首页 > 论文发表知识库 > 胶体研究论文

胶体研究论文

发布时间:

胶体研究论文

表 面 活 性 剂 在 农 药 中 的 应 用 研 究 进 展 摘要 : 介绍了表面活性剂在农药领域的应用研究进展。表面活性剂通过界面膜发生作用, 改善农药加工和使 用性能。表面活性剂可以在各种类型的界面上发生吸附, 改变界面状态 , 从而实现或改善界面物理化学特性 , 增强产品的功能。在农药加工过程中, 表面活性剂吸附于农药微粒表面形成不同的分散体系, 起到乳化 、 润 湿 、 增溶 、 消泡 、 起泡 、 稳定等作用 ; 在农药使用过程 中, 表面活性剂可以改善药液在植物叶面或防治象 表面上的分布、 附着、 渗透等, 提高农药剂量的有效转移, 直接或间接地提高农药的有效利用率。随着胶体 化学、 界面化学理论的引入 , 农药制剂加工的理论和农药应用技术理论的研究也在不断深入和完善, 表面活 性剂的开发研究也会随着农药加工和使用的要求得到进一步发展。 近年来, 我国每年使用农药1 0 0 万吨( 制剂) 左右, 防治 面积达3 亿公顷次以上, 植物保护工作为农业丰收做出了 巨大贡献, 起到了保驾护航的作用 。但由于对农药使用 技术理论和技术措施的研究严重不足, 忽视对靶标生物行 为研究以及普遍采用大容量、 大雾滴喷雾技术等原因, 我 国农药有效利用率很低, 由施药器械喷撒出去的农药只有 2 0 %- 3 0 %~沉积在作物叶片上, 远低于发达国家5 0 %的平 均水平 , 农药使用中的低效率, 不仅浪费大量农药, 还 使大量农药流失到非靶标环境中, 造成人畜中毒、 环境污 染、 农产品农药残留量增加 。 。 农药使用的低效率还与农药加工技术研究不足有很大 关系。我国已经成为农药生产大国, 但国内制剂、 剂型 的研究和产品质量与国外相比仍有很大差距, 主要表现为 分散性能差 、 悬浮率低 、 热贮分解率高等方面, 一些剂型 因湿润性、 渗透性和叶面沉积性差等原因造成药效不稳 定, 相当一部分品种在耐雨水冲刷和黏着性等方面明显差 于国外同类型产品, 如国产农药水悬浮剂普遍存在析水、 稠化、 沉积、 结块等贮存物理稳定性等问题 。出现这种 现象的主要原因除与我国农药用表面活性剂的品种数量和 质量与发达国家相比差距大外, 还与我们对表面活性剂与 农药作用机理研究不足等有关。 如何提高农药的有效利用率, 降低农药在非靶标环境 中的投放量 , 已成为农药学科亟待解决的问题。 1 表面活性剂在农药加工中的应用 表面活性剂是指那些具有很强表面活性、 能使液体的 药新剂型及其稳定性研究。表面张力显著下降的物质。此外表面活性剂还应具有增 溶、 乳化 、 润湿 、 消泡和起泡等应用性质。 表面活性剂 的分子结构特点是具有不对称性。整个分子可分为两部 分, 一部分是亲油的非极性基团, 叫作疏水基或亲油基 ; 另一部分是极性基团或亲水基。两部分分处两端, 形成 不对称结构。因此表面活性剂分子为两亲分子。据分子 组成特点和极性基团的解离性质, 将表面活性剂分为离子 表面活性剂和非离子表面活性剂。根据离子表面活性剂 所带电荷, 又可分为阳离子表面活性剂、 阴离子表面活性 剂和两性离子表面活性剂。农药中常用的表面活性剂是 阴离子表面活性剂与非离子表面活性剂n 。 表面活性剂的亲水亲油平衡值( h y d r o p h i l i c — l i p o p h i l i c b a l a n c e, HLB) 是表示表面活性剂亲水亲油性质的值 , 是 选择表面活性剂的重要参数, 一般而言, HL B值高的表面 活性剂其亲水性强, 在水溶液中的溶解度高, 有利于叶片 表面保持较长时间的湿润; HL B值低的表面活性剂其亲油 性较好, 有利于药液在叶面蜡质层的铺展, 提高药液的渗 透性。根据HL B值, 选择合适的表面活性剂能够提高叶面 对农药的吸收。每一表面活性剂都有一HL B值, 农药有效 成分被乳化也有一最佳HL B值, 只有被选择的表面活性剂 HL B值与被乳化组分的HLB值相当, 才能乳化良好。但 HL B值也存在不能预测表面活性剂的用量、 制剂的稳定程 度以及不能同时兼顾分散相和分散介质的组成等缺陷。 表面活性剂是通过界面膜发生作用的。表面活性剂可 以在各种类型的界面上发生吸附, 改变界面状态, 从而实 现或改善许多化学过程 , 增强产品的功能。 表面活性剂在水中溶解时, 当水中表面活性剂的质量 浓度很低时, 表面活性剂分子在水一 空气界面产生定向排 列 , 亲水基团朝向水而亲油基团朝向空气。当溶液较稀 时, 表面活性剂几乎完全集中在表面形成单分子层, 溶液 表面层的表面活性剂质量浓度大大高于溶液中的质量浓 度, 并将溶液的表面张力降低到纯水表面张力以下。表 面活性剂在溶液表面层聚集的现象称为正吸附。正吸附 改变了溶液表面的性质 , 最外层呈现出碳氢链性质, 从 而表现出较低的表面张力, 随之产生较好的润湿性、 乳化 性 、 起泡性等。如果表面活性剂质量浓度越低 , 而降低 表面张力越显著 , 则其表面活性越强 , 越容易形成正吸 附。因此表面活性剂的表面活性大小, 对于其在农药中 的实际应用有着重要的意义。 表面活性剂溶液与固体接触时, 表面活性剂分子可能 在固体表面发生吸附, 使固体表面性质发生改变。极性 固体物质对离子表面活性剂的吸附在低质量浓度下的吸附 曲线为s形, 形成单分子层, 离子表面活性剂分子的疏水 链向外。在离子表面活性剂溶液质量浓度达临界胶束浓 度时, 单层吸附达到饱和, 并开始双层吸附, 此时离子表 面活性剂分子的排列方向与第一层相反, 亲水基团向外。 提高溶液温度, 吸附量将随之减少。对于非极性固体 , 一般只发生单分子层吸附, 疏水基吸附在固体表面而亲水 基向外 , 当离子表面活性剂质量浓度增加时, 吸附量并不 随之增加甚至有减少的趋势, 认为这是因为胶束的形成使 表面活性剂的有效质量浓度相对减少的缘故。固体表面 对非离子表面活性剂的吸附与前面相似, 但其吸附量随温 度升高而增大, 且可以从单分子层吸附向多分子层吸附转 变n 。 。研究表面、 潘I 生剂的吸附性对农药加工及应用技术 有重要意义。 在农药加工过程中, 农药分散体系的稳定性是农药加 工过程中非常重要的指标, 表面活性剂吸附于农药微粒表 面形成不同的分散体系, 农药剂型主要包括液/ 液、 固/ 固、 固/ 液和气/ 气4 种分散体系, 分散相的颗粒与分散介质的 表面张力越接近0, 分散体系越稳定。微乳剂能形成稳定 的分散体系, 其原因在于分散相的颗粒与分散介质的表面 张力非常的低, 一般只有1 0 ~ ~ 1 0 ~mN/ m。分散相的农药 微粒之间存在排斥力和吸引力 , 当斥力大于引力 , 农药分 散体系就稳定, 当引力大于斥力, 农药分散体系就聚沉 , 表面活性剂与农药微粒表面吸附形成的分散体系的稳定 性, 可以用如下理论解释 : 一是双电层理论, 农药微粒吸 附离子型表面活性剂形成的双电层之间存在着静电相互 作用, 使相同农药微粒之间产生斥力 ; 二是空间稳定理 论, 农药微粒表面上吸附的大分子表面活性剂形成一定 厚度的分子膜保护层, 从空间上阻碍了微粒相互接近, 进而阻碍它们的聚结; 三是空缺稳定理论 , 在微粒界面 间的空间存在着 自由高分子, 也就是农药微粒表面对表 面活性剂没有吸附作用, 微粒相互靠近时, 具有一定扩 散能力的高分子表面活性剂从微粒间的间隙中被挤走, 致使在两个微粒间隙区域内只有溶剂分子而没有高分 子, 称为空缺作用( d e p l e t i o n ) , 在微粒之间存在斥力势 能 , 称此为空缺稳定 。 在可湿性粉剂加工过程中, 表面活性剂可吸附于加工 过程中形成的粒子表面, 防止粒子再聚集 , 也有助于粒子 粉碎加工。 然而 , 因为含微细粒子的分散体是不稳定 的, 所以药剂的粒子具有强烈絮凝的倾 向。絮凝是由相 互接近的粒子间的范德华力所致。为了抵消范德华力需 要一种斥力, 斥力就是通过在配方中加人表面活性剂来提 供, 有静电斥力和空间斥力两种类型的斥力起作用, 这取 决于表面活性剂的离子特性。表面活性剂可用于增进可 湿性粉剂粒子在水中的分散 、 悬浮, 也防止可湿性粉剂悬 浮液在被应用之前发生絮凝。 在乳油加工过程中, 表面活性剂是农药乳油的主要辅 助成分。表面活性剂影响着农药乳油的分散、 乳化、 湿 润、 渗透等性能。进而影响药效的发挥。农药用表面活性 剂多数为聚合物, 分子质量大, 分子链较长, 有的主分子 链上还带有分支, 成梳状结构, 具有易形成空间网状骨架 的可能性。当乳油体系中存在游离的胶体微粒时, 表面活 性剂分子吸附于胶体微粒表面, 使胶体微粒不易沉淀。表 面活性剂带有的电荷能改变环境的电动电位, 使体系更趋 稳定。乳油被水稀释, 产生水包油型乳状液。表面活性剂 防止乳状液分层沉积或絮凝, 从而保持所形成的乳状液呈 稳定 状 态 。 在悬浮剂加工过程中, 表面活性剂作为基本组分起着 重要的作用, 它吸附在原药预混物粒子的表面, 将有效成 分 的粒子表面润湿, 排出粒子间的空气。 在研磨过程 中, 表面活性剂有助于再润湿和分散重新形成更小的粒 子, 起助研磨剂作用。表面活性剂还有助于制剂的稳定 性。通过表面活性剂在粒子上的吸附, 可减少粒子的界 面能, 从而减少粒子聚结合并; 表面活性剂能够在粒子周 围形成扩散双电层。产生电动电势, 从而阻碍粒子之间 的聚结合并; 表面活性剂也可通过吸附在粒子界面上形成 一个致密的保护层, 通过“ 位阻” 作用迫使粒子分开 , 防 止沉淀的生成 , 从而增加悬浮剂的稳定性” 。 农药微乳剂的加工就是借助复合表面活性剂体系的增 溶作用, 将液体或固体农药溶于有机溶剂中形成的溶液均 匀分散在水中形成的光学透明或半透明的分散体系” 。 。 黄放良等发现农. ~ L 4 o o 与农. ~ L s o o ( 体积I : L 2 : 1 ) 混合物可以 使微乳剂中的高效氯氰菊酯微乳剂增溶 ” 。 表面游} 生 剂的 加入可以减少药物分子与水分子的接触, 对药物起到保护 作用, 如当表面活性剂质量浓度达到临界胶束浓度( c mc ) 后 , 胶束结构紧密 , 农药的水解被抑制 。 此外在农药加工后的储存过程中, 表面活性剂还能 抑制药物的氧化速度。药物的氧化性也是常见的性质之 一, 主要发生在醛类 、 醇类 、 酚类 、 肼类等含有易氧化 基团的药物中。链霉素氧化后成为无效的链霉素酸, P E G类表面活性剂对链霉素有稳定作用, 室温下存放 1 . 5 年 仅失效l 5 % 。 在其他农药剂型加工中, 表面活性剂的作用基本包括 在上述4 种剂型当中, 这里不再赘述。 2表面活性剂在农药使用中对其有效利用率的影响 农药喷雾后 , 雾滴沉积在植物叶片的表面上, 会发生 雾滴扩散和水分蒸发的动力学过程, 造成有效成分的质量 浓度逐渐升高, 或沉积在叶片表面, 或被叶片吸收, 所有 这些除与农药有效成分的化学性质有关外, 还与植物叶片 的结构、 表面活性剂的结构与性质有关。 2 . 1植物叶片结构的特征与农药沉积分布的关系 高等植物的叶片一般由表皮 、 叶肉、 叶脉3部分组 成 , 叶面即指叶片表皮的外侧, 覆有蜡质层和角质层。 作物叶片最外层的蜡质层 由脂肪酸、 酯类 、 酮, 、 醇 、 类 萜、 醛等有机物组成 , 具有防止水分损失、 物理伤害 、 病 菌侵入、 抗寒以及减少太阳辐射造成的伤害等多种作用。 表皮的蜡层主要以两种形式存在, 一种是晶状, 一种是不 规则状, 前者主要存在于禾本科植物, 后者主要存在于阔 叶作物, 晶状的蜡层对农药在叶面的展布是不利的, 位于 蜡质层以内的角质层, 其组成成分较为复杂, 不同植物叶 片的角质层化学成分、 结构、 形态等有很大差异。角质 层的外层几乎完全由疏水的角质组成, 内层由含有一定数 量角质的纤维素和果胶混合物组成。植物角质层是药液 叶面沉积与吸收的重要屏障, 农药在角质层的滞留、 渗透 及组织吸收效率直接影响化合物的活性和选择性。 同 时, 叶片表面的毛刺、 附着物更是形态繁多, 许多植物的 叶片表面还有多种能分泌特殊液体的腺体, 这些叶面附着 物对农药喷洒物的沉积和黏附行为有很重要的影响 。 当药液的雾滴沉降到植物叶片表面上时, 不论是粗大 的雾滴还是微小的雾滴 , 可能出现的情况有3 种: 微小的 雾滴可能落入叶片毛刺或其他毛刺物之间, 这种情况最有 利于雾滴与药液牢固地被叶片表面持留; 雾滴被夹持在毛 刺物之间, 这种情况也有利于雾滴或药液比较稳定的被叶 片表面持留, 但也可能受到振动而脱落 ; 雾滴 比较粗大 时, 如果雾滴没有被弹落, 也只能被架空在毛刺物之上 , 处于极不稳定的状态。在后两种情况下, 若药液有较强 的湿润展布能力, 就有可能借助于药液的湿润展布作用而 扩散到毛刺之间而得以比较稳定地被叶面持留, 但是粗大 的雾滴却仍将由于容易发生流失现象而从叶面表面脱落, 只有细雾滴在任何情况下都能够被叶面有效地持留” 。 2 . 2表面活性剂对植物叶面结构的影响 表面活性剂具有乳化、 分散、 润湿和渗透等作用 , 在 农药的施用中广泛地被用作添加剂。表面活性剂可以改 善药液在植物叶面的物理及化学特性 , 增加叶片对有效成 分的吸收, 使药液得到更有效的利用。表面活性剂在植 物叶面上吸附后, 会与气孔和蜡质层发生一定的相互作 用。表面活性剂也能引起气孔的运动。 Pa n等 。 用 Twe e n 一 8 0 的水溶液处理玉米叶片后, 发现叶片的蜡质有 溶解现象 , 并且使叶子的蒸腾作用扩大了1 ~3 倍 ; 在油 菜、 蚕豆等植物叶面喷洒OP 一1 0 或NP一 1 0 的溶液后, 由于 表面活性剂与膜和蛋白质的相互作用引起了叶片枯斑和组 织损伤, 甚至增加了乙烯的释放量, 引起对植物的药害。 叶小利等 系统地研究了烷基聚氧乙烯基醚( P P J ) 和蔗 糖脂肪酸脂( S F E) 对大豆叶片气孔 、 蜡质层、 乙烯释放量 等的影响, 结果表明: 随着表面活性剂质量浓度的增加, 气孔逐渐打开, 质量浓度继续增加, 气孔的孔径达到最大 后逐渐关闭, 蜡质层的溶解程度随表面活性剂质量浓度的 增加而逐渐增加 ; 低质量浓度时, 乙烯的释放量几乎不受 影响, 但表面活性剂的质量浓度进一步增加时, 乙烯的释 放量增加。表面活性剂在不同程度上调节大豆叶片气孔 开闭、 蜡质层的溶解和乙烯的释放量。

