首页 > 论文发表知识库 > 啤酒厂的检测论文

啤酒厂的检测论文

发布时间:

啤酒厂的检测论文

又不是研究性论文,啥子可行性?全中国啤酒厂多的是

论啤酒的质量标准与啤酒质量 中国酒网 ( 2004-8-21) 1.透明度: 《啤酒》国家标准 GB/T 4927-91规定为:清亮透明,无明显悬浮物和沉淀物。在实际检测中,我们发现无论什么品牌的啤酒,也无论出厂时间的长短,啤酒中都会有一些沉淀物(或悬浮物),仅数量多少的差别。《标准》中“无明显沉淀物”就是一个含糊的词。所谓“无明显”,我们的理解是“不应有肉眼随意就能看见的异物”,企业为了给自己的产品质量辩护,往往对比较明显的沉淀,也认定为“不明显”,因此产生判定误差,作为执法检验部门也没有足够的理由说服。 2.色度: 《标准》要求:8-12度淡色啤酒为-(优级)。现在的啤酒正向着淡爽型方向发展(尤其是南方),消费者对啤酒颜色的要求是浅一些好。为迎合消费者,啤酒厂家将啤酒的色度做得越来越浅,经常检测到色度为左右的啤酒,我们认为不合格,厂家却认为很自豪,因为消费者喜欢。 3.香气、口味: 对香气和口味的鉴定只有专业的评酒师才能做出客观公正的判断,作为检验、执法部门的工作人员对此很难予以正确的评价,除非酒质已变坏到了相当“惊人”的程度。 4.原麦汁浓度: 《标准》中规定为(X+/- )度才符合要求,在实际检测中,若低于(X-)度,企业也认可为不合格,但若高于(X+)度,则企业认为是自己多投入了,厂家的成本上去了,实际上也就是让消费者多得了实惠,若再判定为不合格,厂家觉得太冤,太委屈。设身处地地想想,企业的这些想法也不无道理,作为检验执法部门,我们应当维护《标准》的严肃性,依据《标准》,该判定为不合格的还是判定为不合格,但作为消费者,我们对企业表示充分的理解。 5.总酸: 《标准》中,对 8-12度啤酒规定为 < ,我们在实际检测中感到,这项指标要求太低了,大部分啤酒的总酸都 < ,最高也 <2.2ml/100ml,我们认为,指标放得太松,不利于企业产品质量的提高。 6.保质期: 《标准》中规定:熟啤≥120 d,而实际上,大部分啤酒60天后,口感就有明显变化(老化),但目前仍没有有效地检测方法。 近二十年来,啤酒的产量迅猛增长,客观地说,啤酒的质量也在不断提高,但良萎不齐。应该看到,现在的啤酒检测项目还不够齐全,检测手段还不够完善,作为产品的质量标准也应随着产品质量的不断改进,作相应的调整,以适应时代发展的要求。针对以上存在的问题,对今后《标准》的修订提几点不成熟的建议。 (1) 增加可能危害人民身体健康的项目的检验。例如微生物的厌氧菌、含硫化合物等。 (2)判断指标应尽可能“量”化。例如沉淀物的多少用百分比含量表示,香气、口味是否纯正,用几种典型的成份含量为代表来表示,这样可以避免争议的产生。 (3)指标数值要考虑企业的实际情况,如色度的范围放宽,尤其下限可以适当放开;原麦汁浓度可以确定下限而不固定上限。 (4)随着啤酒生产技术的提高,有些项目的要求应该相应的有所提高,如双乙酸含量应降低一些,大部分啤酒的检测结果都在 -/l(有波动);总酸含量也应适当降低。 (5)啤酒的保质期不仅仅要从时间上予以限制,还应从某些成份的变化上加以限制,如啤酒的老化程度,现在普遍认为随着老化的加重,反一2一壬烯醛的含量有所提高,是否可以用它作代表,用作判断老化程度的依据。 总之,产品标准合理与否,将直接关系到企业的经济利益和消费者的身心健康。我们希望全国的啤酒企业、检验机构以及执法部门共同关心啤酒标准的制订和执行

☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★啤酒检测报告中的检测项有以下十八项:一、标签二、净含量允许短额三、外观(透明度和浊度)四、泡沫(形态、泡特性)五、香气和口味六、酒精度七、原麦汁浓度八、色度九、总酸十、二氧化碳(质量分数)%十一、双乙酰 MG/L十二、铅(Pb)十三、菌落总数十四、大肠菌群十五、沙门氏菌十六、志贺氏菌十七、金黄色葡萄球菌十八、甲醛MG/L☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★☆★

时光荏苒,岁月穿梭,转眼间**年在紧张和忙碌中过去了,回顾一年来,我作为公司质量部一名检验员,有很多提高,可是也存在一些不足之处。在质量部一年来,在领导的关心指导下,在同事的支持帮忙下,我不但勤奋踏实地完成了本职工作,并且顺利完成了领导交办的各项临时任务,自身在各方面都有所提升。为了更好地做好今后的工作,总结经验,吸取教训,本人一年的工作总结为以下几项:1、努力学习,全面学习新知识检验工作是一个特殊的岗位,它要求永无止境的学习新的知识和提高技能,为到达这一要求,所以我们务必要注重学习(学习新知识,学习新的工艺,学习新的图纸等)2、努力工作,完成上方各项任务经过半年以来,应对非专业学习机械加工质量工作,工作起来难度比较大,可是我用心的应对困难的挑战,我完成了领导给予的任务。3、日常生活,工作态度用心端正一年以来,我能自觉遵守公司的各项规章制度,在工作中,不迟到、不早退、有事主动请假,尊重领导、团结同事,待人真诚,任劳任怨。努力做到了:一是按规章自律。领导规定不准做的我绝对不做,领导要求到达的我争取到达,不违章、违纪,不犯规、犯法,做个称职的质检员。二是用制度自律。我严格按公司制定的各项制度办事。在质量方面,坚决做不该用的坚决不用,不搞人情主义。对自我分内的工作也能用心对待,努力完成,做到既不越位,又要到位。在同部门其他同事的工作协调上,做到互相理解、互帮互学、真诚相待,建立了友谊,也获得了许多有益的启示。我深知成绩的背后有我们质量部门全体人员的共同努力和辛勤的汗水。今后,我仍然会以平常之心对待不平常的事,勇于进取,一如既往地做好每一件事情。4、存在的主要问题回顾检查自身存在的问题,虽能敬业爱岗、用心主动开展工作,取得了一些成绩,但仍然有许多需要不断的改善和完善的地方,我一向在努力,并且力求做好。在工作中由于专业知识较少,经验不足,对待一些问题的解决方法过于单纯,工作方法过于简单;看待问题有时比较片面,以点盖面,在一些问题的处理上显得还不够冷静。在完成领导交办的任务的基础上,发挥自身优势,继续加强专业知识的学习,进一步提高各项检验技能。5、下一年的工作规划在新的一年里,我决心认真提高业务、工作水平,贡献自我应贡献的力量。在下一步的工作中,我要虚心向其他同行和同事学习工作经验,借鉴好的工作方法;同时在业余时光努力学习业务理论知识,扩大猎取知识的范围,不断提高自身的业务素质和水平,使自我的全面素质再有一个新的提高,以适应公司的发展和社会的需要。要进一步强化敬业精神,增强职责意识,提高完成工作的标准。我想我应努力做到:第一,根据领导要求,加强学习,技术掌握成熟;第二,拓宽专业知识面,参加各类检验员资格培训和考试,尽快使自我成为一名合格的质检员;第三,认真学习执行《机械加工质量控制体系》,工作任劳任怨,理解公司安排的常规和临时任务,并能认真及时地完成;第四,对检验仪器要正确操作,做到及时用及时清理、及时登记,做好日常维护工作;第五,热爱本职工作,继续学习有关质量知识。总之,心态决定状态,状态决定成败!对公司要有职责心,对社会要有爱心,对工作要有恒心,对同事要有热心,对自我要有信心!做的自我!

