首页 > 论文发表知识库 > 二级减速器毕业论文周记

二级减速器毕业论文周记

发布时间:

二级减速器毕业论文周记

机械设计课程设计原始资料一、设计题目热处理车间零件输送设备的传动装备二、运动简图图11—电动机 2—V带 3—齿轮减速器 4—联轴器 5—滚筒 6—输送带三、工作条件该装置单向传送,载荷平稳,空载起动,两班制工作,使用期限5年(每年按300天计算),输送带的速度容许误差为 ±5%.四、原始数据滚筒直径D(mm):320运输带速度V(m/s):滚筒轴转矩T(N•m):900五、设计工作量1减速器总装配图一张2齿轮、轴零件图各一张3设计说明书一份六、设计说明书内容1. 运动简图和原始数据2. 电动机选择3. 主要参数计算4. V带传动的设计计算5. 减速器斜齿圆柱齿轮传动的设计计算6. 机座结构尺寸计算7. 轴的设计计算8. 键、联轴器等的选择和校核9. 滚动轴承及密封的选择和校核 10. 润滑材料及齿轮、轴承的润滑方法11. 齿轮、轴承配合的选择12. 参考文献七、设计要求1. 各设计阶段完成后,需经指导老师审阅同意后方能进行下阶段的设计;2. 在指定的教室内进行设计. 一. 电动机的选择 一、电动机输入功率 二、电动机输出功率 其中总效率为查表可得Y132S-4符合要求,故选用它。 Y132S-4(同步转速 ,4极)的相关参数 表1额定功率 满载转速 堵转转矩额定转矩 最大转矩额定转矩 质量二. 主要参数的计算一、确定总传动比和分配各级传动比传动装置的总传动比 查表可得V带传动单级传动比常用值2~4,圆柱齿轮传动单级传动比常用值为3~5,展开式二级圆柱齿轮减速器 。初分传动比为 , , 。二、计算传动装置的运动和动力参数 本装置从电动机到工作机有三轴,依次为Ⅰ,Ⅱ,Ⅲ轴,则1、各轴转速2、各轴功率3、各轴转矩表2项目 电机轴 高速轴Ⅰ 中间轴Ⅱ 低速轴Ⅲ转速 1440 576 功率 转矩 传动比 效率 三 V带传动的设计计算一、确定计算功率 查表可得工作情况系数 故 二、选择V带的带型根据 ,由图可得选用A型带。三、确定带轮的基准直径 并验算带速 1、初选小带轮的基准直径 。查表8-6和8-8可得选取小带轮的基准直径 2、验算带速 按计算式验算带的速度 因为 ,故此带速合适。3、计算大带轮的基准直径 按式(8-15a)计算大带轮的基准直径 根据教材表8-8,圆整得 。4、确定V带的中心距 和基准直径 (1)按计算式初定中心距 (2)按计算式计算所需的基准长度 =1364mm查表可选带的基准长度 (3)按计算式计算实际中心距 中心距的变化范围为 。5、验算小带轮上的包角 6、计算带的根数(1)计算单根V带的额定功率 由 查表可得 根据 和A型带,查表可得 、 、 。故 (2)计算V带的根数Z 故取V带根数为6根7、计算单根V带的初拉力的最小值 查表可得A型带的单位长度质量 应使带的实际初拉力 。8、计算压轴力 压轴力的最小值为 四 减速器斜齿圆柱齿轮传动的设计计算一、高速级齿轮1、选定齿轮类型、精度等级、材料及齿数(1)按图所示的传动方案,选用斜齿圆柱齿轮传动。(2)运输装置为一般工作机器,速度不高,故选用7级精度。(3)材料选择:查表可选择小齿轮材料为40 (调质),硬度为280HBS;大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。(4)选小齿轮齿数 ,大齿轮齿数 ,取 (5)选取螺旋角,初选螺旋角 2、按齿面接触强度设计,按计算式试算即 (1)确定公式内的各计算数值①试选 ,由图10-26 , 则有 ②小齿轮传递转矩 ③查图10-30可选取区域系数 查表10-7可选取齿宽系数 ④查表10-6可得材料的弹性影响系数 。