、胶体的性质:能发生丁达尔现象,聚沉,产生电泳,可以渗析,等性质胶体的应用 :1、农业生产:土壤的保肥作用.土壤里许多物质如粘土,腐殖质等常以胶体形式存在.2、医疗卫生:血液透析,血清纸上电泳,利用电泳分离各种氨基酸和蛋白质.3、日常生活:制豆腐原理(胶体的聚沉)和豆浆牛奶,粥,明矾净水.4、自然地理:江河人海口处形成三角洲,其形成原理是海水中的电解质使江河泥沙所形成胶体发生聚沉.5、工业生产:制有色玻璃(固溶胶),冶金工业利用电泳原理选矿,原油脱水等.什么是胶体?为了回答什么是胶体这一问题,我们做如下实验:将一把泥土放到水中,大粒的泥沙很快下沉,浑浊的细小土粒因受重力的影响最后也沉降于容器底部,而土中的盐类则溶解成真溶液.但是,混杂在真溶液中还有一些极为微小的土壤粒子,它们既不下沉,也不溶解,人们把这些即使在显微镜下也观察不到的微笑颗粒称为胶体颗粒,含有胶体颗粒的体系称为胶体体系.胶体化学,狭义的说,就是研究这些微小颗粒分散体系的科学. 通常规定胶体颗粒的大小为1~100nm(按胶体颗粒的直径计).小于1nm的几颗粒为分子或离子分散体系,大于100nm的为粗分散体系.既然胶体体系的重要特征之一是以分散相粒子的大小为依据的,显然,只要不同聚集态分散相的颗粒大小在1~100nm之间,则在不同状态的分散介质中均可形成胶体体系.例如,除了分散相与分散介质都是气体而不能形成胶体体系外,其余的8种分散体系均可形成胶体体系.(表1-1)见 习惯上,把分散介质为液体的胶体体系称为液溶胶或溶胶(sol),如介质为水的称为水溶胶;介质为固态时,称为固溶胶. 由此可见,胶体体系是多种多样的.溶胶是物质存在的一种特殊状态,而不是一种特殊物质,不是物质的本性.任何一种物质在一定条件下可以晶体的形态存在,而在另一种条件下却可以胶体的形态存在.例如,氯化钠是典型的晶体,它在水中溶解成为真溶液,若用适当的方法使其分散于苯或醚中,则形成胶体溶液.同样,硫磺分散在乙醇中为真溶液,若分散在水中则为硫磺水溶胶. 由于胶体体系首先是以分散相颗粒有一定的大小为其特征的,故胶粒本身与分散介质之间必有一明显的物理分界面.这意味着胶体体系必然是两相或多相的不均匀分散体系. 另外,有一大类物质(纤维素、蛋白质、橡胶以及许多合成高聚物)在适当的溶剂中溶解虽可形成真溶液,但它们的分子量很大(常在1万或几十万以上,故称为高分子物质),因此表现出的许多性质(如溶液的依数性、黏度、电导等)与低分子真溶液有所不同,而在某些方面(如分子大小)却有类似于溶胶的性质,所以在历史上高分子溶液一直被纳入胶体化学进行讨论。30多年来,由于科学迅速地发展,它实际上已成为一个新的科学分支——高分子物理化学,所以近年来在胶体表面专著(特别是有关刊物)中,一般不再过多地讨论这方面内容。

官能胶体的化学机械制备胶体化学发展简史 几种金属离子对OMG脱墨性能的影响 天然胶体化学组成及其生物效应研究 要哪几篇?也可以具体点,要哪些关键词。给个邮箱,发给你。

呵呵,我这里有,你给个邮箱给你发过去,有较多图片粘不过来

蜂胶研究论文

经功能实验证明,分别对免疫力低下者;化学性肝损伤危险者;血脂偏高者等具有保健功能。长期食用,可增强免疫力、抗氧化、清除自由基、促进组织修复、保肝护肝、调节内分泌、降血脂、血糖、血压等作用。 小森林蜂胶是始建于1991年的湖北随州鸿发蜂产品有限公司历经20余年倾力打造的专业蜂产品品牌,其系列产品先后荣获国际蜂产品保健博览会金奖、国际蜂疗保健学术研究会金奖、中国蜂产品研制金奖、中国蜂产品消费者满意十佳、湖北名牌等20余项国内及国际性大奖。小森林蜂胶的显著成就源于湖北随州鸿发蜂产品公司强大的研发实力及专业的制造水准,公司作为国内最早从事蜂胶研发生产、首批出口蜂胶原料的专业厂家,拥有大批从业经验丰富的专业技术人才。公司创始人陈尚发先生身为国际蜂疗保健学术研究会研究员、中国蜂产品协会蜂胶专家库八大专家之一,参与了中国首部蜂胶行业标准的制定评审,撰写的多篇蜂胶学术论文在蜂业届引起轰动,其将毕生精力奉献给中国蜂业事业已被载于蜂业史册——《中国蜂业简史》。公司生产研发设备先进并具有健全的生产及质量管理体系,拥有四大天然蜂产品原料培植基地及通过GMP 标准认证的蜂产品生产基地,生产基地建有达十万级净化标准的生产车间及先进的无菌研发试验中心;拥有雄蜂蛹发明专利等多项自主研发成果,先后通过出口食品生产企业卫生注册及GMP、ISO9001、QS等认证。公司自组建至今,一直秉承“敬业、守法、诚信、宽容”的企业理念和“以亿万人民健康为已任”的经营宗旨,以质量求生存、以高新技术产品为导向,始终保持良好的发展态势。2011年,小森林蜂胶整合旗下资源组建成立湖北小森林保健品集团,下辖湖北随州鸿发蜂产品有限公司、随州小森林保健品有限公司、武汉小森林蜂业有限公司、湖北宇汇科技有限公司等四家子公司,集蜜蜂饲养、珍稀蜜源植物培育、养蜂技术培训,咨询服务、蜂产品研发、生产,销售、蜂产品原料贸易、蜂文化传播及对农业投资于一体。未来,集团公司将引入更为科学的管理方式,全力以赴,革故鼎新,不断完善,努力打造中国蜂胶第一品牌。