啤酒品质检测论文

雪花啤酒暑期实践论文:摘要:今年暑假为了配合学校要求,以及所学专业的需要,我来到了华润雪花啤酒(中国)有限公司在我县投资建设的一个大型啤酒厂进行为期两周的实践,在此期间了解啤酒厂的生产情况,与本专业有关的各种知识,厂里工人的工作情况等等。第一次亲身感受了所学知识与实际的应用。为今后毕业工作奠定了基础!关键词:社会 发展史 啤酒 工艺流程 机器设备实践地点:华润雪花啤酒(中国)有限公司 长春分公司实践时间:——实践目的:做为一名在校生,报着服务社会,贴近社会,深入社会的心态投身到社会实践中去,发现自身的不足,开拓了视野,增长了才干,进一步明确了我们青年学生的成材之路与肩负的历史使命。不断的锻炼自己,塑造自己为今后走出校门,踏进社会创造良好的条件。我以“善用专业知识,增加社会经验,提高实践能力,丰富暑假生活”为宗旨,利用假期参加有意义的社会实践活动,接触社会,了解社会,从社会实践中检验自我。这次的社会实践收获不少。现在由我为你举例:一.在社会上要善于与别人沟通。经过一段时间的实习让我认识更多的人。如何与别人沟通好,这门技术是需要长期的练习。以前工作的机会不多,使我与别人对话时不会应变,会使谈话时有冷场,这是很尴尬的。在啤酒厂工作时,与别人谈话的时候变多了。与同事之间的沟通,感觉到了人在社会中都会融入社会这个团体中,人与人之间合力去做事,使其做事的过程中更加融洽,更事半功倍。别人给你的意见,你要听取、耐心、虚心地接受。二.在社会中要有自信。自信不是麻木的自夸,而是对自己的能力做出肯定。经历了种种,明白了自信的重要性。你没有社会工作经验没有关系。重要的是你的能力不比别人差。社会工作经验也是积累出来的,没有第一次又何来第二、第三次呢?有自信使你更有活力更有精神。三.在社会中要克服自己胆怯的心态。开始放假的时候,知道要打暑期工时,自己就害怕了。自己觉得困难挺多的,自己的社会经验缺乏,学历不足等种种原因使自己觉得很渺小,自己懦弱就这样表露出来。几次的尝试就是为克服自己内心的恐惧。如工作的领班所说的“在社会中你要学会厚脸皮,不怕别人的态度如何的恶劣,也要轻松应付,大胆与人对话,工作时间长了你自然就不怕了。”其实有谁一生下来就什么都会的,小时候天不怕地不怕,尝试过吃了亏就害怕,当你克服心理的障碍,那一切都变得容易解决了。战胜自我,只有征服自己才能征服世界。有勇气面对是关键,如某个名人所说:“勇气通往天堂,怯懦通往地狱。”四.工作中不断地丰富知识。知识犹如人体血液。人缺少了血液,身体就会衰弱,人缺少了知识,头脑就要枯竭。我工作中也体会到,因为啤酒制作的相关知识在课堂上都有听老师介绍过。通过这次实践让我更加全面的了解了它的制作流程!增添了不少专业知识!华润雪花啤酒对大家而言都不陌生,包括我自己,虽然我并不喜欢喝酒,但如果非要我选的话,我会选择喝雪花啤酒——它味感纯正,价格合理,是老百姓日常不可缺少的良品。但是我对于此次调研活动冲满兴趣的主要原因,首先是因为我本身所学专业的缘故,其次是我对啤酒产业本身的好奇心。下面介绍一下我们的啤酒厂的历史。华润啤酒(中国)有限公司(China Resources Breweries Co., Ltd.)成立于1994年,2004年更名为华润雪花啤酒(中国)有限公司。是一家生产、经营啤酒、饮料的外商独资企业。管理本部设立于中国北京。华润雪花啤酒(中国)有限公司背后的两大股东分别是华润创业有限公司和SABMiller国际酿酒集团。华润创业有限公司是香港上市公司,并入选恒生指数成份股,熟知中国本土文化,具有在中国大陆投资和运营企业的经验,具有丰富的中国大陆企业改造和管理经验,曾获得“亚洲管理素质最佳企业”荣誉。 SABMiller国际酿酒集团在伦敦和约翰内斯堡两地上市,拥有一百多年的啤酒发展历史及先进的啤酒酿造技术,是全球第二大酿造集团。1994年至今,华润雪花啤酒(中国)有限公司凭借雄厚的资金、先进的技术和专业化的管理取得了长足的发展,旗下已拥有36个生产基地,员工20000余名,产能达到560万千升。 而今,在群雄共舞的中国啤酒市场上,畅想成长的华润雪花啤酒(中国)有限公司将继续秉承“不断满足消费者需求,不断创造价值回报社会、回报股东、回报员工”的理念更加充满信心地笑迎明天。我看到,华润雪花啤酒公司在质量上做足了功夫--国家只有40多项质量指标的,华润雪花啤酒的指标则高达140多项,这绝对不是给自己增加无谓的负担,而是为了给消费者奉献更高质量的产品。我更看到,为了保证一瓶啤酒的质量,华润雪花啤酒公司早在从原材料生长就开始进行严密的监控,当然,我们也看到,华润雪花啤酒在生产过程中先进的酿造技艺。华润雪花啤酒为什么能在过去10多年里迅速成长为中国啤酒行业的销售冠军,并且呈现更加快的发展速度?在并购逐渐减少的日子里,华润雪花啤酒在产品质量上的优势更是显露无疑,对于一家负责任的企业,“质量是生命力”绝对不是老套的说词,华润雪花啤酒对于质量的管控,恰恰像维护企业生命般的严谨。啤酒的整个生产流程,要经过以下几道工序:(一) 制麦工序通过水和空气使大麦发芽之后再将其烘干,控制其生长,然后去根,制成麦芽。(二) 糖化工序糊化锅:首先将一部分麦芽、大米、玉米及淀粉等辅料放入糊化锅中煮沸。糖化槽:往剩余的麦芽中加入适当的温水,并加入在糊化锅中煮沸过的辅料。此时,液体中的淀粉将转变成麦芽糖。麦汁过滤槽:将糖化槽中的原浆过滤后,即得到透明的麦汁(糖浆)。煮沸锅:向麦汁中加入啤酒花并煮沸,散发出啤酒特有的芳香与苦味。(三) 发酵与成熟工序发酵罐·成熟罐:在冷却的麦汁中加入啤酒酵母使其发酵。麦汁中的糖分分解为酒精和二氧化碳,大约一星期后,即可生成"嫩啤酒",然后再经过几十天使其成熟。(四) 过滤工序啤酒过滤机:将成熟的啤酒过滤后,即得到琥珀色的生啤酒。(五) 瓶、罐装工序装瓶、装罐机:酿造好的啤酒先被装到啤酒瓶或啤酒罐里。然后经过目测和液体检验机等严格的检查后,再被装到啤酒箱里出厂。这其中最主要的是酿造,而啤酒的酿造,最主要又分为两步:糖化和发酵。糖化就是把原料淀粉变成糖,发酵就是把糖变成酒。啤酒的定义主要以麦芽为主要原料。大麦变成麦芽的过程叫制麦。啤酒生产是从糖化开始,即将原料中淀粉通过温度、时间等控制转化为糖,然后开始发酵。而发酵一般在20到30天左右的时间,不同的产品发酵的时间不同,同类产品不同类别发酵的时间也不同,雪花有一套严密的控制体系,来根据不同的产品寻找最佳的发酵时间。对发酵要管理如此精密的原因是啤酒的变化比较多,比如,有些酒经常能感觉到一股较浓的酸味,这是发酸的原因。洗瓶机:洗净回收的啤酒瓶。空瓶检验机:极其细小的伤痕也不会放过。感官检查:在啤酒公司,每天新酿制的啤酒,都由专门的负责人员进行实际品尝。只有在确保其品质后,我们才能满怀自信地将鲜美可口的啤酒呈送给您包装工序。听装啤酒的包装工艺比瓶装和桶装更简单,更易控制。一条自动化听装线的主要设备由卸垛机、罐酒-卷封机、杀菌机、装箱机/封箱机组成,灌装速度可达到1000cpm,与听子厂的制罐不相上下。啤酒罐装的工艺流程为:卸垛机把码层的空罐从塑料托盘上卸下来,推到塑质链板上,进入洗涤机用80oC热水冲洗,淋干,达到无菌。然后采用CO2等压灌装,利用二氧化碳置换罐内空气,罐装后,喷二氧化碳引沫到罐口,迅速封盖。利用自动定量仪检测液位,之后是巴氏杀菌(喷淋灭菌)。灌装后的听子被风干机吹干,然后由喷码机在罐底喷上生产时间。根据包装形式,采用不同装箱机:单片模切纸板是一种裹包型,听子压到纸板的一个大面上,机械杆依次将另一大面和两侧面抬起裹合,热溶胶快速粘结制造者接缝和摇盖。裹包型在国内啤酒厂广泛使用,由德国Kisters公司提供。还有一种KnockDown(制造者接缝在纸箱厂粘好的成型箱),装箱机的吸盘将大面吸附成中空,机械杆向内推入听子,然后粘合,这种装箱方式效率很高,国外普遍采用。裹包型装箱机也能包装带纸托架的热塑膜听装箱,此时装箱机需要配备一套PE膜分切、裹包系统和热收缩炉。如果PE膜表面有印刷,则需要配置光电眼装置。经过自动装箱粘合后,听箱一般不再使用OPP封箱带。典型的355ml听装为24罐,也有18和12罐装,主要以消费者整箱购买的习惯而定。实习是每一个大学毕业生必须拥有的一段经历,他使我们在实践中了解社会,让我们学到了很多在课堂上根本就学不到的知识,也打开了视野,长了见识,为我们以后进一步走向社会打下坚实的基础,实习是我们把学到的理论知识应用在实践中的一次尝试。我想,作为一名即将毕业的大学生,建立自身的十年发展计划已迫在眉睫,不是吗?信奉在哈佛广为流传的一句话:If you can dream it,you can make it!最后衷心感谢华润啤酒厂提供我实习的机会,以及厂里工人的无微不至的帮助!参考文献:《啤酒酿造技术》《食品包装技术》《微生物工程技术原理》

啤酒的好坏要看诸多方面,水,麦芽和啤酒花,啤酒花就不用说了,水和麦芽不同的啤酒会不同,好的啤酒要用纯净水或矿泉水,麦芽要用精制麦芽,在生产过程中也全是无菌处理,啤酒的颜色属浓茶色为上佳,泡沫细腻挂杯为优.

Abstract: The main raw materials for brewing (酿造)beer are barley malts, hops and water, beer contains carbon dioxide, and is a beverage with low alcohol and rich nutrition contents, it is produced after saccharification and fermentation etc., article sets out to conduct preliminary understanding of the whole process, as from the treatment of beer's raw materials through to the final bottling and despatch from the factory, and put forward my own suggestions on some areas that are waiting to be words: Beer fermentation Preparation of wort Filtering Bottling Retrieve

1.透明度:《啤酒》国家标准GB/T4927-91规定为:清亮透明,无明显悬浮物和沉淀物。在实际检测中,我们发现无论什么品牌的啤酒,也无论出厂时间的长短,啤酒中都会有一些沉淀物(或悬浮物),仅数量多少的差别。《标准》中“无明显沉淀物”就是一个含糊的词。所谓“无明显”,我们的理解是“不应有肉眼随意就能看见的异物”,企业为了给自己的产品质量辩护,往往对比较明显的沉淀,也认定为“不明显”,因此产生判定误差,作为执法检验部门也没有足够的理由说服。2.色度:《标准》要求:8-12度淡色啤酒为-(优级)。现在的啤酒正向着淡爽型方向发展(尤其是南方),消费者对啤酒颜色的要求是浅一些好。为迎合消费者,啤酒厂家将啤酒的色度做得越来越浅,经常检测到色度为左右的啤酒,我们认为不合格,厂家却认为很自豪,因为消费者喜欢。3.香气、口味:对香气和口味的鉴定只有专业的评酒师才能做出客观公正的判断,作为检验、执法部门的工作人员对此很难予以正确的评价,除非酒质已变坏到了相当“惊人”的程度。4.原麦汁浓度:《标准》中规定为(X+/)度才符合要求,在实际检测中,若低于(X-)度,企业也认可为不合格,但若高于(X+)度,则企业认为是自己多投入了,厂家的成本上去了,实际上也就是让消费者多得了实惠,若再判定为不合格,厂家觉得太冤,太委屈。设身处地地想想,企业的这些想法也不无道理,作为检验执法部门,我们应当维护《标准》的严肃性,依据《标准》,该判定为不合格的还是判定为不合格,但作为消费者,我们对企业表示充分的理解。5.总酸:《标准》中,对8-12度啤酒规定为<,我们在实际检测中感到,这项指标要求太低了,大部分啤酒的总酸都<,最高也<2.2ml/100ml,我们认为,指标放得太松,不利于企业产品质量的提高。6.保质期:《标准》中规定:熟啤≥120d,而实际上,大部分啤酒60天后,口感就有明显变化(老化),但目前仍没有有效地检测方法。近二十年来,啤酒的产量迅猛增长,客观地说,啤酒的质量也在不断提高,但良萎不齐。应该看到,现在的啤酒检测项目还不够齐全,检测手段还不够完善,作为产品的质量标准也应随着产品质量的不断改进,作相应的调整,以适应时代发展的要求。针对以上存在的问题,对今后《标准》的修订提几点不成熟的建议。(1)增加可能危害人民身体健康的项目的检验。例如微生物的厌氧菌、含硫化合物等。(2)判断指标应尽可能“量”化。例如沉淀物的多少用百分比含量表示,香气、口味是否纯正,用几种典型的成份含量为代表来表示,这样可以避免争议的产生。(3)指标数值要考虑企业的实际情况,如色度的范围放宽,尤其下限可以适当放开;原麦汁浓度可以确定下限而不固定上限。(4)随着啤酒生产技术的提高,有些项目的要求应该相应的有所提高,如双乙酸含量应降低一些,大部分啤酒的检测结果都在-/l(有波动);总酸含量也应适当降低。(5)啤酒的保质期不仅仅要从时间上予以限制,还应从某些成份的变化上加以限制,如啤酒的老化程度,现在普遍认为随着老化的加重,反一2一壬烯醛的含量有所提高,是否可以用它作代表,用作判断老化程度的依据。

