凡分析,必然是由数据与数据之间的比较构成,这才是分析的基础。所以,所有数据的列示都是以报告期与上年同期的比较为主。

这三个数据包含的信息量不多,最主要的信息是,本期营业收比上年同期增长或者下降了多少(%)。

2)归属于上市公司股东的净利润的本期数据、上年同期数据和本报告期比上年同期的增减情况

3)归属于上市公司股东的扣除非经常性损益的本期数据、上年同期数据和本报告期比上年同期的增减变化情况

我为什么要把这两点内容列在一起呢?因为这里有三个概念要先作个解释,是哪三个呢?

净利润、归属于上市公司股东的净利润以及归属于上市公司股东的扣除非经常性损益的净利润。

净利润,是指上市公司合并利润表的净利润。

归属于上市公司股东的净利润,是指合并利润表的净利润,扣除了少数股东损益后,真正归属于上市公司股东的那部分利润。

归属于上市公司股东的扣除非经常性损益的净利润,顾名思义,是指归属于上市公司股东的净利润,再扣除非经常性损益后的那部分利润。

站在分析的视角上,我们重点看第三个归属于上市公司股东扣除非经常性损益的净利润,因为,这块利润才是企业真正做生意赚来的。之所以考察这个指标,是因为企业在经营的过程中,通过经营获得的收入和利润才是可以持续的,而来源于非经常性损益的收益,如政府补贴、出售股权之类业务获得的利润是不可以持续的,今年有,明年就不一定再有,因此,分析时自然不考虑在内。

在分析这个指标的时候,我们还是主要看今年归属于上市公司股东扣除非经常性损益的净利润,比上年同期是增加了还是减少了,增加或减少的百分比(%)是多少,等等。

但是,这个数据就不要象看营业收入一样简单地看了。可以分为以下几种情况:

a   去年盈利,本期亏损,那是转盈为亏,大部分情况下,这样的股票要回避;

b   去年亏损,本期盈利,即扭亏为盈,这样的股票要留意,或许存在咸鱼翻身的机会;

c   本期净利润与去年比,没有大的变化或变动在10%以内,且利润额都在1000万以内;

d  本期净利润与去年同比,没有大的变化或变动在10%以内,但利润额都在1000万以上;

e   本期净利润比去年同期大幅上升超过10%以上;且净利润的增幅超过营业收入的增幅;

f  本期净利润比去年同期大幅上升超过10%以上,但净利润的增幅小于营业收入的增幅;

g   本期净利润比去年同期大幅下降超过10%以上,但营业收入同比却呈现小幅上升;

h   本期净利润比去年同期大幅下降超过10%以上,但营业收入同比降幅更大;

以上各种情况,你基础上可以得出如下的结论:

b,e 可能存在投资的机会;a、c、g 有相当大的风险,并有可能进一步下滑,并通常藏有***的可能;d 这种企业没有什么成长性,如果不是估值低或者高派现,一般不要触碰;f,g,这种企业往往是遇到了较强的竞争对手,开打价格战,并通过价格战获取了一定的营业收入的增长;

表中涉及到报告期内经营现金流情况的指标有

经营活动产生的现金流量净额,这个指标是表明,这家上市公司在报告期内*,通过正常的经营活动,也就我们平时所说的做生意,现金收付后的差额。除此以外的收款与付款均不在这里,如买设备添置固定资产、投资、还银行贷款,买卖土地厂房收付的钱,向银行借款等均不在此,这里仅包括做业务的正常生意的现金收付后的差额。

这个数据我们怎么看呢? 1)看这个数据是正数还是负数,如果是正数,表明是现金净流入,不错;如果是负数,表明是现金净流出,公司在失血的状态,不好;2)那么,如果是正数了,还要看这个正数跟归属于股东的净利润的比较了。如果经营现金流比归属上市公司股东的净利润还大,那也很好;如果是达不到净利润,但超过净利润的50%,也不错,但要排除重资产型企业,如电厂、高速公路、机场、铁路等等,投资这些企业必须经营现金流必须要超过净利润;如果低于净利润的一半,但大于零,要抱以警戒之心,这里,只有高速成长的企业,如营业收入与净利润同比增长超过50%以上的企业,才可以考虑,其他的上市公司,我就建议你可以不考虑了。

表中涉及到报告期内财务状况的指标有:

总资产和归属于上市公司股东的净资产;

我们可以用归属于股东的净资产去除以总资产,在本报告期与上一个报告期作一个比较,掌握两个尺度:1)如果两个数据除出来,都大于50%的,那很OK,财务状况很不错,偿债风险很小;2)看两个数据哪个更大一些,如果本期的大一些,表明财务状况有进一步的改善;如果上期的更大一些,表明本期的财务状况稍差了一些,但无妨;因为归属股东的净资产都超过了总资产的50%;

但是,如果如果达不到50%,你就要小心了,除了金融企业、房地产类企业及一些重资产型企业外,一些情况下,归属股东的净资产占不到总资产的50%以上,表现这个企业的资产负债率过高,要进一步做公司的流动性考察,以免资金链断裂带来的投资损失,这个,我们以后再细说。

财务数据分析 转自【爱股说】

实证论文数据的作用是提供有关论题的客观准确的信息,从而引导作者确定有效的实证分析方法,以及支持论点的有力的、可靠的证据和结论。

看你自己需求,要写实证分析,需要进行以下步骤:1、进行案例的调查、分析。2、发现一个证据,可以证明别人已经提出但的尚未被别人证明过的理论。3、用大样本的数据来证明一种理论。4、进行历史分析或者比较分析。5、研究结论及政策含义。6、论文写作中其他应注意的问题。扩展资料在写论文的时候,实证分析已经成为写作和选题的重点。因为理论创新很难,而实证分析可以体现论文写作过程中付出的工程量,使论文更容易通过。实证分析的内容包括:1.案例的分析调查。可以划分为具有一定创新意义的案例分析,具有现实意义的社会调查和在一个新的领域内做的调查(别人没做过或者很少做过)。如结合自身情况对大学生借贷状况进行的调查,当前有关“三农”问题的调查。2.发现一个证据,可以证明别人已经提出的但尚未被人证明过的理论。如林毅夫2000年发表的文章就检验的是1998年诺贝尔经济学获得者Sen的理论,属于实证分析中的创新。3.用大样本的数据来验证一种理论,或用一种新的方法和理论。虽然同样的数据别人也使用过,但是自己使用的数据更多,周期更广、论证更有效率、更具说服力的情况下,创新价值会比较高。4.进行历史分析或比较分析,收集的资料比别人更全,或发现新的证据、能够提出新的观点,或有第一手的`资料(直接进行外文文献的翻译或主动调查得到的数据),这样的论文实证会更加出彩,具有记忆点。5.研究结论及政策含义大约占论文整体的5%,是根据论文各部分得出结论的总结和总结的自然延伸,一般一两句话就可以写完。6.写作时要注意有自己的观点,注意创新,引用时要注明出处,不能抄袭。

  • 索引序列
  • 研究生论文的数据处理
  • 研究生论文数据处理方法
  • 论文研究过程中的原始数据处理
  • 雷达数据并行处理研究论文
  • 会计实证研究论文数据处理
  • 返回顶部