国家“九五”重点科技攻关项目蜂胶专题研究组主持人国家蜂胶产业创始人、奠基人中国“948”重点产业化推广项目主持人中国蜂胶产业,糖尿病抗氧化特膳产业创始人中国养蜂学会饲养管理专业委员会副主任中国蜂产品协会蜂产品医疗保健专业委员会副主任中国蜂协蜂胶专业委员会副主任中国中医药研究开发协会中医蜂疗专业委员会副会长中国科协工程学会抗氧化专业委员会主任北京中健高科研究所所长河南大学药学院客座教授中国农业大学客座教授福建农林大学研究生导师北京天宝康高新技术开发有限公司董事长刘福海教授是我国著名蜂胶行业的科学家,是国家“863”计划蜂胶研究的主持人,国家重点攻关项目蜂胶黄酮抗氧化研究项目主持人、中国农业部蜂胶质量标准编制组主持人、中国中医药研发协会中医蜂疗专业委员会副主任,中国科协工程学会联合会抗氧化专业委员会主任,2010年共和国经济建设突出贡献人物荣誉称号,2011年第四届华夏高科技创新一等奖获得者。刘富海教授是国内第一位研究蜂胶提纯技术的创始人,当他研究成功后,把提纯技术转让给了现在的北京知蜂堂,同时和许正鼎建立蜂珍蜂胶,中国农科院在刘富海教授的带领下研制了华兴牌蜂胶,同期扶植中宏蜂胶,两年后,刘富海教授携研发团队跳出了中国农科院,自己成立了天宝康蜂胶!刘富海教授从事蜂胶研究16年,创建了我国权威专家最多、质量标准最高的蜂胶行业领军企业——北京天宝康高新技术开发有限公司,专业为国人生产、推荐最优质的蜂胶抗氧化产品。刘富海教授是中国蜂胶研究的第一人,接受过中央电视台的专访及国内外众多新闻媒体的采访报道。 刘富海教授从苹果削皮后为什么变黄,到人的血管为什么会逐渐被堵塞,深入浅出地讲解了氧化的现象和危害,提出了蜂胶是世界上最好的抗氧化剂,而且蜂胶无毒、无害,无激素,纠正了许多人对蜂胶的偏见,建议国人多多食用真正的蜂胶产品。刘富海教授指出,正像20元钱买不到金项链一样,20几元的蜂胶绝对不是真的蜂胶,而是假蜂胶,刘教授还详细讲解了真蜂胶和假蜂胶在色泽、口感、外观等方面的区别,让消费者擦亮眼睛,避免被假蜂胶所害。 刘富海,1985年大学毕业后开始从事蜜蜂事业工作。近20年来,一直为我国蜂业的发展辛勤地工作。1985年,他提出并设计了蜜蜂卵“电融合”体外受精技术,受到中国科学院动物研究所著名克隆技术专家陈大元教授的充分肯定和大力支持。1989年参加中日合作研究项目,对蜜蜂营养代谢进行深入研究,研制出深受广大蜂农欢迎的蜜蜂饲料添加剂,加速了蜜蜂的春季繁殖和优质高产的进程。该研究结果在1993年第33届国际养蜂会议及国内学术会议上进行交流,荣获优秀论文奖。1992年3月至1994年12月,他作为主要执行人参加“八五”农业部重点课题“蜜蜂王浆优质高产生物学因素及生产技术的研究”,该项目于1995年圆满通过农业部课题验收。1994年,参加研究的“蜜蜂大卵育王技术研究与应用”通过技术鉴定;该课题1995年荣获浙江省科技进步三等奖。1995年,负责中国农科院蜜蜂研究所蜂产品开发期间,3项产品荣获国家农业博览会金质奖。1995年~1998年,主持蜂胶提取物防治糖尿病研?究,取得一系列可喜成果。该项研究1998年通过专家鉴定,并荣获北京市卫生局科技进步二等奖,为我国蜂胶的开发奠定了基础。1996年~1999年,主持两项“九五”国家重点科技攻关项目蜂胶研究专题,对蜂胶毒理、药理、提取分离、抗菌、抗氧化性能等方面进行研究,取得了一系列科研成果;发明了“蜂胶分段逆流提取技术”,并于2000年通过国家科技部成果验收。1998年,主编的《神奇蜂胶疗法》、《世纪健康话题》相继出版,大大促进了蜂胶产业的发展。1999年,发明的“蜂胶驱蚊杀菌香皂”获得国家发明专利,并荣获香港国际专利技术博览会金奖。同年,蜂胶被列入国家“948”重点产业化推广项目。2000年,参与编制国家农业部蜂胶质量标准。2001年,他组建“北京天宝康高新技术开发有限公司”,带领十余名科技人员,投入大量的财力、人力,在全国范围内进行蜂产品科普宣传。1999年~2003年,在全国各地电台、电视台、学术会议、各种礼堂、会议室等,举办大中小科普讲座数千次,为我国蜂产品的开发和相关知识的普及做出了重要贡献。2002年,中国老年学会医疗保健专业委员会,聘请刘富海为《中老年健康课堂》教授、《中老年健康课堂》杂志编委。2003年,刘富海先生组建的天宝康公司通过了“IS0900l国际质量管理体系”认证,并被国家科技部列为“中国优秀高新技术企业”。再一次为我国蜜蜂行业争得了荣誉,也为我国蜂产品生产与服务树立了榜样。近20年来,刘富海先生发表研究论文50余篇,主编和参编蜂业书籍8部。他通过自己不懈努力,为我国的养蜂事业,尤其是蜂胶产业的开发做出了重要的贡献。2010年元月17日由中国国际经济技术合作促进会、中国企业改革发展研究中心、全国产业经济国情调查办公室文化产业委员会联合主办的爱我中华-----共和国经济建设杰出贡献人物事迹报告暨新年座谈会在北京钓鱼台国宾馆隆重召开,鉴于刘富海教授对中国经济社会建设、抗氧化事业和蜂胶事业所做出的突出贡献以及所在行业的影响力和知名度,特授予“时代楷模-共和国经济建设杰出人物”荣誉称号。2011年8月20获得第四届华夏高科技产业创新奖获奖项目“天然蜂胶黄酮抗氧化研究及产业化”,通过对蜂胶的提取、分离、毒理、药理、稳定性试验、抗菌、抗氧化试验、稳定性试验、剂型、配方、质量标准等内容研究,掌握了蜂胶的相关性能及生产加工技术,不仅证明蜂胶有很强的防腐抗氧化作用,而且安全无毒,应用广泛,为我国的蜂胶开发利用奠定了基础。另一获奖项目“铸铁件砂型近净成型技术研究及产业化开发”,成功研制出高温下具有良好还原气氛层的粘接剂组元,并通过正交试验和工艺试验确定了配方。

胶体化学论文

你知道写篇论文有多难吗?在这是求不到的,即便求到也是网上的,你还不如自己去搜,最好自己写。我也正在写

你至少要把题目补完啊,虽然你的学号已经暴露了你是谁。。

什么是高分子呢?它是由许多结构相同的单体聚合而成的,分子量往往是几万、儿十万。结构的形状也很特别,如果说普通分子象个小球,那未高分子由于单体彼此连接成长链,就象一根有50米长的麻绳。有些高分子长链之间又有短链相结而成网状。又由于大分子与大分子之间存在引力,这些长链不但各自卷曲而且相互缠绕,形成了既有一定强度、又有不同程度弹性的固体。固为分子大,长链一头受热时,另一头还不热,故熔化前有个软化过程,这就使它具有良好的可塑性,正是这种内在结构,使它具有包括电绝缘在内的许多特性,成为新型的优质材料。人们对它们的组成、结构的认识和合成方法的掌握经历了一个实践——认识——实践的曲折过程。1812年,化学家在用酸水解木屑、树皮、淀粉等植物的实验中得到了葡萄糖,证明淀粉、纤维素都由葡萄糖组成。1826年,法拉第通过元素分析发现橡胶的单体分子是C5H8,后来人们测出C5H8的结构是异戊二烯。就这样,人们逐步了解了构成某些天然高分子化合物的单体。1839年,有个名叫古德意尔的美国人,偶然发现天然橡胶与硫磺共热后明显地改变了性能,使它从硬度较低、遇热发粘软化、遇冷发脆断裂的不实用的性质,变为富有弹性、可塑性的材料。这一发现的推广应用促进了天然橡胶工业的建立。天然橡胶这一处理方法,在化学上叫作高分子的化学改性,在工业上叫作天然橡胶的硫化处理。进一步试验,化学家们将纤维素进行化学改性获得了第一种人造塑料——赛璐珞和人造丝。1889年法国建成了最早的人造丝工厂,1900年英国建成了以木浆为原料的粘胶纤维工厂,天然高分子的化学改性,大大开阔了人们的视野。1907年,美国化学家在研究苯酚和甲醛的反应中制得了最早的合成塑料——酚醛树脂,俗名电木。1909年德国化学家以热引发聚合异戊二烯获得成功。在这一实验启发下,德国化学家采用与异戊二烯结构相近的二甲基丁二烯为原料,在金属钠的催化下,合成了甲基橡胶,开创了合成橡胶的工业生产。上述对高分子化合物的单体分析,天然高分子的化学改住的实践和在合成塑料、合成橡胶方面的探索,使人们深切地感到必须弄清高分子化合物的组成、结构及合成方法。对于这个基础理论问题人们所知甚少,这一理论发展的缓慢与高分子本身的复杂特性有关。化学家们一直搞不清它们的分子量究竟是多少,它为什么难于透过半透膜而有点象胶体,它为什么没有固定的熔点和沸点,不易形成结晶?这些独特的性质以当时流行的化学观来看是很难理解的。早在1861年,胶体化学的奠基人,英国化学家格雷阿姆曾将高分子与胶体进行比较,认为高分于是由一些小的结晶分子所形成。并从高分子溶液具有胶体性质着眼,提出了高分子的胶体理论。这理论在一定程度上解释了某些高分子的特性,得到许多化学家的支持。尽管也有化学家提出了不同看法,但均未引起注意。我们将支持格雷阿姆的高分子胶体理论的称为胶体论者。他们拿胶体化学的理论来套高分子物质,认为纤维素是葡萄糖的缔合体。所谓缔合即小分子的物理集合。他们还因当时无法测出高分子的末端究甲醛和丙二烯的聚合反应出发,认为聚合不同于缔合,它是分子靠正常的化学键结合起来。天然橡胶应该具有线性直链的价键结构式。这篇论文的发表;就象在一潭平静的湖水中扔进一块石头,引起了一场激烈的论战。

langmuir是顶级期刊

相关资料:Langmuir (朗缪尔) 是美国化学学会出版的期刊之一,创刊于1985年,其名来源于1932年诺贝尔化学奖得主欧文·朗缪尔的姓氏。现在的主编是加拿大多伦多大学化学系的教授Prof. Gilbert C. Walker,主要发表表面化学和胶体化学领域的论文。2018年的影响因子为,JCR分区为化学大类2区 Top,小类分区为3区(物理化学,材料科学),最近几年的年发文量为1700篇左右。Langmuir 为标准同行评审的非开源期刊,出版周期为半月,审稿周期为2~3月,投稿命中率为45%。