啤酒检测与分析论文题目

药学毕业论文开题报告篇3 题 目 名 称: 番泻叶对小鼠尿量的影响 研究现状: 一、普鲁兰酶 普鲁兰酶(Pullulanase,. 2. 1. 41)是一种能够专一性切开支链淀粉分支点中的α糖苷键,从而剪下整个侧枝,形成直链淀粉的脱支酶。普鲁兰酶还可以分解普鲁兰多糖,普鲁兰酶来源于微生物,R-酶则来源于植物。普鲁兰酶最初是由Bender和Wallenfels于1961年通过产气气杆菌Aerobacter. aerogenes}(典型菌为肺炎克雷伯氏杆)发酵获得,他们报道了该酶良好的酶学性能。之后,各国的科研人员经过广泛深入研究,从不同的地区、微生物中获得该酶,掀起了开发普鲁兰酶的高潮。 在淀粉加工工业中,α淀粉酶最为常用,它的功能是水解淀粉的α-1,4糖苷键,单独用它时,产物中含有大量分支结构的糊精,其中就含有大量的α-1,6糖苷键。假如不把淀粉的α-1,6糖苷键彻底分解的话,势必会造成很大的浪费。自然界中,存在有能分解淀粉的α-1,6糖苷键的酶,通称为解支酶。如寡α-1,6葡萄糖苷酶( , Oligo-l,6-glucosidase ),普鲁兰酶( ),异淀粉酶( , Isoamylose ),支链淀粉一6-葡聚糖酶( ),其中普鲁兰酶要求的底物分子结构最小,故而可以将最小单位的支链分解,导致可以最大限度的利用淀粉,所以在淀粉加工工业中有着重要的用途和良好的市场前景。故而许多国家都争相开发,但是到现在为止,只有丹麦的NOVO公司具有普鲁兰酶的生产能力。我国只有向其进口,但是其价格昂贵,限制了普鲁兰酶在我国的应用。其实,我国早在七十年代就开发普鲁兰酶的产生菌,但是该菌的酶学性质不适合生产,至今我国在普鲁兰酶的国产化方面还没有报道。 在淀粉的加工行业上,对普鲁兰酶的酶学性质的要求是耐酸耐热,其原因是因为通常使用外加酶化法,由于所用酶类的限制,普鲁兰酶的添加可以在两步反应的任何一步,但必须满足上述的反应的条件。因此所开发的普鲁兰酶的酶学性质必须满足现有的酶法水解制糖的条件,也就是耐酸耐热。 二、普鲁兰酶的研究现状 1.产普鲁兰酶的微生物 普鲁兰酶最初是由Bender和Wallenfels于1961年通过产气杆菌(Aerobacter aerogenes)发酵获得。他们报道了该酶的良好性能之后,各国的科研人员经过广泛深入的研究,从不同的地区的微生物中获得该酶,掀起了开发普鲁兰酶的高潮。但是迄今为止,尽管发现许多微生物能够产普鲁兰酶,但是由于当今工业生产条件(酸性,温度),大多数微生物所产的普鲁兰酶并无商业价值。以下便介绍一下普鲁兰酶的生产菌种。 蜡状芽抱杆菌覃状变种(Bacillus cereus ) 由日本的ToshiyukiTakasaki于1975年发现。该菌同时产生两种淀粉酶:β-淀粉酶和普鲁兰酶。最佳作用条件为pH6~,温度50℃,最大转化率(淀粉水解产生麦芽糖)大约为95%.酶学研究中发现,此酶在pH5,温度60℃依然保持大部分活性,该菌的营养细胞呈棒杆状,聚集成长短不等紊乱链状,无运动性,格兰氏阳性,产芽抱时细胞无明显膨胀。该菌最适生长温度30℃~37℃ ,最高生长温度在41℃~45℃,可以利用葡萄糖,甘露糖,麦芽糖,海藻糖,淀粉和糖原。 嗜酸性分解普鲁兰多糖芽抱杆菌() 上世纪八十年代初,丹麦Novo公司获得此菌,此菌所生产的普鲁兰酶耐热 (60℃),耐酸()。该公司经过投入巨资开发研究,1983年Nov。公司在日本和欧洲市场同时商业化销售,商品名Prornozyme。如今,它是应用最广,产量最大的普鲁兰酶。呈棒状,深层发酵几小时后,可观察到类原生质体的膨胀细胞,较稳定,饱子呈圆柱体或椭圆体。格兰氏反应阳性,37℃生长良好,45℃以上和pI-1高于以上不长,在以普鲁兰糖为碳源的培养基(( ~)上生长良好。 枯草芽饱杆菌(Bacillus subtilis) 1986年,日本的Yushiyuki Takasaki报道了一株能产生耐热耐酸普鲁兰酶的菌种,被命名为Bacillus subtilis TU。此菌种所产生的酶为普鲁兰酶和淀粉酶的混合物,可水解淀粉为麦芽三糖和麦芽搪.水解普鲁兰糖为麦芽三糖,其中普鲁兰酶最佳作用pH为~,但在时亦有约50%的酶活,此普鲁兰酶最佳作用温度60℃。 耐热产硫梭菌(Clostridum Themosulfurogenes) 1987年.德国的等报道了一株能同时产a淀粉酶、普鲁兰酶和葡萄糖淀粉酶的菌种:耐热产硫梭菌。该菌种所产普鲁兰酶有较广的温度适应范围(40℃~85℃),在~有较高的活性,在如此广的范围内都有较强活力无疑将扩大该普鲁兰酶的应用领域. Bacillusnaganoensis,Bacillus deramificans, 上世纪九十年代,Deweer发现了普鲁兰酶产生菌Bacillus naganoensis;Tomimura筛选出Bacillus deramifrcans。这两株菌所产的普鲁兰酶的酶学性质与Bacillus. Acidopullulyticus的酶学性质相似。这两株菌都是中度嗜酸菌,在以上就不生长,温度超过45℃以上同样也不生长。这两株普鲁兰酶产生菌的发现,进一步拓宽了普鲁兰酶的应用。 产普鲁兰酶的高温菌菌种 自上世纪八十年代以来,人们逐渐意识到在通常的自然条件下,很难筛选得到极端耐热的普鲁兰酶生产菌种,于是各国的科学家便把目光转移到温泉嗜高温细菌的筛选,而且现在已经取得较多的成果。Bacillus如vorcaldarius所产普鲁兰酶的最适温度和pH分别是75~85℃, , Thermotoga maritime的最适温度和pH分别是90℃, , Thermurs caldopHilus的最适温度和pH分别是75℃,, Fenidobacterion pernnavoran最适温度和pH分别是80~85℃, 2.普鲁兰酶的分子结构 至今为止,许多普鲁兰酶的基因己经被克隆,但是还没有见到任何有关普鲁兰酶结构的报道,但是在根据序列相似性对糖普键水解酶的分类,普鲁兰酶属于第13家族,α淀粉酶家族,这个家族中包含了30多种酶,可以分为水解酶,转移酶。异构酶三大类。这些酶能够水解和合成α~,α~,α~,α~,α~,α~糖苷键。其中很多酶的结构已经被报道,它们都采取了(β/α)8的结构,通过生物信息学的研究,这个家族的蛋白都有一个共同的结构,酶的活性中心都是(β/α)8折叠筒的结构,命名为结构域A。第13家族的大多数酶还具有结构域B,它是位于(β/α)8折叠筒中,第三个β片层与第三个α螺旋之间的一段序列,其特点是结构和长度差异较大,推测其功能是与底物的结合有关。在紧接着(β/α)8折叠筒后,还有C结构域,紧接C结构域,部分家族成员还有结构域D。 3.普鲁兰酶的应用 普鲁兰酶,在食品工业中是一种用途广泛的酶制剂和加工助剂。它能专一性分解淀粉中的支链淀粉和糖原分子及其衍生的低聚糖分支中的α~l, 6糖苷键,使分支结构断裂,形成长短不一的直链淀粉。因此,将该酶与 其它 淀粉酶配合使用时,可使淀粉糖化完全。近年来,普鲁兰酶己作为淀粉酶类中的一个新酶种,应用于淀粉为原料的食品等工业部门,在食品工业中有如下几方面的作用: 单独使用普鲁兰酶,使支链淀粉变为直链淀粉 直链淀粉具有凝结成块,易形成结构稳定的凝胶的特性,因此,可作为强韧的食品包装薄膜。这种薄膜对氧和油脂有良好的隔绝性,又因涂布开展性好,故适合于作为食品的保护层。它还适合于淀粉软糖制造,也可用作果酱增稠剂,用于装油脂含量高的食品,以防止油的渗出以及肉食品加工。近年来在食品工业中提倡使用可被生物降解的薄膜,直链淀粉在这些方面具有较大的发展前途。豆类直链淀粉含量较高,因此绿豆淀粉制成的粉丝韧性比其它淀粉好,如果用普鲁兰酶处理谷物淀粉,再制成直链淀粉后,可以制成高质量的粉丝。一般谷物淀粉中,直链淀粉含量仅占20%,支链淀粉含量约为80%。工业上每生产1吨直链淀粉就有4吨副产品的支链淀粉。美国虽然通过遗传育种的方法.得到含直链淀粉60%玉米新品种,但不大适于大量生产。国外已采用普鲁兰酶改变淀粉结构,可使支链淀粉变为直链淀粉。据报道,采用此法收率可达100%.制造直链淀粉的方法为,先采用普鲁兰酶分解经液化的分支部分,使其转变为直链淀粉,并以丁醇或缓慢冷却法沉淀淀粉。再回收含少量水分的晶型沉淀物,最后通过低温喷雾干燥法制成粉状的直链淀粉。 普鲁兰酶与β~淀粉酶配合使用生产麦芽搪 饴糖是我国传统的淀粉糖产品,其中所含部分麦芽糖,广泛用于糖果、糕点等食品工业。目前生产方法是以α~淀粉酶进行液化,再用β~淀粉酶水解支链淀粉,这样只能水解侧链部分。接近交叉地位的α~糖苷键时,水解反应停止。但如果使用普鲁兰酶共同水解,便能使分支断裂,提高淀粉酶水解程度,降低了β极限糊精的含量,大大提高了麦芽糖的产率,有利于生产麦芽搪浆。目前对加普鲁兰酶进行糖化己作了较大规模的试验。 试验条件为。每批投料量约为900公斤碎米,粉浆浓度为15~16Be°数皮用量(对碎米计),β~淀粉酶活性2,000单位/克以上,;普鲁兰酶活性45,000~55,0 00单位/克,系由产气气杆菌生产,每批用量为1公斤。试验结果表明,加入普鲁兰酶糖化的试验糖与对照糖品相比,还原糖平均增加,麦芽糖含量平均增加了,糊精含量平均减少了高浓度麦芽糖浆较之高浓度葡萄搪浆,具有不易结晶,吸湿性小的特点,所以高浓度麦芽糖浆在食品工业中有着广泛的用途。采用普鲁兰酶与p一淀粉酶配合使用,成本低廉,麦芽糖收率达到70%左右,其至更高。 用于啤酒外加酶法糖化 啤酒生产中麦芽,既是酿造啤酒的主要原料,也为酿造过程提供了丰富的酶源。在啤酒酿造的糖化过程中,麦芽中分解淀粉的主要酶是α~淀粉酶、β~淀粉酶和分解淀粉α~1. 6糖瞥键的R一酶(植物普鲁兰酶或植物茁霉多糖酶)。β~淀粉酶与另两种淀粉酶协同作用,可使淀粉分解成麦芽糖(也包括少量的麦芽三糖和极少量的葡萄糖)和低分子糊精。使麦芽汁有比较理想的糖类组成。在工业生产中为了节约麦芽用量,采用所谓外加酶法糖化,即在减少麦芽用量的前提下,增加淀粉质辅助原料的比率,并加入适当种类的酶制剂进行搪化。要使大麦及其它辅助原料糖化完全,需要外加a一淀粉酶和分解α~糖苷键的普鲁兰酶制剂等。单独使用a一淀粉酶时产生麦芽糖和麦芽三搪是很不完全的。假如分解淀粉α~糖苷键的酶活性不足,淀粉分解就不完全,其结果是可发酵性糖含量低,制成的啤酒发酵度达不到要求。若采用能分解α~和α~糖苷键的糖化型淀粉酶,则其反应产物为葡萄糖,容易使酒味淡薄。采用普鲁兰酶与α~淀粉酶协同,效果良好,其分解产物主要是麦芽糖和少量的麦芽多糖。采用外加酶法糖化时,加入酶制剂的用量为:淀粉酶6~7单位/克大麦及大米:蛋白酶,60-80单位/克,并配合以菠萝蛋白酶10ppm,普鲁兰酶50单位/克大麦。以上三种酶制剂均添加于糖化或酒化开始。 总之,普鲁兰酶无论作为酶制剂和食品工业的加工助剂均有广阔的发展前途。 研究目的和意义: 酶制剂工业是上世纪七十年代就己经形成的一个重要的产业,目前世界酶制剂总产值达100亿美元,我国的产值约为100亿人民币,并且随着其应用领域的不断扩大以及新酶种的开发,这一市场正在迅猛发展。但是全球酶制剂产业几乎被几家外国公司所垄断,其中丹麦的NOVO公司几乎占全球总销售额的一半。本研究对普鲁兰酶的开发,对酶制剂产业的发展有重要的意义。 其次我国自从七十年代开始便对普鲁兰酶进行研究开发,但是所开发得到的普鲁兰酶,既不耐热也不耐酸,这就使其在工业化应用中受到了局限。为了改变我国对进口产品的依赖,填补我国这一领域的空白,寻找一条国产化的道路,本研究的目的是利用自然微生物资源,普鲁兰酶,提高我国淀粉原料的利用率,从而提高整个淀粉加工行业的生产率,这对我国淀粉加工产业的意义是不言而喻的。 研究内容(内容、结构框架以及重点、难点): 一.普鲁兰酶产生菌的筛选 (1)样品的采集; (2)菌种初筛; (3)菌种复筛; (4)菌种保藏方法; (5)酶活力测定方法的建立。 二.产普鲁兰酶菌株的产酶条件的研究 (1)碳源,氮源对发酵产酶的影响; (2)初始PH对发酵产酶的影响; (3)接种量对发酵产酶的影响; (4)发酵温度对产酶的影响; (5)金属离子对产酶的影响。 重点或关键技术: (1)纯菌株的分离; (2)菌株的鉴定方法的选择。 研究方法、手段: 一.普鲁兰酶产生菌的筛选 (1)样品的采集:选择适合产生的地点(面粉厂.菜地.果园等)采集土样 (2)菌种初筛:在采集的土样用无菌水稀释后,在含有淀粉类的培养基中做平板涂步, 37℃培养48h后,用碘液进行显色反应,将有淀粉酶产生的菌落接于斜面中保存。 (3)菌种复筛:将前期分离的能产生淀粉酶的菌株涂步于普鲁兰糖平板上,37℃培养48h后用95%乙醇进行透明圈实验。有透明圈产生说明菌株产生普鲁兰酶,将产生透明圈的菌落挑于斜面培养基培养。 (4)菌种保藏方法: 采用4℃低温保藏。 (5)酶活力测定方法的建立:采用发酵培养液经过离心后利用DNS显色法 520nm测定吸光值,测定标准葡萄糖标准曲线,利用标准曲线计算普鲁兰酶酶活大小。 二.产普鲁兰酶菌株的产酶条件的研究 (1)碳源,氮源对发酵产酶的影响:采用不同碳源,氮源培养基培养一段时间,测定酶活力。(其他条件相同:接种量,装瓶量,初始PH值,转速,培养时间。) (2)初始PH对发酵产酶的影响:采用相同发酵培养基,在不同初始PH下接种等量种子液。在相同条件下培养,测定发酵液的酶活。(其他条件相同:接种量,装瓶量,转速,最佳培养温度,最佳培养时间。) (3)接种量对发酵产酶的影响:在发酵培养基中分别接入2%,4%,6%,8%, 10%,14%,18%的种子培养液于最佳碳源,氮源,最佳初始PH的培养基中,在相同条件下培养,分别检测酶活。(采用以上确定的最佳碳源,氮源,最佳初始PH。) (4)发酵温度对产酶的影响:采用相同培养基,在不同温度下(25℃,30℃,35℃,40℃,45℃)培养一定时间,测定酶活力。 (5)金属离子对产酶的影响:在基础培养基中加入少量不同金属离子,发酵后测酶活。(金属离子有: 锰离子,钙离子,锌离子,镁离子,铁离子,铜离子。) 研究进度 :完成项目总体进度30%,样品土样的采集及前期的准备工作,菌株的初筛,包括(样品土样原液的涂步培养及摇床培养,产支链淀粉酶菌株的挑选及斜面培养)。 :完成项目总体进度50%,菌株的复筛,包括(产普鲁兰酶菌株的筛选及斜面培养),葡萄糖标准曲线的测定,酶活测定方法的建立,并以酶活大小对菌株进行再次筛选。 :完成项目总体进度80%,产酶条件的研究。包括:碳源,氮源,初始PH值,接种量,发酵温度,金属离子。并通过各中单因素试验确定发酵培养基的最佳碳源,氮源,初始PH值,接种量,发酵温度,金属离子。 2009、4—2009、5 :完成项目总体进度100%,课题总结,撰写论文。 文献综述(包括:国内外研究理论、研究方法、进展情况、存在问题、参考依据等) 自从1961年Bender H.等人在研究一株产气气杆菌Aerobacter aerogenes(典型菌为肺炎克雷伯氏杆菌)时首次发现普鲁兰酶后,国际上对产生这种酶的微生物进行了广泛研究,发现许多微生物可以产生此酶,并筛选出一些适用于工业化生产的优良菌株。随着该酶的应用发展,对耐热性普鲁兰酶的研究也逐渐增多,已成功克隆并表达了该酶的基因。国内1976年开始对一株产气气杆菌(Aerobacteraerogenes 10016)的普鲁兰酶进行研究,对该菌株的产酶条件、酶的分离提取及酶学性质作了报道,并研究了该酶的食品级提取技术。此外,陈朝银、刘涛等人从云南温泉水样中筛选到一株产普鲁兰酶高温栖热菌菌株,通过诱导等实验将该酶的酶活从提高到170u/mL,酶产量提高了近2500倍左右,酶的最适作用温度及pH分别是75℃和,具有一定的耐热和耐酸特性。 陈金全等从温泉水样中筛选到一株产耐热耐酸普鲁兰酶的野生菌株,并根据形态、生理生化特征、细胞化学组分分析及16SrDNA序列比对、基因组DNA的G+C摩尔百分含量、同源性比对等实验,鉴定其为脂环酸芽抱杆菌属(Alicyclobacillus)的一个新种,所产酶最适作用温度为60℃,最适pH值,具有较好的耐热耐酸特性。杨云娟等利用毕赤酵母成功构建了普鲁兰酶表达量较高的基因工程菌,摇瓶发酵酶活可达,最佳发酵条件下产量可达 .酶的最适作用温度为600C,最适pH值,具有较好的耐热耐酸性。目前我国仍没有具备独立生产普鲁兰酶能力的厂商,要实现低成本、国产化的生产,还有很长的路要走。 技术应用于耐热脱支酶的研究,使耐热异淀粉酶的研究有了很大发展。Coleman等人将嗜热厌氧菌T. brockii普鲁兰酶基因克隆到中得到的克隆子分泌的普鲁兰酶数量高于出发菌株,Okada等人将Bacillus Steanther, onhiu:中编码热稳定异淀粉酶的基因克隆到:中,得到的转化菌株其异淀粉酶能在60 ℃稳定15分钟。Burchadf将。ostridium thermosulf urogenes DSM38%的嗜热异淀粉酶基因克隆并在中表达,所得酶的最适pH和最适温度与出发菌相同,而且在高温下仍能保持活性.Antranikiam等人将Pyrococcus舟riousous的异淀粉酶基因克隆到中并分离得到了酶蛋白。尽管如此,目前尚未有已将转基因的耐热性异淀粉酶工程菌应用到工业生产中的报道。众所周知,利用物理和化学诱变剂单独或复合处理微生物细胞是选育高产变种菌株行之有效的经典方法,它在为培育多种抗生素、氨基酸、核苷酸激酶(尤其是蛋白酶和淀粉酶)的高产变种菌株方面曾经起过极为重要的作用,至今仍然是方便易行和行之有效的方法之一。 主要参考文献: [1][美]惠斯特勒等编王雏文等译.淀粉的化学与工艺学[M].北京:中国食品出版社,1988 [2]张树政.酶制剂工业[M]. 北京: 科学出版社,1998 [3]邬显章.酶的工业生产技术[M]. 吉林: 吉林科学技术出版社,1988 [4]Taniguchi H, Sakano Y, Ohnishi M, Okada G(1985) Pullulanase[J].TanpakushitsuKakusan Koso. Ju1;30(8):989-992. Japanese [5] Jensen, B. F., and B. E. Norman. 1984. Bacillus acidopullulyticus pullulanase[J].:application and regulatory aspects for use in the food industry. Process [6]Tomimura E, Zeman NW, Frankiewicz JR, Teague WM. [J]. Description of Bacillus naganoensis sp. J Syst Bacteriol. I 990 Apr; 40(2):123-125 [7]吴燕萍,等. 微生物法生产普鲁兰酶的研究[J]. 生物学技术, 2003,8(6):14-17 [8]金其荣,等. 普鲁兰酶初步研究[J]. 微生物学通报, 2001,28(1):39-43 [9]程池. 普鲁兰酶Promozyme 200L. 及其生产菌种[J].食品与发酵工业,1992 ,(6) [10]唐宝英等.耐酸耐热普鲁兰酶菌株的筛选及发酵条件的研究[J].微生物学通报,2001 28(1):39-43 猜你喜欢: 1. 关于医学开题报告范文 2. 药学论文开题报告 3. 生物制药毕业论文开题报告范文 4. 药理学开题报告范文 5. 药品市场营销毕业论文开题报告 6. 药学论文题目大全