研究生论文胶状

华南理工大学环境与能源学院2017硕士研究生答辩工作通知

学院将于2017年6月8日(星期四)上午9:00统一进行硕士研究生答辩会,请各导师和学位申请人做好答辩各项准备工作。下面,我为大家提供华南理工大学环境与能源学院关于2017年上半年硕士研究生答辩时间及办理答辩手续等有关工作安排的通知,全文如下:

一、答辩资格

已经完成毕业资格审核且论文评审通过的学位申请人办完答辩手续后可以参加答辩。

1.毕业资格审核:培养环节材料没有交齐,未完成毕业资格审核的学位申请人,不能参加答辩,学位申请人可登陆研究生系统(以下简称“系统”)查看毕业资格审核结果。

2.我校学位办盲审和学院盲审的论文,评审结果会直接在系统上显示,学生可以在系统上查询。对于免盲审的学位申请人,评审结果请在5月25日前返回到教务员处,由教务员录入系统,在系统上学位申请人可以查阅评审结果。论文评审结果没有录入系统之前,学位申请人无法在系统里面填写答辩材料!论文评审结果分为同意答辩、适当修改后可答辩、须做重大修改后方可答辩、不同意答辩四种情况,按以下方式统一处理:

(1) 如两位评阅人均同意答辩,论文作者即可申请学位论文答辩。

(2)如有一位评阅人认为论文需要进行适当的修改,另一位评阅人同意答辩,或两位评阅人均认为论文需要进行适当的修改,论文作者应当按照修改意见进行修改,并经指导教师审阅通过后方可答辩。

(3)评审结果出现下列情况之一,不能进行答辩申请。论文作者须对论文做出重大修改,三个月后至一年内方可重新申请论文答辩:

①有评阅人不同意答辩。

②有评阅人认为论文需做重大修改后方可答辩。

二、办理答辩手续

1. 5月31日前后学院公布各学位申请人的答辩分组和答辩委员会名单,下发答辩用成绩单(一式两份)、答辩委员空白聘书(5份/生)给学位申请人。6月2日前学位申请人将已经胶状好的学位论文6本((符合学位论文撰写规范要求))和已经填写好的答辩委员聘书交给各组答辩委员会秘书(论文最终版的学位论文pdf电子版以”专业名称+学号+姓名”命名请发送给各答辩组秘书),由答辩委员会秘书组织将学位论文提前送给答辩专家审阅,论文具体递送方式由秘书安排。

2. 学院公布各学位申请人的答辩分组安排和答辩委员会名单以后,学位申请人开始准备以下答辩材料,材料上如有本人签字或导师写意见签名的地方需首先签写完整,然后将所有材料装入学院下发的答辩专用档案袋内(在职工程硕士请到学院办公室B4-209领取),各答辩组于6月1日收齐档案材料交到学院办公室(以答辩组为单位上交),学院教务员对答辩材料进行审核,在材料上相应位置盖章签字后通知各组取回并下发答辩表决票5张/人。

(1)硕士研究生档案目录(本表请直接从网页下载打印,下载地址;):填写好姓名、专业、指导教师、学院。

(2)学位信息打印件1份和授予学位人员资格审批表(以下简称“审批表”)1份:学位申请人登录“研究生系统”在“我的学位自助”填写有关学位信息,填写完整并核对无误后提交,提交后即可打印资格审批表和学位信息打印件。

学位信息打印件打印出来以后,请学位申请人在学位信息打印件右上角指定位置签名确认。

“审批表”用A4纸单面打印,该表除了签名外所有内容必须用电脑录入,不可手写,表中的成绩审核栏办理答辩手续时由教务员审核签名,表中的答辩决议在答辩完后由答辩秘书统一填写并请答辩委员会主席签名。该表作为学院学位评定分委员会、校学位评定委员会审议的主要依据,学位申请人本人要据实、完整地在系统中录入信息并打印此表,如有涂改、手写、放空不填或其它明显错误的将责令学位申请人重填。

(3)研究生学位(毕业)论文答辩及授予学位审批材料(以下简称“审批材料”)一式2份:学位申请人下载 “审批材料”(学术型硕士和专业学位硕士分别对应附件1和附件2),“审批材料”一式两份,用A4纸单面打印并装订成册。用钢笔、签字笔填写(也可经电脑填写、打印,但签名的地方需用笔签名),填写完后请导师签署意见。材料第3页“Ⅱ-2培养计划完成情况”(工程硕士为“Ⅱ-2课程学习情况” )用教务员统一下发的成绩单替换。材料上学院审查意见、学位评定分委员会意见在学院审核时由教务员填写。材料第11页“Ⅳ - 2答辩委员会对论文的评定意见”答辩会结束后由答辩秘书统一填写并请答辩委员会成员签名。

(4)评阅书2份:免盲审要求原件,盲审要求复印件(由教务员下发)。

(5)硕士学位论文分会复审意见表(附件3)1份:学位论文评阅结果出现1份或者2份要求“适当修改后”答辩的`学生,需要提交硕士学位论文分会复审意见表。2份评阅书均为同意答辩的学生无需交此表。

(6)在职的工程硕士需要准备两张与在研究生院综合管理系统中上传的电子照片一致的大1寸彩色免冠相片各一张用于制作学位证书。相片要求如下:

① 采集标准:

·图片尺寸(像素):宽150、高210

·大小:≤10K、格式:JPG

·成像区全部面积48mm×33mm;头部宽度21mm-24mm,头部长度28mm-33mm;下额到头顶25mm-35mm;像长35mmX45mm

·被摄人服装:白色或浅色系

·照片背景:单一蓝色

② 电子照片必须由数码相机拍摄,免冠,头顶距离顶部约占照片高度的3/10。

3. 硕士学位论文答辩:6月8上午9:00开始进行学位论文答辩。学位申请人必须已经办完答辩手续,材料齐全方可参加答辩会。学位申请人请自行准备20分钟ppt汇报论文主要内容,答辩过程按照学校“华南理工大学研究生学位论文预答辩和答辩的基本程序”(附件3)执行。

4.答辩后学位申请人根据答辩专家意见修改论文。6月8前答辩委员会秘书务必先将“审批材料”第11页“Ⅳ - 2答辩委员会对论文的评定意见”整理好发给学位申请人用于装订学位论文(装在每本存档论文的致谢部分的后面),存档的学位论文要求准备至少4本,并于6月12日12:00前交3本到学院,另1本由学生在图书馆办理离校手续时自行交到图书馆。注意:这4本论文用于存档,必须完整、准确:(1)题名页分类号、答辩委员会成员要填写完整;(2)原创性声明部分作者签名、是否保密、导师签名、联系地址、邮箱和电话、日期都必须签写完整。(3)封面导师姓名要含职称,且不能出现简称用语,比如“高级工程师”写成“高工”。导师姓名必须与系统里面的导师姓名一致。学术型硕士导师只能填1人(入学时以联合培养招收的学术型硕士导师是2人),专业学位导师2人。

答辩委员会秘书请于6月9日12:00之前将已经整理好的学位申请人的档案袋交到学院。

原文地址:

在打印店.用专用的机器把专用得粘胶涂在要装订的材料的左边.然后就能装订成册了!

应该是在打印店,用专用的机器把专用的粘胶涂在要装订的材料左边,然后就能装订成册了,毕业论文都是这么搞得

胶体化学论文文献

沉淀法制备二氧化钛纳米粉体 XXX 化学与材料科学学院 04级化学 0409319 摘 要:本文以TiCl4和为原料,采用沉淀法制备TIO2纳米微粉,利用XRD等测试手段对样品的晶相组成、晶粒尺寸等性质进行分析,并在此基础上对晶粒尺寸、物相组成与PH值、干燥方法之间的关系进行讨论。结果表明:原料的pH值对粉体的晶型有显著影响,且微波处理相比传统的烘箱干燥,可得到晶粒更为细小的粉体。调整溶液的pH=7,微波处理10分钟, 700°C烧成并保温30min,可得到粒经小于35nm、颗粒分布均匀、团聚少的锐钛矿型TiO2粉体。 关键词: 二氧化钛;沉淀法;微粉 PREPARTION OF TITANIA DIOXIDE NAN-POWDER BY PRECIPITATIONXiao Junli (College of Chemistry and Materials Science, Anhui Normal University, Wuhu,241000)Abstract: Titania nano-powder was prepared by precipitation method, using TiCl4 as raw material .The crystal phase, grain size and morphology of samples were studied by XRD. Affection of the factors such as pH, drying method and temperature on the samples were discussed in details. The result shows: sample’s crystal phase is affected by pH value of the solution, and the sample, treated with microwave, has lesser grain size than the one dried by traditional method. The TiO2 powders calcined at 700oC for 30 min, for using the TiCl4 solution with pH value of 7 are anatase with less than 35 min diameter in even granularity distribution and less agglomerate after treated by microwave for 10 min. Key words: titanium dioxide; precipitation; nano-powder一.综述 (一) TiO2的结构和性能 常见的二氧化钛有金红石、锐钛矿和板钛矿3 种结构[1,3],前两者为四方晶系,后者为斜方晶系,金红石和锐钛矿结构虽均为四方晶系,但两者的空间群不相同, 3 种晶体构型虽都是[ TiO6 ]八面体共棱为基础的,但每种晶型的[ TiO6 ]八面体与其它晶型的[ TiO6 ]八面体共棱的数目不同,金红石是以2 个棱联结,板钛矿为3 个棱联结,而锐钛矿以4 个棱共用。由于锐钛矿、板钛矿和金红石的结构不同,稳定性不同,板钛矿和锐钛矿是低温相、金红石是高温相,前二者可以在600 ℃以上温度转变为金红石型,这种转化不是突跃式的,而是渐进的和不可逆的,这个转化除了受温度影响外,还受到能加速或阻止晶型转化的促进剂和抑制剂的影响。由于纳米金红石型二氧化钛的高稳定性、耐腐蚀性、耐候性和对人体无害性,以及它高的折射率、优异的透光性和很强的紫外线屏蔽能力,使它在高级涂料、化妆品、高分子材料、文物保护等诸多方面有巨大的应用前景,因而引起了人们的极大关注。而锐钛矿型二氧化钛旧称八面石。是钛矿的主要矿物组分之一。理论含钛60%。四方晶系,晶体呈锥状、板状或柱状等,晶体形态变化大。褐、黄、浅紫、灰黑、浅蓝绿色等。金刚光泽。硬度~,密度~。产于区域变质岩系的石英脉中或作为副矿物产于火成岩及变质岩中。用于生产钛白粉和海绵钛,也是提炼金属钛的矿物原料。 纳米材料是一种新兴材料,一般是指粒径小于 100 nm 的超微颗粒。这种超微颗粒具有表面积大,表面活性高,良好的催化特性,它既具有金属和非金属的特异性能。随着现代科学技术的迅速发展,纳米材料的应用也越来越广泛,对其要求也越来越高。就纳米二氧化钛而言,由于它具有极大的体积效应、表面效应、光学特性、颜色效应,故在光、电及催化等方面显示出其特殊性质,所以它作为一种新型材料,其应用领域日益广泛。 (二) 纳米TiO2 的应用 由于TiO2微粉具有这些特殊性能,这就决定了它在各个领域中具有广阔的应用前景。 (1)在化学工业中的利用 催化是纳米超微粒子应用的重要领域之一。利用纳米超微粒子的高比表面积与高活性可以显著地提高催化效率,国际上已作为第四代催化剂进行研究和开发。纳米 TiO 2 具有很高的化学活性,良好的耐热性和耐化学腐蚀性,可用作性能优良的催化剂、催化剂载体和吸收剂。如纳米 TiO2 在催化 H 2 S 除去 S 时,显示出相当高的催化活性。此外,纳米 SiO 2 和 TiO 2的无机或有机复合材料具有特殊功能,这些纳米材料正在开发中[1,2]。 (2)在电子工业产品中的应用 纳米 TiO 2是许多电子材料的重要组成部分,可用于制作纳米敏感材料及纳米陶瓷功能材料。由于纳米粒子尺寸小,比表面积大,表面活性高,所以适合作气敏材料,如有纳米 TiO 2 可制成灵敏度很高的气敏元件。同时,由于纳米相陶瓷一次成型塑性形变是可以实现的,人们利用纳米 TiO2 一次成型形变制成了纳米 TiO2陶瓷,这种陶瓷具有超细晶粒尺寸并保持它们的特性[3,4]。 (3)在环保方面的应用 纳米 TiO 2 粒子的光催化作用在环保方面有广阔的用途。国内外有许多文献报道了这方面的进展。英国伦敦和安大略核子技术环境公司,开发了一种新颖的常温光催化技术,采用人工光和纳米二氧化钛催化剂,可将工业废液和污染地下水中的多氯联苯类化合物分解[5]。当污染水通过二氧化钛涂层网络时,只要受到低计量紫外光的照射,便会发生反应,生成活性极强的氢氧自由基,迅速将有机毒物分解为二氧化碳和水。此外,利用纳米 TiO2 材料作为光催化剂还可催化降解纺织印染业和照相业排出的染料污染物。随着社会经济的发展,人们越来越重视生活质量和健康水平的提高。抗菌、防腐、除味、净化空气、优化环境将成为人们的追求。当前全球面临着严重的环境污染,纳米 TiO 2 作为而久的光催化剂已被应用在除了水和空气净化之外的各种环境方面的问题。有关资料表明,纳米TiO 2 对于破坏微观的细菌和气味是有用的。另外还可以使癌细胞失活,对臭味(4)在化妆品工业中的应用 纳米 TiO 2 具有优异的紫外线屏蔽性,再加上它的透明性(不会在皮肤上残留白色,能厚涂抹)和无毒(不会刺激皮肤引起发炎)等特点,至今已成为防晒化妆品的理想原料。据行业报道,在日本每年已有一定量的纳米 TiO 2作为防晒剂、化妆品底和口红等产品的添加原料[5,6]。 (5)在医药卫生和食品加工领域的应用 纳米结构不仅坚固,而且具有自身对抗外界不纯物质的能力,不易与外界不纯物质结合。同时,纳米级微粒或有机小分子将更有利于人体吸收,能提高药物的效能。因此纳米 TiO 2在健康卫生及食品工业有广阔的应用前景。有资料报道,已开发出具有抗菌和净化性能的 TiO 2薄膜陶瓷。另外,纳米 TiO 2已应用在食品工业中,如作乐百氏奶的添加剂。 此外,纳米 TiO 2 在塑料、涂料等工业也有广泛应用,可用作塑料填料、高级油漆、涂料的原料[5,7]。 (三) TiO 2粉体的制备 由于纳米 TiO 2具有许多优异性能,其用途相当广泛,因而其制备受到国内外的极大关注。