你们学校可要求查重 这个你要是在网上找的话关改把啤酒换成别的产品,公司换成别的公司。这样的话查重还是很高的 不过不要求这样还是可以的

食品工程毕业论文题目

引导语:关于食品工程这一专业,有哪些论文题目可以选择呢?以下是我为大家整理的食品工程毕业论文题目,供各位阅读与借鉴。

一、《微生物学》研究小课题

1、灵芝的生产与加工技术的观察研究

2、天麻的生产与加工技术的观察研究

3、不同消毒剂的抑菌试验

4、苏云金杆菌的药效试验

5、紫外线杀菌试验

6、紫木耳的高产生产试验

7、平菇的高产生产试验

8、木本植物的扦插试验

9、无根豆芽菜的生产试验

10、食用菌病虫害防治试验

二、食品安全、食品营养方向

1、综述转基因食品的安全性

2、保健品的发展前景

3、有关某一具体食品的营养素的分析和检测(比如,鱼,肉或红富士苹果等)

4、有关某一类人群的营养调查报告及营养监测

5、有关某一类食品的营养强化(比如,赖氨酸,锌等)

6、某一类人群的营养和健康现状及分析(比如,婴幼儿,女性,老年人,青少年等)

7、冠心病患者的饮食及防治

8、糖尿病患者的膳食原则及防治

9、如何科学饮食

10、如何正确的摄入某一类营养素(比如,钙,维生素A等)

11、改进生产某一食品的工艺流程(比如,浅谈改进啤酒泡沫质量的措施)

12、综述绿色食品

13、综述无公害食品

14、分析各国的膳食结构

15、综述膳食结构跟体质、性格等关系

三、分子生物学、现代生物技术方向

1、微生物制剂的.生产与应用

2、基因工程技术的应用与发展

3、生物菌肥对植物的影响与作用分析

4、质粒的构建和扩增

5、现代生物技术在作物品种改良上的应用

6、生物信息学的发展和应用

7、魔芋的生长特性及功用

8、植物DNA提取方法的探讨与改进

9、红曲霉的液体培养方法优化

10、大肠杆菌质粒DNA提取方法的优化

四、生物技术方向

1、生物技术经济学分析

2、生物技术在医药领域的应用

3、我国的生物多样性及其保护

4、农业生物技术的发展与展望

5、基因重组技术研究现状

6、转基因食品的安全性评价

7、如何免费利用网上资源--生物技术网络资源的利用

8、浅谈生物技术领域的知识产权保护

9、生物技术与环境治理

10、现代生物技术与食品工业

啤酒蔗糖转化酶活性检测综述论文

近年来,食品安全问题得到了全社会的关注,食品生物技术得到了更多的重视,下面是我整理的关于食品生物技术论文,希望你能从中得到感悟!