目前制备纳米 TiO 2 粉体的方法主要有两大类:物理法和化学法。 (1)物理法 制备纳米 TiO 2 粉体的物理法主要有溅射,热蒸发法及激光蒸发法。物理法制备纳米粒子是最早的方法,它的优点是设备相对来说比较简单,易于操作和易于对粒子进行分析,能制备高纯粒子,还可制备薄膜和涂层。它的产量较大,但成本较高[7]。 (2)化学法 制备纳米 TiO2 粉体的化学方法主要有液相法和气相法。液相法包括沉淀法、溶胶-凝胶法和W/O微乳液法;气相法主要有 TiCl 4气相氧化法。液相法反应周期长,三废量较大,虽然能首先得到非晶态粒子,高温下发生晶型转变,但煅烧过程极易导致粒子烧结或团聚;而气相氧化法具有成本低、原料来源广等特点,能快速形成锐钛型、金红石型或混合晶型 TiO2 粒子,后处理简单,连续化程度高。但此法对技术和设备要求较高[8]。 1)均匀沉淀法 纳米颗粒从液相中析出并形成包括两个过程:一是核的形成过程,称为成核过程;另一是核的长大过程,称为生长过程。当成核速率小于生长速率时,有利于生成大而少的粗粒子;当成核速率大于生长速率时,有利于纳米颗粒的形成。因而,为了获得纳米粒子必须保证成核速率大于生长速率,即保证反应在较高的过饱和度下进行。均匀沉淀法制备纳米 TiO 2 是利用 CO(NH 2 ) 2 在溶液中缓慢地、均匀地释放出 OH - 。其基本原理主要包括下列反应[9]: CO(NH 2 ) 2 +3H 2 O=2NH 3 ·H 2 O+CO2 ↑ NH 3 ·H 2 O=NH 4 + +OH – TiO 2 + +2OH - =TiO(OH) 2 ↓ TiO(OH) 2 =TiO 2 +H2 O 在这种方法中,不是加入溶液的沉淀剂直接与 TiOSO 4发生反应,而是通过化学反应使沉淀在整个溶液中缓慢地生成。向溶液中直接添加沉淀剂,易造成沉淀剂的局部浓度过高,使沉淀中夹有杂质。而在均匀沉淀法中,由于沉淀剂是通过化学反应缓慢生成的,因此,只要控制好生成沉淀剂的速度,就可避免浓度不均匀现象,使过饱和度控制在适当范围内,从而控制粒子的生长速度,获得粒度均匀、致密、便于洗涤、纯度高的纳米粒子。该法生产成本低,生产工艺简单,便于工业化生产。 2)溶胶-凝胶法 溶胶-凝胶法是制备纳米粉体的一种重要方法。它具有其独特的优点[10],其反应中各组分的混合在分子间进行,因而产物的粒径小、均匀性高;反应过程易于控制,可得到一些用其他方法难以得到的产物,另外反应在低温下进行,避免了高温杂相的出现,使产物的纯度高。但缺点是由于溶胶-凝胶法是采用金属醇盐作原料,其成本较高,其该工艺流程较长,而且粉体的后处理过程中易产生硬团聚。 采用溶胶- 凝胶法制备纳米TiO 2 粉体,是利用钛醇盐为原料。原先通过水解和缩聚反应使其形成透明溶胶,然后加入适量的去离子水后转变成凝胶结构,将凝胶陈放一段时间后放入烘箱中干燥。待完全变成干凝胶后再进行研磨、煅烧即可得到均匀的纳米 TiO 2粉体。有关化学反应如下: 在溶胶-凝胶法中,最终产物的结构在溶液中已初步形成,且后续工艺与溶胶的性质直接相关,因而溶胶的质量是十分重要的。醇盐的水解和缩聚反应是均相溶液转变为溶胶的根本原因,控制醇盐水解缩聚的条件是制备高质量溶胶的关键。因此溶剂的选择是溶胶制备的前提。同时,溶液的 pH 值对胶体的形成和团聚状态有影响,加水量的多少会影响醇盐水解缩聚物的结构,陈化时间的长短会改变晶粒的生长状态,煅烧温度的变化对粉体的相结构和晶粒大小的影响。总之,在溶胶- 凝胶法制备 TiO 2 粉体的过程中,有许多因素影响粉体的形成和性能。因此应严格控制好工艺条件,以获得性能优良的纳米 TiO2 粉体。 3)反胶团或W/O微乳液法 反胶团或 W/O 微乳液法是近十年发展起来的一种新方法。该法设备简单,操作容易,并可人为控制合成颗粒的大小,在超细颗粒,尤其是纳米粒子的制备方面有独特优点。 反胶团是指表面活性剂溶解在有机溶剂中,当其浓度超过CMC (临界胶束浓度)后,形成亲水极性头朝内,疏水链朝外的液体颗粒结构。反胶团内核可增溶水分子,形成水核,颗粒直径小于 100 nm 时,称为反胶团,颗粒直径介于 100~2 000 nm时,称为 W/O 型微乳液[11]。 反胶团或微乳液体系一般由表面活性剂,助表面活性剂,有机溶剂和 H2O 四部分组成。它是一个热力学稳定体系,其水核相当于一个“微型反应器”,这个“微型反应器”具有很大的界面,在其中可以增溶各种不同的化合物,是非常好的化学反应介质。反胶团或微乳液的水核尺寸是由增溶水的量决定的,随增水量的增加而增大。因此,在水核内进行化学反应制备超微颗粒时,由于反应物被限制在水核内,最终得到的颗粒粒径将受水核大小的控制。 反胶团或微乳液法制备纳米 TiO 2是利用 TBP (磷酸三丁酯)为萃取剂,煤油作稀释剂,在室温下萃取金属钛离子,同时控制条件使其形成有机相的反胶团溶液,将该溶液在室温下以氨水反萃,控制氨水用量和浓度,将得到的沉淀物洗涤干燥焙烧,即获得纳米 TiO 2粉体。 反胶团或微乳液法可利用胶团大小来控制微粒尺寸,在纳米粒子制备中具有潜在优势,但这种方法刚刚起步,有许多基础研究要做,反胶团或微乳的种类、微观结构与颗粒制备的选择性之间的规律尚需探索,更多的用于超微颗粒合成的新反胶团或微乳液体系需要寻找。 4) TiCl 4 气相氧化法 气相法制备纳米TiO 2 比较典型的是 TiCl 4气相氧化法。该法以氮气作TiCl 4的载气,以氧气作氧化剂,在高温管式气溶胶反应器中进行氧化反应,经气固分离,获得纳米 TiO 2粉[12]体。在此过程中,停留时间和反应温度对 TiO2的粒径和晶型有影响。 其反应原理:气相反应器中,反应物的消耗对粒子成核速率的影响比对生长速率的影响大,因为成核速率对体系中产物单体过饱和度更加敏感。随着反应进行,过饱和度迅速降低。反应初期以成核为主,而在反应后期成核终止,以表面生长为主。通常在高温下反应速率极快,延长停留时间,只是延长了粒子生长时间,因此产物粒径增大,比表面积减小。同时,停留时间延长,锐钛分子簇有足够时间转变成金红石分子簇,使金红石含量增大。另外,气相反应器中,超微粒子形成过程包括气相化学反应、表面反应、均相成核、非均相成核、凝并和聚集或烧结等步骤。在高温下气相反应速率非常快,以致温度变化对成核速率的影响已不显著,而温度升高,粒子表面单分子外延和表面反应速率加快;同时气体分子平均自由度增大,粒子之间碰撞加剧,颗粒凝并速率增大,粒子间易发生凝并长大。另外由于反应器中初生粒子相当细小,颗粒边界表面能很大,小粒子极易逐渐扩散,融合形成大粒子,从而降低表面能,反应温度越高,晶界扩散速率越快,烧结驱动力越大,从而导致粒子比表面积减小、粒径增大。 (四)本实验采用沉淀法制备二氧化钛的原因 (1)优点 原料来源广,成本低,设备简单,适于大规模生产, TiCl 4是一种廉价易得得化工原料,此法可得到分散性好粒经均匀得纳米级TiO 2,此实验重现行好,操作简单,粒径可控[10,11,12,13]。 (2)缺点 本实验在过滤,干燥和煅烧过程中易引起粒子间团聚,影响产品的分散性.由于过程中Cl-等无机离子的引入,需反复洗涤除去这些离子,存在工艺流程长,废液多,产物损失大的缺点,完全除去无机粒子较困难,所得的产物纯度不高[10,11,12,13]。二.实验部分 (一) 原料及设备 本文所采用的实验药品及规格如下表所示: 表1 实验药品及规格药品名称化学分子式等级四氯化钛TiCl 4AR无水乙醇C2H5OHAR氨水盐酸HClAR蒸馏水H2O自制硝酸银AgNO3AR本文所使用的实验设备及型号如下: 玻璃器皿 PH试纸 TG16G型离心机 DHG-9053A型干燥箱 HO3-A型磁力搅拌器 (二)实验工艺煅烧TiO2粉体TiCl4(aq)pH<1的水溶液氨水水洗调试pH值C2H5OH洗涤恒温箱80OC干燥微波干燥图1. 沉淀法制备TiO2粉体工艺流程图