食品分析中的生物技术应用分析

摘要:随着人们对食品安全问题重视程度的与日俱增,食品检测领域的快速检测的技术越来越受到重视,而在该技术领域,生物检测技术作为一种新兴技术,其应用范围越来越广泛。现在,生物技术的发展更是突飞猛进,这必将促成生物检测方法的不断补充和完善。

关键词:食品分析 生物技术 应用分析

食品分析是食物营养评价和食品加工过程中质量保证体系的一个重要组成部分,它始终贯穿于食物资源的开发、食品加工与销售的全过程。随着人们生活水平的提高,特别是我国加入WTO后,我国食品走向世界的关税壁垒将逐渐被技术壁垒所取代,一方面,食品的功能性和安全性将越来越受到重视,对其分析精度和检测限的要求越来越高;另一方面,作为食品生产企业和政府监管机构,对食品品质的控制则要求能实现现场无损检测和快速检测,而对分析精度和检测限的要求则相对较低。因此,食品分析技术正向着省时、省力、廉价、减少溶剂、减少环境污染、微型化和自动化方向发展。

1 生物检测技术种类

生物酶技术。基于生物酶的食品安全生物检测技术具有较强的特异性,该技术是非常常用的生物检测技术,能够从代建样本中成功检测出残留农药和毒性微生物的准确含量。不仅如此,该技术还可跟其他技术相结合产生先进的检测技术,如,将该技术跟免检测技术,由于其优异的特性,已在食品安全领域检测的各个领域广泛使用。酶联免疫分析(ELISA)检测技术的最大优点就是准确度和敏感度都非常高,实验结果表明,采用该检测技术对蔬菜和瓜果类食品样本中的农药残留的检测限为0,对奶制品中各种除草剂残留的检测限为0。所以,世界粮农组织(FAO)已经向许多国家的食品安全检测部门大力推广该技术,美国的食品安全部门也将基于酶联免疫分析的食品安全检测技术作为检测农药残留的主要技术。

PCR技术。PCR(Polymemse Chain Reaction)的中文意思是聚合酶链式反应,是一种在体外快速扩增特定基因或DNA序列的方法。该技术最初的应用领域为基因克隆领域和转基因检测领域。但是,由于该技术具有众多优点,比如具有微量性、精确性等,使得该技术成功应用于其他领域。特别是随着对食品中微生物性质的了解,该技术在主要食品安全检测中显现出了广阔的应用前景。该技术最早应用于生物检测领域是在1992年,而应用于对食品安全的检测则要更晚,也就是最近几年才出现的,直到2002年国内才见相关技术应用干食品检测的文献报道。通过建立基于聚合酶链式反应技术的检测体系,对日常生活中人们常用的肉类、奶类和水产类食品中容易感染的致病性小肠耶尔森氏菌进行了检测试验,取得了较好的检测结果。研究人员进行不断改进,希望通过将基于PCR技术的生物检测技术跟其他方法相结合,找到一种全新的更加有效地食品检测方法。

生物芯片。随着全球经济一体化的迅速发展,世界主要经济大国对食品安全的重视,对进出口食品的卫生检疫已经成为各主要经济体的贸易壁垒。目前,世界上许多国家和地区,也都相继开展了基于生物芯片技术的食品检测技术的研制和开发工作。基于生物芯片的检测技术采用光导原位等方法,能够将检测样本中的生物大分子有序地固化于支持物表面,进而构成密集的分子排列,然后与已经过标记的待测样品中的靶分子进行杂交,最后通过对杂交信号的强度进行分析,能够非常快速、高效、准确地对待测样品中的中靶分子数量进行判断,因此可说,基于生物芯片的食品检测技术是现有检验、检疫领域中速度最快、适用范围最广的高新技术。所以,基于该技术的生物检测技术可以对食品的安全状态有一个科学、快速的了解。

生物传感器。基于生物传感器的检测技术是通过具有较高选择性的生物材料对各种有毒分子进行识别,当待检测样品中的毒性物质分子与识别材料结合后,把所产生的复合物通过信号转换器转变为光电信号后输出,进而得到对检测样品的检验结果。该项检测技术具有快速、准确、可靠的的优点,能够最大限度的满足食品安全检测领域的各种要求。因此,该项检测技术已经成功地应用于农产品的药物残留检测和病原菌检测等众多领域。当然,基于该项技术的食品检测体系还存在一定的缺陷,如该技术的使用寿命和检测稳定性还不尽如人意,使得该技术的商业化进程受到一定的制约。

2 具体应用实例的分析

食品中的药物残留检测。对于食品中残留的药物成分对人体的危害问题,已经引起了人们的广泛重视,因而对农产品中残留药物成分的分析技术也得到了快速发展。现在,在农产品中成功应用的药物残留检测技术是生物酶技术和生物传感器技术。用生物技术对药物残留进行检测的方式出现的更早,早在1989年,人们就开始用电流式生物传感器来测定检测样本中的有机磷杀虫剂,其中使用的就是人造酶,该技术可以对样本中的硝基酚和二乙基酚进行有效检测,且时间较短。

有害微生物的检测。食品中的有害微生物对人类健康的危害性也不容忽视,所以,采用快速有效地检测方法是限制有害微生物扩大传播的有效途径。生物检测技术在领域已经取得了大量的研究成果。我国一些学者应用酶联免疫分析方法对奶制品样本中的沙门氏菌进行了成功检测,证明了该检测方法的敏感性和特异性。

转基因食品检测。随着转基因食品的出现和普及,以及各种转基因产品对人类健康和环境影响的不确定性,能对各类转墓因产品进行有效检测技术也随之出现,现在,应用于该检测领域的生物检测技术主要包括:酸检测方法、酶活性检测方法以及蛋白质检测方法等。

样本成分和品质的检测。最早应用于食品样本成分和品质检测的生物检测方法,是基于生物传感器的食品检测技术,只不过开始的检测种类较少,如最早的生物传感器检测技术主要是葡萄糖传感器,只针对食品样本中的含糖量进行检测。随着生物技术的发展,用于对样本成分和品质检测的技术也越来越多。

3 结束语

随着生物技术的发展,人们已逐步认识到生物技术在食品分析中的重要作用。生物技术检测方法以其自身独特的优势在食品分析中显示出巨大的应用潜能,其应用几乎涉及到食品分析的各个方面,包括食品的品质评价、食品的质量监督、生产过程的质量监控及食品科学研究等,尤其是它能够对许多过去难于检测的成分进行分析。目前由于各种条件的限制,生物技术在食品分析中的应用还不普及,随着科学技术的不断发展,在不久的将来,生物技术在食品分析中将占有越来越重要的地位。