导电胶 具有室温、高温或潮湿固化机理的单成分或双成分环氧树脂和硅酮粘合剂。 通用导电环氧树脂 双成分的银、铜镀银和玻璃镀银填充的粘合剂满足大多数严格的电气粘接要求,不需要通常获得有效的铅--锡固体连接所要求的高温、焊剂和昂贵的准备技术。它在室温或高温下固化成固体结构的粘接。 环氧树脂对铜、青铜、冷轨钢、铝、镁、镍基合金、镍、陶瓷、酚醛和塑料基底具有良好的粘合力。典型应用包括把EMI屏蔽通道、窗口或丝网衬料粘合在屏蔽的永久性接缝上。 柔性硅酮粘合剂 具有铜镀银、铝镀银或玻璃镀银填料颗粒, 这些导电的硅酮固化成为垫状的密封件。当用在现场粘合导电硅酮衬料时,它们必须在薄(~)粘合层中使用。技术表面应当要求用推荐的打底剂来预处理以改善粘合力。 导电填充剂 用单成分非硬化系统或双成分固化系统来填塞裂缝和较大的缝隙。 刚性环氧树脂 双成分导电环氧树脂填充剂对不同的基底提高良好的粘合力,并且能用在搭接或对接应用上。它们的特点是较大的铜镀银颗粒(>),非常适用于密封公差较差的表面。粘合层应当不薄于。砂粒填料咬透薄的、非导电 表面,例如氧化层。应用包括粘合和屏蔽铸铝机壳、导管闷头、过滤器和加工好的技术机壳。 注意:这些复合剂应当仅在接缝将不会破裂时使用。 硅酮和柔性聚异乙烯 这些单成分非硬化密封胶配置用来屏蔽或密封那些很可能是错装或者承受振动、承受扭曲的接点和接缝。关键特点是这种材料能保持粘合处不干裂或者从表面脱开。 导电涂料 环氧树脂涂料 导电环氧树脂涂料在各种应用场合提供EMI屏蔽、防静电保护、电晕屏蔽和表面接地。聚丙乙烯涂料 导电聚丙乙烯风干涂料倾向于用在非导电基底上的EMI屏蔽。它们提供了选择填料系统,来满足不同的性能要求,含银的系统具有较低的电阻率,用于要求较好的屏蔽性能。含镍的系统相对较贵,用于在很宽的频率范围内提供中等等级的EMI屏蔽