参考文献

[1] 孙秀兰.生物芯片技术与食品分析[J].生物技术通报,:22-25

[2] 刘荣.生物传感器在食品分析检测中的应用[J].乳业科学与技术,2009

点击下页还有更多>>>关于食品生物技术论文

纯生啤酒并不是什么神秘的东西。世界上较早开始生产纯生啤酒的国家是日本, 它们的啤酒厂已完全放弃了传统的巴氏灭菌过程, 而采用不经高温灭菌的纯生啤酒生产技术。在德国, 大多数啤酒厂也不进行巴氏灭菌处理, 啤酒过滤后只经过瞬时灭菌, 就灌装到瓶、易拉罐或啤酒桶中, 只有出口啤酒才进行巴氏灭菌处理。中华人民共和国国家标准 GB4927- 2001 规定生啤酒是不经巴氏灭菌或瞬时高温灭菌, 而采用物理过滤方法除菌, 达到一定生物稳定性的啤酒国标中的“生啤酒” , 就是指我们通常所讲的“纯生啤酒” , “纯”并无实质性的意义, 商家只是于宣传目的在“生啤酒”前加了个“纯”字, 来满足人们对产品质量的某种要求或者以区别其他酒可以这样说, 纯生啤酒是经过纯净化酿造、无菌过滤、无菌灌装和未经巴氏灭菌技术生产的啤酒。纯生啤酒自日本推出以来, 以其高端的无菌酿造技术和独特的产品口感而赢得各国消费者欢迎, 发展势头强劲, 成为国际啤酒市场最受欢迎的啤酒品种。从 20 世纪 90 年代的 45 %上升到现代的 95 %。欧洲国家纯生啤酒也呈上升趋势, 约为 50 %。而我国纯生啤酒生产量仅为总产量的 5 %, 这与啤酒产量占世界第一位的啤酒大国很不相称。一定程度上成为阻碍我国打开国际啤酒市场的障碍, 为适应国内外啤酒市场的竞争, 我国啤酒企业应迎头赶上, 推行国际啤酒最新酿造技术, 生产纯生啤酒, 形成企业自己的一整套纯生啤酒生产酿造法及其管理程序。目前, 我国多数啤酒厂仍然使用隧道式巴氏灭菌机对啤酒进行灭菌处理, 这种生产方式在一定程度上破坏了啤酒的原有口味。而纯生啤酒则未经过巴氏灭菌的高温处理, 最大程度地保持了啤酒原有的新鲜口味和营养物质。随着人们生活水平的不断提高, 消费者越来越青睐口感新鲜、口味纯正、营养丰富的纯生啤酒。 纯生啤酒的特点 口感更新鲜因为纯生啤酒不经过热杀菌, 极大地避免了影响啤酒口感的风味物质的进一步氧化, 减少并降低了醛类、醇类、酯类、双乙酰等羰基化合物和硫化物质的产生, 而使纯生啤酒口感更新鲜, 避免成品啤酒产生过多的老化味。这正是人们钟情于纯生啤酒的主要原因 口味更纯正纯生啤酒生产过程中采用的是纯净工艺法, 即无菌酿造和无氧酿造法, 使整个酿造包装系统中不得有杂菌污染和氧的侵入, 从而避免产生一些不利于啤酒口味的不良代谢产物, 因而纯生啤酒口感更加纯正、无异味。 生物稳定性与非生物稳定性更好由于整个生产线采用无氧和无菌化生产以及无氧和无菌化管理与操作, 避免了由于微生物的繁殖而破坏胶体平衡, 而发生早期混浊或沉淀, 保质期与熟啤酒相同, 高达 120~240 d。 营养价值更高啤酒中含有丰富的氨基酸、碳水化合物、无机盐类、多种维生素及多种活性酶类, 而被俗称为液体面包, 是世界公认的营养饮品。由于不经过高温热杀菌, 而保留了更多的营养成分, 特别是多种维生素和多种酶类。因此营养价值更高, 更利于人体消化吸收这些营养物质。 纯生啤酒与熟啤酒的区别纯生啤含有可检测的活性蔗糖转化酶, 而经巴氏杀菌的熟啤酒不含有活性转化酶, 通过这一区别可鉴别市场所售啤酒是否为纯生啤酒。 生产管理的重点纯生啤酒酿造的管理重点可分为三个方面: 一是从原料到糖化发酵工艺的控制; 二是啤酒的无菌过滤控制; 三是啤酒无菌灌装控制。 原料控制与工艺控制 用水要求一般用水指糖化投料水、洗糟水、溶解各种洗涤剂所用水, 一般不需要严格无菌, 只要相对纯净、透明、无污染或达到饮用水标准即可。无菌水指酵母洗涤用水、啤酒管道和各种容器的最后冲洗用水、高浓酿造稀释脱氧水、啤酒过滤预涂用水、洗瓶机最后一次冲瓶水等, 必须达到严格的无菌要求,细菌数应小于 10 个/ 100 mL。无菌水一般要经过三级过滤, 第一级使用砂滤棒过滤(除菌率 85 %~95 %) ; 第二级采用 μ m 微孔除菌(除菌率 99 %); 第三级一般采用高压汞灯紫外线杀菌。 大米要求大米必须新鲜、粒整。 大麦芽大麦芽质地均匀, 溶解性能良好。麦芽中 β -葡聚糖的含量要尽可能低, 外购麦芽的 β - 葡聚糖含量要小于80 mg/L。 合理的糖化工艺浓醪糖化(料水比为 1∶ ~)有利于 β - 葡聚糖酶的作用, 综合其他方面的因素, 糖化时料水比为 1∶~ 为佳。内、外 β - 葡聚糖酶的最适 pH 值为 ~。在糖化时, 醪液的理想 pH 值为 ~, 可以用乳酸、磷酸或酸麦芽来进行调节。一般采用 35~40 ℃的低温投料, 以利于 β - 葡聚糖的分解, 可根据实际情况适当添加 β -葡聚糖酶。蛋白休止时间要长, 麦汁粘度低。酿造纯生啤酒, 40~50 ℃的蛋白休止时间一般应保证不少于 30 min。整个糖化工艺注意隔氧, 现代糖化设备一般都具有防氧设计要求, 糖化过程在密闭隔氧下操作。原料粉碎尤其是麦芽粉碎要在封闭除尘、能够实现惰性气体保护的空间进行。糖化锅、麦汁过滤槽和煮沸锅均采用密闭式, 从底部进出料, 糖化、过滤或麦汁煮沸时表面用 CO2或 N2 掩盖, 减少空气与醪液的接触面积, 以防止氧化。麦汁在回旋沉淀槽内的静置时间不宜超过 20 min。薄板冷却器的冷却面积要求是将麦汁在 40 min 内冷却至接种温度。总之, 采取必要的措施, 加强 β - 葡聚糖的分解, 保证麦汁、啤酒良好的过滤性能以及啤酒的醇厚性和泡持性, 并尽量降低纯生啤酒的生产成本, 提高经济效益。 发酵工艺控制实际生产中酵母都是重复使用的。为避免污染, 必须将酵母回收、保藏, 因此必须对添加系统进行彻底杀菌。酵母保藏应置于低温( 0~3 ℃)短时间存放; 回收后的酵母保存时用无菌水洗涤, 并时常更换无菌水, 添加前用酸洗涤, 以确保微生物安全, 或缩短酵母的使用代数, 使用不超过 4 代, 即重新扩培酵母, 以保证酵母菌种微生物的安全性。酿造设备及仪器也是较大的污染源, 特别是不易注意的部位, 其清洁卫生更为重要。重要的是确保酿造设备在设计、安装、施工时, 避免形成死角, 不安装不必要的辅助配件, 对接头口、取样口各种仪器安装座(泵、流量计)、阀门以及配管等部件, 必须定期拆卸清洗。对于酿造设备的清洗应用 CIP 洗涤系统, 合理选用CIP 系统中的喷嘴(固定式、旋转式)和安装位置, 掌握供给水压和方法, 必须保证系统内无杀菌剂清洗液残留。对污垢多的糖化锅、发酵罐等设备清洗时配制洗涤剂浓度要偏高些。可用几种杀菌剂交替使用。 啤酒过滤的控制纯生啤酒的过滤采用硅藻土过滤与无菌膜过滤相结合的过滤系统。硅藻土过滤作为纯生啤酒的粗过滤,以去除大部分酵母及杂质等悬浮颗粒, 使啤酒的浊度降至 EBC 以下。因此, 过滤时硅藻土的预涂、用土量、过滤压力、流量必须严格按工艺要求执行。无菌膜过滤是纯生啤酒的最后除菌工序, 是关系到纯生啤酒质量的关键工序, 无菌膜必须认真清洗, 防止微生物滋生穿透薄膜进入清酒。膜过滤是纯生啤酒生产的关键技术, 膜过滤后清酒的细菌数关系到最终纯生啤酒的生物稳定性。膜过滤的膜孔径一般有 μ m 和 μ m两种, 如此小的孔径是能够把清酒中的细菌和酵母细胞全部滤除干净, 达到纯生啤酒在一定保质期内的 生物稳定性要求目前的膜过滤主要采用低温膜过滤技术, 借助于过滤膜, 将啤酒中的微生物滤除。但由于构成膜的材料极其细微, 啤酒中的一些杂质和高分子物质, 如高分子蛋白质和糖类, 尤其是 β - 葡聚糖会堵塞过滤膜, 影响啤酒过滤, 降低过滤膜的使用寿命, 增加过滤成本。因此, 生产纯生啤酒, 首先要严格控制原料质量, 精心制定糖化工艺, 促进半纤维素和麦胶物质彻底分解。膜过滤系统可采用全自动双套过滤系统, 每一套又分为两级过滤, 一级为预过滤; 二级为终端过滤。每套系统工作至一定时间, 如 8~10 h就自动再生。同时另一套系统开始工作, 可以实现 24 h 连续过滤。有的啤酒膜过滤系统为三级过滤, 其实, 只要实现除菌的目的, 又不大幅增加成本, 采用何种形式并不重要。膜过滤的滤芯的寿命主要取决于过滤啤酒的量及再生情况, 一般情况下可于使用前对滤芯进行完整性测试, 以防止微生物滋生穿透薄膜进入清酒。目前, 国内啤酒厂配备的膜过滤系统以德国SARTORIUS 公司和SEITZ 公司的产品较多。 灌装车间的控制 洗瓶建议使用新瓶灌装纯生啤酒。当瓶子运到啤酒厂后, 需进行最少 2 min 的碱液清洗。洗瓶机应选择双端式的生产纯生啤酒所用的洗瓶机, 选用双端式更具有微生物的安全性, 因为单端式洗瓶机对脏瓶与洗净的空瓶是在同侧进出, 进出瓶易交叉污染, 只有双端式洗瓶机才能在空间上将干瓶与湿瓶分开, 且在双端洗瓶机的出口到压盖机出口, 将这一部分隔成无菌间, 无菌间级别为 10000 级, 局部达 100 级。洗瓶机采用双端式, 具有防止微生物污染的功能, 如无菌清水喷淋、蒸汽排空及出瓶端机体消毒等。 空瓶检测纯生啤酒生产线上要求配备全自动的空瓶检测机,它不得带有定瓶头装置, 以防止瓶口受到感染。瓶子被洗净后, 在洗瓶机的出端至冲瓶机入口端的输送链区间, 要设有防护顶罩, 输送链所用润滑剂要添加抑菌剂, 同时保证输送链定时清洗、消毒。 冲瓶在灌酒机前安装冲瓶机, 是中国生产纯生啤酒生产线的标准配置。冲瓶机可使用蒸汽、二氧化氯水(ClO2)或热水进行冲瓶, 各有其利弊, 应视生产要求而决定选用哪种方法为佳。使用蒸汽冲洗时, 每个 640 mL 的瓶需要 5~10 g蒸汽。此外, 还要配置一个大容量的通风系统, 将这些蒸汽排出灌装区域, 以降低灌装区域内的湿度和温度, 从而防止有害菌滋生, 避免瓶子在从灌酒机输送到封盖机期间受到感染。使用二氧化氯水对瓶子进行冲洗时, 只有在其浓度大于 mg/L 时才能达到理想的消毒效果。另一方面,瓶内还不可避免地会留有残留液, 这将氧化瓶中的啤酒。冲瓶机使用热水可以保证将一些固体颗粒, 如从洗瓶机至灌酒机的输送过程中落入瓶中的灰尘颗粒冲洗出来, 还可将滴入瓶内的水滴中所带有的细菌群冲刷掉, 或将其冲成单一体。若热水处理的时间不足, 为了杀菌, 往往需在灌酒机上作进一步的蒸汽处理。 灌酒在灌酒机中对瓶子进行消毒较有效的方法是将抽真空与蒸汽处理相结合。为保证纯生啤酒的无菌灌装,灌装压盖机应能够实现 3 次抽真空, 2 次蒸汽灭菌, 1 次CO2 背压功能。具有 3 次预抽真空的灌酒机, 由于采用了蒸汽背压杀菌, 二氧化碳的用量只需 120 g/100 L, 增氧量更降至。蒸汽在瓶内的温度是依据真空过程或蒸汽背压过程中饱和压力而逐渐变化的, 每个 640 mL 的瓶约需要7 g 蒸汽, 这些蒸汽将通过真空通道排出。由于瓶内的温度是逐渐变化的, 因而降低了瓶子发生破裂的情况。另一方面。由于蒸汽会被冷凝在真空通道中并排放到真空泵, 因此必须增大通风量将蒸汽排出。激沫引泡装置采用膜过滤孔径为 μ m, 压力达到~ MPa, 从而既达到引泡效果又达到无菌的要求。 瓶盖消毒瓶盖生产厂的卫生条件和最后的真空包装, 都保证了瓶盖运送到啤酒厂后即具有无菌的条件, 啤酒厂同时要将这些瓶盖存放在干燥的房间里。生产结束后, 输盖箱里不得存放剩余瓶盖; 而瓶盖输送带可考虑采用紫外线杀菌。 灌酒车间的消毒纯生啤酒生产能否成功最关键的因素之一, 是灌酒车间的环境卫生。瓶装啤酒在从灌酒机传送到封盖机的过程中, 最容易受到乳酸杆菌和果胶型啤酒细菌等细菌的感染。这些细菌通常在溢出的啤酒泡沫中生长, 温度在25~28 ℃之间时, 其繁殖速度最快。当不断有啤酒泡沫溢出, 加上高温、高湿的环境, 使这些细菌在灌酒机的区域内高度集中。同时, 由于灌酒机的高速旋转而产生的空气流动, 使这些细菌有可能感染尚未灌装的空瓶。因此, 在生产纯生啤酒时, 必须将溢出的啤酒泡沫迅速清洁, 并清除由此而产生的酒泥。此外, 灌酒机要采用圆滑的表面设计, 这将有助于啤酒泡沫和清洗剂从灌酒机表面迅速流走。对灌酒机前台及周围环境进行定时消毒清洗和定时泡沫清洗或胶体清洗, 也是绝对必要的。从生产的安全角度出发, 还应考虑对灌酒机及其周边环境进行全自动 CIP 清洗。在生产前后除了采用人工清洗无菌间外, 还用紫外灯进行照射灭菌, 使无菌间的空气质量始终控制在理想状态。而考虑将灌酒机隔离在一间温度为 12~17 ℃、湿度在 55%~65 %、空气净滤为 μ m 的房间内, 将有助于生产优质的纯生啤酒。 啤酒过滤、灌装过程中的微生物控制纯生啤酒的特色在于啤酒新鲜的口味和爽口的感觉, 要实现这个目的就要求生产设备卫生状况极好, 达到“纯净化”生产。这里涉及到两个方面, 一是通过清洗杀菌达到“纯净化”生产; 二是用微生物检测来衡量是否达到“纯净化”生产。 样品的检测方法 纯生啤酒的生产将微生物控制技术提高到了空前的高度, 生产过程中的每个环节都必须得到有效的控制, 才能保证纯生啤酒生产的安全, 才能保证提供给消费者高质量的产品。如果纯生啤酒最终检测不合格, 啤酒必须进行热杀菌, 按普通啤酒出售。从人员、设备、原材料等各个方面来说, 生产纯生啤酒成本较高, 如果产品不合格, 按普通啤酒销售, 成本太高。所以, 生产纯生啤酒, 必须加强员工的卫生意识, 不断提高员工素质, 让员工从思想上明确微生物的危害, 使卫生管理工作落到实处, 真正具备无菌操作概念, 建立起一支具有丰富微生物知识和无菌生产经验的高素质团队, 为社会提供优质的纯生啤酒。

啤酒厂废水处理工艺论文参考文献

白酒酿造大多以高粱、小麦、玉米等作为原辅料,采用人工培养老窖、发酵、蒸馏、分级贮存、精心勾兑等基本工序酿制而成。白酒废水是指从生产到贮存陈化过程中所产生的工业废水,通常分为高浓度有机废水和低浓度有机废水。低浓度有机废水有冷却水、洗瓶水、场地冲洗水,其污染物浓度低于排放标准,可以循环利用或直接排放;高浓度有机废水指底锅水、黄水、粮食浸泡水等,其富含残留淀粉、蛋白质、糖类等有机物。

白酒酿造污水特点:

白酒酿造污水比较复杂、主要为乙醇、戊醇、丙醇、丁醇、脂肪酸、氨基酸、酯、醛;污水浓度高、酿酒在固态发酵、蒸馏过程中会产生不同浓度的污水,水质浓度高、色度高;污水污染严重、污水可生化性好;污水混排、吨酒产污量大、污染严重的特点。

白酒酿造废水可分为两类:

1.原料麦的清洗,麦芽培养及旧瓶洗刷废水;

2.酿造过程排出的废水。第一种废水是主要废水来源,每利用1吨大麦约排出废水,水中含有洗麦剂,pH10-13,呈强碱性。第二种废水是在麦芽等的压榨和分离过程排出的清洗废水,水中BOD达130000mg/L,pH3-4,呈酸性。

白酒酿造污水处理方法:

白酒废水处理方法有物理法、化学法和生化法,处理技术包含过滤、重力沉降、气浮、离心、酸碱中和、厌氧降解、好氧降解、厌氧-好氧降解等。

1、好氧处理法

用好氧微生物降解有机物实现废水处理,不产生带臭味的物质,处理时间短,适应范围广,处理效率高;

2、物理处理法

不投加药剂,最大限度地减少污泥产生量,工艺简单;