为了回答什么是胶体这一问题,我们做如下实验:将一把泥土放到水中,大粒的泥沙很快下沉,浑浊的细小土粒因受重力的影响最后也沉降于容器底部,而土中的盐类则溶解成真溶液.但是,混杂在真溶液中还有一些极为微小的土壤粒子,它们既不下沉,也不溶解,人们把这些即使在显微镜下也观察不到的微小颗粒称为胶体颗粒,含有胶体颗粒的体系称为胶体体系.胶体化学,狭义的说,就是研究这些微小颗粒分散体系的科学. 通常规定胶体颗粒的大小为1~100nm(按胶体颗粒的直径计).小于1nm的几颗粒为分子或离子分散体系,大于100nm的为粗分散体系.既然胶体体系的重要特征之一是以分散相粒子的大小为依据的,显然,只要不同聚集态分散相的颗粒大小在1~100nm之间,则在不同状态的分散介质中均可形成胶体体系.例如,除了分散相与分散介质都是气体而不能形成胶体体系外,其余的8种分散体系均可形成胶体体系. 习惯上,把分散介质为液体的胶体体系称为液溶胶,如介质为水的称为水溶胶;介质为固态时,称为固溶胶. 由此可见,胶体体系是多种多样的.溶胶是物质存在的一种特殊状态,而不是一种特殊物质,不是物质的本性.任何一种物质在一定条件下可以晶体的形态存在,而在另一种条件下却可以胶体的形态存在.例如,氯化钠是典型的晶体,它在水中溶解成为真溶液,若用适当的方法使其分散于苯或醚中,则形成胶体溶液.同样,硫磺分散在乙醇中为真溶液,若分散在水中则为硫磺水溶胶. 由于胶体体系首先是以分散相颗粒有一定的大小为其特征的,故胶粒本身与分散介质之间必有一明显的物理分界面.这意味着胶体体系必然是两相或多相的不均匀分散体系. 另外,有一大类物质(纤维素、蛋白质、橡胶以及许多合成高聚物)在适当的溶剂中溶解虽可形成真溶液,但它们的分子量很大(常在1万或几十万以上,故称为高分子物质),因此表现出的许多性质(如溶液的依数性、黏度、电导等)与低分子真溶液有所不同,而在某些方面(如分子大小)却有类似于溶胶的性质,所以在历史上高分子溶液一直被纳入胶体化学进行讨论.30多年来,由于科学迅速地发展,它实际上已成为一个新的科学分支——高分子物理化学,所以近年来在胶体表面专著(特别是有关刊物)中,一般不再过多地讨论这方面内容. ——摘自《胶体与表面化学(第三版)》,化学化工出版社 胶体 定义;分散质粒子大小在1nm~100nm的分散系. 胶体与溶液、浊液在性质上有显著差异的根本原因是分散质粒子的大小不同. 常见的胶体:Fe(OH)3胶体、Al(OH)3胶体、硅酸胶体、淀粉胶体、蛋白质、血液、豆浆、墨水、涂料、肥皂水、AgI、Ag2S、As2S3 分类:按照分散剂状态不同分为: 气溶胶——分散质、分散剂都是气态物质:如SO2扩散在空气中 液溶胶——分散质、分散剂都是液态物质:如Fe(OH)3胶体 固溶胶——分散质、分散剂都是固态物质:如有色玻璃、合金 3、区分胶体与溶液的一种常用物理方法——利用丁达尔效应 胶体粒子对光线散射而形成光亮的“通路”的现象,叫做丁达尔现象. 胶粒带有电荷 胶粒具有很大的比表面积(比表面积=表面积/颗粒体积),因而有很强的吸附能力,使胶粒表面吸附溶液中的离子.这样胶粒就带有电荷.不同的胶粒吸附不同电荷的离子.一般说,金属氢氧化物、金属氧化物的胶粒吸附阳离子,胶粒带正电,非金属氧化物、金属硫化物的胶粒吸引阴离子,胶粒带负电. 胶粒带有相同的电荷,互相排斥,所以胶粒不容易聚集,这是胶体保持稳定的重要原因. 由于胶粒带有电荷,所以在外加电场的作用下,胶粒就会向某一极(阴极或阳极)作定向移动,这种运动现象叫电泳. 胶体的种类很多,按分散剂状态的不同可分为液溶胶、气溶胶和固溶胶.如:云、烟为气溶胶,有色玻璃为固溶胶.中学研究的胶体一般指的是液溶胶.胶体的性质体现在以下几方面: ①有丁达尔效应 当一束光通过胶体时,从入射光的垂直方向上可看到有一条光带,这个现象叫丁达尔现象.利用此性质可鉴别胶体与溶液、浊液. ②有电泳现象 由于胶体微粒表面积大,能吸附带电荷的离子,使胶粒带电.当在电场作用下,胶体微粒可向某一极定向移动. 利用此性质可进行胶体提纯. 胶粒带电情况:金属氢氧化物、金属氧化物和AgI的胶粒一般带正电荷,而金属硫化物和硅酸的胶粒一般带负电荷. ③可发生凝聚 加入电解质或加入带相反电荷的溶胶或加热均可使胶体发生凝聚.加入电解质中和了胶粒所带的电荷,使胶粒形成大颗粒而沉淀.一般规律是电解质离子电荷数越高,使胶体凝聚的能力越强.用胶体凝聚的性质可制生活必需品.如用豆浆制豆腐,从脂肪水解的产物中得到肥皂等. ④发生布朗运动 含义:无规则运动(离子或分子无规则运动的外在体现) 产生原因:布朗运动是分子无规则运动的结果 布朗运动是胶体稳定的一个原因 胶体的知识与人类生活有着极其密切的联系.除以上例子外还如: ①土壤里发生的化学过程.因土壤里许多物质如粘土、腐殖质等常以胶体形式存在. ②国防工业的火药、炸药常制成胶体. ③石油原油的脱水、工业废水的净化、建筑材料中的水泥的硬化,都用到胶体的知识. ④食品工业中牛奶、豆浆、粥都与胶体有关.

《胶体化学》作者: 冯绪胜、刘洪国、郝京诚 定价: ¥ 元 出版社: 化学工业出版社 出版日期: 2005年03月 ISBN: 7-5025-6335-0

  • 索引序列
  • 胶体研究论文
  • 蜂胶研究论文
  • 胶体化学论文
  • 研究生论文胶状
  • 胶体化学论文文献
  • 返回顶部