3、生化处理法

不改工艺,直接投加化学药剂,操作简单,并采取必要措施从而避免了产生二次污染,同时也实现达标排放处理。

摘 要 处理规模:总设计规模3500m3/d。2、设计水质:CODCr=1200mg/L;BOD5 =800mg/L; SS=150mg/L;pH=6~9。 3、排放标准 CODCr≤100mg/L;BOD5≤20mg/L;SS≤70mg/L; pH=6~9。 4、工艺流程概况:废水 格栅井 调节池 UASB反应罐 SBR反应池 达标排放5、工程投资:万元;6、工程占地:1632m2;7、运行成本:元/m38、劳动定员:2人9、建设工期:3个月1.概 述 啤酒生产主要以大麦和大米为原料,辅以啤酒花和鲜酵母,经长时间发酵酿造而成。 该公司在生产过程中产生的废水主要来源于玉米洗涤浸泡等工艺过程。该污水具有污染物浓度较高、pH值低等特征,若不经处理直接排入水体中,会导致水体严重富营养化,破坏水体的生态平衡,对环境造成严重污染。 公司领导和员工本着发展经济促进企业效益与治理污染、保护环境协调发展的思想,为树立企业良好的社会形象,消除企业健康发展的隐患,决定在上级环保部门的监督管理和支持下,按照我国环境管理的要求,委托专业环保公司,选择技术先进、运行稳定、投资合理的污水处理技术治理其生产污水。 2.废水水质水量 设计水量 本工程设计规模:3500m3/d,平均流量:146m3/hr; 设计水质 参考同类工程的数据和业主提供的水质指标,确定本工程设计水质如下: CODCr=1200mg/L;BOD5 =700mg/L; SS=400mg/L; PH=5~6。 3.排放标准 根据当地环保部门要求,处理后的水质要求达到《污染物综合排放标准》(GB8978-1996)一级排放标准。即: CODCr≤100mg/L;BOD5≤20mg/L;SS≤70mg/L,PH=6~9。 4.编制依据业主提供的相关资料和要求《污染物综合排放标准》(GB8978-1996)《室外排水设计规范》 (2000年版)《给水排水设计手册》《混凝土结构设计规范》GB50010-2002 5.工艺方案选择与论述废水水质分析 啤酒生产以大麦和大米为原料,辅以啤酒花和鲜酵母,经较长时间发酵酿造而成,废水主要来源于麦芽制造、糖化、发酵、洗瓶及灌装等工序。啤酒废水富含糖类、蛋白质、淀粉、果胶、醇酸类、矿物盐、纤维素以及多种维生素,是一种中等浓度的有机废水,可生化性好。废水连续排放,水质水量有一定波动。 工艺选择 啤酒废水属中高浓度有机废水,有很好的可生化性,但生产季节性较强,排放不连续,尤其是地面冲洗水,水量和浓度波动较大。该厂将各车间的废水汇集到一起,因无机负荷并不高,不适合目前国内常用的“厌氧+好氧”方法中对原水COD>6000mg/L的要求。 啤酒废水中含有大量有机碳而氮源含量较少,在进行传统的生化处理中,其含氮量远远低于BOD:N:100:5(质量比)的要求,致使有些啤酒厂采用传统活性污泥法时,在不补充氮源情况下处理效果很差,甚至无法运行。经多种方案比较,确定采用CASS法处理啤酒废水。 在好氧单元中,经过对膜法工艺和普通活性污泥法的综合比较后我们认为:较膜法工艺来说,由于CASS法省去了沉淀池,它们的总投资和运行成本基本相同,但应用于工程中,CASS工艺较膜法工艺更加稳定可靠,而且其使用寿命长;而较普通活性污泥法,SBR应用在此工程中不管在投资还是运行费用等方面的优势更加明显,因此我们选择CASS工艺。 循环活性污泥系统简称为CASS(Cyclic Activated Sludge System)工艺,是一种在SBR工艺和氧化沟技术的基础上开发出的新工艺。CASS池是系统的核心。污水中的大部分污染物在此降解、去除。它将生物反应过程和泥水分离过程集中在同一个池内进行。CASS反应池分为生物选择区、兼氧区和好氧区。选择区的基本功能是防止污泥膨胀,污水中溶解性有机物能够通过酶反应而被污泥颗粒吸附除去,回流泥中的硝酸盐可在该选择区内得以反硝化;在兼氧区内,有微量曝气,基本处于缺氧状态,有机物在此区内得到初步降解,同时也可除去部分硝态氮;好氧区为曝气区,主要进行硝化和降解有机物,同时也进行硝化反硝化过程。CASS池是一个间歇反应器,在此反应器内不断重复地进行曝气与非曝气过程。污水按一定周期和阶段得到处理,每一循环有下列各个阶段组成:进水/曝气/污泥回流阶段——完成生物降解过程;非曝气/沉淀阶段——实现泥水分离;滗水/剩余污泥排除阶段——排出上清液;闲置阶段——恢复活性污泥活性。     上述各阶段组成一个循环操作周期,根据污水水量和浓度,它的运转方式可采取6周期/天、4周期/天、3周期/天的形式,每周期运行时间分别为4、6、8小时。循环过程中,首先进行充水、曝气和污泥回流,CASS池内的水位随进水而由初始的设计最低水位逐渐上升至最高设计水位。当经过一定时间曝气与混合后停止曝气,在静止的条件下使活性污泥絮凝并进行泥水分离。沉淀结束后通过移动堰表面滗水器排出上清液并使水位恢复至设计最低水位,然后重复运行。为保证系统在最佳条件下运行,必须定时排泥,排出剩余污泥的过程一般在沉淀结束后进行,污泥浓度可高达10g/L,所排出的剩余污泥量要比传统的活性污泥处理工艺少得多。工艺流程框图 栅渣 鼓风机 啤酒废水 格栅机 集水井 提升泵 调节池 CASS反应池 接触池泥饼外运 污泥脱水机 螺杆泵 污泥贮池 图1 污水处理工艺流程方框图 工艺流程说明 废水经格栅除去粗大杂物后,进入集水池内,经水泵提升进入CASS反应池中,使废水中的大部分污染物在池中得到降解和去除。废水在这里得到生化处理,处理后的废水排入接触池,经消毒后排人水体。CASS反应的剩余污泥排人污泥贮池中,经污泥泵打入污泥浓缩脱水一体机脱水,脱水后的干污泥外运,压滤机滤出水返回集水池内。处理效果预测 污水从调节池进入CASS池,再由CASS池出水,几乎所有的污染物均在CASS池内去除,结果见表4。表1 主要构筑物进出水水质及去除率名称 水质 进水mg/L 出水mg/L 去除率% CASS池 生物选择吸附区 CODcr 1200 450 63 BOD5 700 200 71 SS 400 180 55 兼氧区 CODcr 450 200 56 BOD5 200 150 15 SS 180 140 22 主曝气区 CODcr 200 70 65 BOD5 150 30 80 SS 140 70 50 接触池 CODcr 80 40 50 BOD5 30 10 67 SS 70 30 57 总去除率 CODcr 1200 70 94以上 BOD5 700 10 98以上 SS 400 30 92以上 6.电气自控 动力配电 污水处理站总装机容量约,其中运行功率约为。动力线由厂区内配电房引入至污水处理站内配电柜。 自控系统 污水处理站采用PLC自动控制和就地按钮箱手动控制。在操作台上设有转换开关,当转换开关处于自动位置时,由PLC按预先编好的程序自动控制;当转换开关处于就地按钮箱手动位置时,可在机旁人工控制。 各提升泵可据液位高低利用自控系统控制水泵开启与关闭,当池内的污水量较小由一个水泵运转或间歇运转,当池内的污水量较大由两个水泵运转或其中一个间歇运转避免因无水而损坏水泵或因单个水泵的流量不足而引起的污水外溢。 CASS池利用PLC及电动阀根据时间控制自动切换工作状态,实现进水、曝气、滗水等一系列动作,从而两池自动交替运行,也可以根据情况切换到手动状态,进行人为干预以便调整两池的运行状态。 7. 主要建构筑物设备一览表主要构(建)筑物一览表序号 构(建)筑物名称 工艺尺寸(m) 主要设计参数 数 量 1 集水井 L*B*H=×× 总容积:16m3结构形式:地下式钢混 1座 2 格栅间 L*B*H=×× 总容积:18m3结构形式:半地上式钢混 1座 2 调节池 L*B*H=×× 总容积:656m3结构形式:半地上式钢混 1座 3 CASS反应池 L*B*H=×× 总容积:855m3结构形式:半地上式钢混容积负荷:·d 2座 4 污泥贮池 L*B*H= 总容积:36m3结构形式:半地上式钢混HRT = 16hr 1座 5 接触池 L*B*H= 总容积:54m3结构形式:半地上式钢混HRT = 15min 1座 6 污泥脱水机房 建筑面积:27m2 结构形式:砖混结构 1座 7 工房 建筑面积:60m2 结构形式:砖混结构 1座 说明:本设计不含站区围墙、地面绿化及道路硬化。主要设备一览表序号 设备名称 设备型号 主要参数 单位 数量 备注 1 机械细格栅 RAG-500 栅条间隙10mm功率: 套 1 不锈钢 2 污水泵 CT-5-11-100 功率:11kW 套 2 配自耦 3 潜水搅拌器 QJB15/4 功率:15kw 台 2 4 污水泵 CT-5-11-100 功率:11kW 台 2 配自耦 5 污泥回流泵 功率: 台 4 配自耦 6 鼓风机 SSR200 风量:32m3/min电机功率:45kW 台 3 2用1备 7 曝气器 KKI215/D90 / 套 1200 含空气支架、管件 8 滗水器 XPS-560 滗水能力560m3/h 套 2 9 污泥泵 10 浓缩压滤脱水一体机 11 电控系统 / / 套 1 含电气仪表 8.工程投资估算及经济技术分析 工程投资估算 土建投资估算表 土建投资估算表序 名 称 单位 数量 型 号 规 格 总 价 备 注 号 ( m ) (万元) 1 格栅井 座 1 ×× 钢砼 2 集水井 座 1 ×× 钢砼 3 调节池 座 1 ×× 钢砼 4 CASS反应池 座 2 ×× 钢砼 5 污泥贮池 座 1 ×× 钢砼 6 污泥脱水机房 m2 1 27 砖混 7 工房 m2 1 60 砖混 8 小计(T1) 设备投资估算表 设备投资估算表序号 设备名称 设备型号 单位 数量 单价 总价 备注 1 机械细格栅 BG4820-5 台 1 不锈钢 2 污水泵 台 2 含自耦 3 污泥泵 台 1 4 污水泵 台 2 含自耦 6 污泥泵 台 2 含自耦 7 水下鼓风机 WRC-100 台 2 含消音器等配套附件 8 曝气器 KKI215/D90 套 400 含空气支管、管件 9 滗水器 200m3/h 台 2 10 螺杆泵 I-1B2' 台 1 11 带式压滤机 XMY25/6300 台 1 含配套附件 12 加药系统 / 套 2 含计量泵 13 电控系统 / 套 1 含电气仪表 小计(T2) 工程总投资估算表 工程总投资估算表号 项 目 名 称 构 成 方 式 费 用 备 注 (万元) 一 土建工程 二 工艺设备 三 设备配套、运杂费 (二)×3% 四 安装工程 (二)× 五 本工程直接费合计 (一)+(二)+(三)+(四) 六 本工程直接费税金 (五)× 七 本工程间接费 1 工程设计费 (五) ×5% 2 工程调试、培训费 (五) ×5% 含技术培训 3 本工程间接费合计 1+2 八 工程税金 [(七)]× 九 本工程总投资估算 (五)+(六)+(七)+(八) 备注: 1.本工程总投资只包括污水处理站内部分; 2.土建投资估算不包括除主体构筑物之外的其它附属设施及措施费等相关费用,预算以施工图纸为准; 3.标准排放口按当地环保部门要求,业主自行解决;4.化验仪器由业主根据工程需要自行采购; 运行成本分析 运行成本计算电费 本工程装机容量约为,其中运转功率为,电费按元/kW计,处理水量按3500 m3/d计: E1=×24×÷3500=元/m3污水(2)药剂费 每天投加PAM的量为,单价为30元/kg; 则加药费用为:元/m3污水。 (3)人工费 人均工资福利按20元/天·人计,定员3人,则 E3=20×3÷3500=元/m3污水(4) 自来水耗 用于配药及实验室的自来水量每天约为20吨,吨水费用约为元,则每天水费约为: E3=20×÷3500=元/m3污水(5)总运行费用为: E4=E1+E2+E3 =+=元/m3污水(不含折旧费及维修费) 经济效益分析经核算,沼气的产生量约为2250m3/d,按热值计算,每10000m3相当于8吨标煤,每吨标煤按400元计,则全年沼气产生的效益约为:2250×365×10-4×8×=万元/年工程实施计划工程实施计划表工程阶段 11月 12月 1月 2月 3月 可行性研究 施工图设计 土建施工 安装工程 9.质量保证确保处理水达标排放;处理系统运行稳定、安全、可靠;按环保样板工程设计,达到优质工程质量标准;终身有偿服务;终身提供免费技术咨询。表 电耗一览表序号 设备名称 功率(kW) 运转时间(h) 单位 数量 备注 1 机械细格栅 6 台 1 2 污水泵 24 台 2 一用一备 3 污泥泵 2 台 1 4 污水泵 24 台 2 一用一备 5 污泥泵 台 2 6 水下鼓风机 11kW 18h 台 2 7 滗水器 3h 台 2 8 螺杆泵 2kW 3 台 1 9 带式压滤机 3 台 1 10 SBR是Sequencing Batch Reactor的简称,我国通常称为序批式活性污泥法。1969年荷兰国立卫生工程研究所将处理医院污水的连续流氧化沟改为间歇运行,取得了令人注目的效果。从中得到启发,世界各国学者开始着手间歇式活性污泥法的研究开发。1979年美国R. Irvine等人根据试验结果首先提出SBR工艺。 近年来,伴随着监控与测试技术的飞速发展和SBR法专用设备滗水器的研制成功,以及电动阀、气动阀、电磁阀、水位计、泥位计、自动计时器,特别是计算机自动控制系统的应用,使监控手段趋于自动化,SBR工艺的优势才充分显露出来,引起广泛重视,得以迅速推广应用。 SBR法工艺简单,不设二次沉淀池,间歇(或连续)进水,间歇排水。在单一反应池中完成进水、反应、沉淀、滗水、闲置五道工序。 与传统活性污泥工艺比较,SBR法具有下述工艺特点: 1.工艺流程简单,节省投资。 2.生化反应推力大,处理能力强。研究表明,SBR反应器中的活性污泥具有较高的生物活性,其微生物核糖核酸(RNA)是普通活性污泥的3~4倍。在SBR反应器中,随着曝气进行有机物(F)逐渐减少,而生物固体(M)逐渐增加,污泥负荷(F/M)随时间减小,生化反应在时间上呈推流状态,F/M梯度也达到理想的最大,具有较强的污染物去除能力。 3.不会发生污泥膨胀,运行效果稳定。污泥膨胀多为丝状细菌过剩繁殖,绝大多数丝状菌,如球衣菌属等都是专性的好氧菌。在SBR反应池中,沉淀滗水阶段的缺氧或厌氧环境与反应阶段的好氧环境不断交替,能有效抑制专性好氧细菌的过量繁殖,因此能形成以絮凝性微生物为主体的生物絮体,不发生污泥膨胀,运行效果稳定。 4.耐冲击负荷,操作弹性大。 法停曝后在理想静止状态下进行沉淀,泥水分离效果好。废水处理效果分析各工艺阶段的处理效果预测如下: 表5-2:处理效果分析表名称 单位 竖流沉淀池 UASB反应池 SBR反应池 总处理率 进水 出水 进水 出水 进水 出水 CODcr mg/L 12000 <10000 10000 <1000 1000 <100 >99% BOD5 mg/L 8000 <7000 7000 <400 400 <20 > 悬浮物 mg/L 2500 <750 750 <500 700 <70 >97%

在啤酒酿造生产工艺流程分六个工段,即粉碎、糖化、麦汁、冷却、发酵、过滤灌装,每个工段都有以废水为主的废弃物产生。污染源头主要有废麦糟、废酵母、热冷蛋白凝固物、废硅藻土等固液混和物及排渣水、洗糟水、废酒花、洗酵母水、洗瓶水、酒头排放杀菌废水和各种洗涤水。啤酒废水浓度高、流量大、污染区域广,直接污染地表水和地下水。这样大量的工业废水该如何处理?首先是废弃物的源头的削减和利用。源头分段治理:1、使用干排槽。在废麦槽排出时将水流输送改为气流输送、湿排槽改为干排槽,此项处理能减少废水排放量,同时能加工麦糟干饲料向市场出售。2、进行酵母回收。通过建立酵母回收系统,改造酵母烘干设备,提高酵母回收能力,减少有机高浓度水排放量。3、对废硅藻土和冷热凝固物的利用。硅藻土用作啤酒助滤剂,废硅藻土含有大量酵母和其他有机物,冷热凝固物含有大量蛋白质,将其混合加工作饲料可大大减少废水中的污染物质。4、回收酒瓶标签纸的筛滤。灌装工段每天加收一定量废酒瓶,洗涤酒瓶的废水中含有一些纸浆,纸浆水增加了废水的排污负荷。在洗涤车间排污口设置筛网,经筛将大部分的纸浆滤出晒干用于造纸,废液汇入总排集中治理。5、清洁水的回收利用。末端治理:啤酒污染物源头分段治理后,接着就是对啤酒废水的末端治理。废水主要来源为各类设备、窗口管道的洗涤水。主要污染物有淀粉、蛋白质、酵母菌残体、废酒花、残留啤酒、少量酒糟、麦糟及洗涤发酵罐的废碱液。1、酸化—SBR法处理啤酒废水,其主要处理设备是酸化柱和SBR反应器。这种方法在处理啤酒废水时,在厌氧反应中,放弃反应时间长、控制条件要求高的甲烷发酵阶段,将反应控制在酸化阶段。2、UASB—好氧接触氧化工艺处理啤酒废水,主要处理设备是上流式厌氧污泥床和好氧接触氧化池,该工艺处理效果好、操作简单、稳定性高。上流式厌氧污泥床和好氧接触氧化池相串联的啤酒废水处理工艺具有处理效率高、运行稳定、能耗低、容易调试和易于每年的重新启动等特点。3、新型接触氧化法处理啤酒废水,该处理工艺有以下主要特点:(1)VTBR反应器由废旧酒精罐改造而成,节省了投资;(2)使罐中始终保持较高的温度,提高了生物的活性。4、生物接触氧化法处理啤酒废水,该工艺采用水解酸化作为生物接触氧化的预处理,水解酸化菌通过新陈代谢将水中的固体物质水解为溶解性物质,将大分子有机物降解为小分子有机物。水解酸化不仅能去除部分有机污染物,而且提高了废水的可生化性,有益于后续的好氧生物接触氧化处理。

现在都是用这种污水转运车拉到污水处理厂的哈,36方足够一般的场子里了;420马力发动机

  • 索引序列
  • 啤酒厂的检测论文
  • 啤酒品质检测论文
  • 啤酒检测与分析论文题目
  • 啤酒蔗糖转化酶活性检测综述论文
  • 啤酒厂废水处理工艺论文参考文献
  • 返回顶部