⑤查图10-21d得按齿面硬度选取小齿轮的接触疲劳强度极限 ,大齿轮的接触疲劳强度极限 。⑥按计算式计算应力循环次数⑦查图可选取接触疲劳寿命系数 , 。⑧计算接触疲劳许用应力取失效概率为1%,安全系数 ,按计算式(10-12)得(2)计算相关数值①试算小齿轮分度圆直径 ,由计算公式得 ②计算圆周速度 ③计算齿宽 及模数 ④计算总相重合度 ⑤计算载荷系数 查表可得使用系数 ,根据 ,7级精度,查表10-8可得动载系数 ,由表10-4查得 的值与直齿轮的相同,为 , 故载荷系数 ⑥按实际的载荷系数校正所算得的分度圆直径,按计算式得 ⑦计算模数 3、按齿根弯曲强度设计,按计算式(10-17)试算即 (1)确定公式内的各计算数值①、计算载荷系数 ②根据纵向重合度 ,查图10-28可得螺旋角影响系数 。③查图可选取区域系数 , , 则有 ④查表取应力校正系数 , 。⑤查表取齿形系数 , 。(线性插值法)⑥查图10-20C可得小齿轮的弯曲疲劳强度极限 ,大齿轮的弯曲疲劳强度极限 。⑦查图可取弯曲疲劳寿命系数 , 。⑧计算弯曲疲劳许用应力 ,取弯曲疲劳安全系数 ,按计算式(10-22)计算得⑨计算大、小齿轮的 并加以计算大齿轮的数值较大。(2)设计计算 对比计算结果,由齿面接触疲劳强度计算的法面模数大于由齿根弯曲疲劳强度计算的法面模数,故取 ,已可满足弯曲强度,但为了同时满足接触疲劳强度,需按接触疲劳强度算得的分度圆直径 来计算应有的齿数,于是有 取 ,则 4、几何尺寸计算(1)计算中心距 将中心距圆整为 。(2)按圆整后的中心距修正螺旋角 因 值改变不多,故参数 、 、 等不必修正。(3)计算大、小齿轮的分度圆直径(4)计算齿轮宽度 圆整后取 , 。二、低速级齿轮1、选定齿轮类型、精度等级、材料及齿数(1)按图所示的传动方案,选用斜齿圆柱齿轮传动。(2)运输装置为一般工作机器,速度不高,故选用7级精度。(3)材料选择,在同一减速器各级小齿轮(或大齿轮)的材料,没有特殊情况,应选用相同牌号,以减少材料品种和工艺要求,故查表可选择小齿轮材料为40 (调质),硬度为52HRC;大齿轮材料为45钢(调质),硬度为45HRC.(4)选小齿轮齿数 ,大齿轮齿数 (5)选取螺旋角,初选螺旋角 2、按齿面接触强度设计,按计算式试算即 (1)确定公式内的各计算数值①试选 ②小齿轮传递转矩 ③查表10-7可选取齿宽系数 , 查图10-26可选取区域系数 , , 则有 ④查表可得材料的弹性影响系数 。⑤查图得按齿面硬度选取小齿轮的接触疲劳强度极限 ,大齿轮的接触疲劳强度极限 。⑥按计算式计算应力循环次数⑦查图可选取接触疲劳寿命系数 , 。⑧计算接触疲劳许用应力取失效概率为1%,安全系数 ,于是得(2)计算相关数值①试算小齿轮分度圆直径 ,由计算公式得 ②计算圆周速度 ③计算齿宽 及模数 ④计算总相重合度 ⑤计算载荷系数 查表可得使用系数 ,根据 ,7级精度,查表可得动载系数 , , , 故载荷系数 ⑥按实际的载荷系数校正所算得的分度圆直径,按计算式得 ⑦计算模数 3、按齿根弯曲强度设计,按计算式试算即 (1)确定公式内的各计算数值①计算载荷系数 ②根据纵向重合度 ,查图可得螺旋角影响系数 。③计算当量齿数④查表可取齿形系数 , 。⑤查表可取应力校正系数 , 。(线性插值法)⑥查图可得小齿轮的弯曲疲劳强度极限 ,大齿轮的弯曲疲劳强度极限 。⑦查图可取弯曲疲劳寿命系数 , 。⑧计算弯曲疲劳许用应力取弯曲疲劳安全系数 ,按计算式计算⑨计算大、小齿轮的 并加以计算大齿轮的数值较大。(2)设计计算 对比计算结果,由齿面接触疲劳强度计算的法面模数大于由齿根弯曲疲劳强度计算的法面模数,故取 ,已可满足弯曲强度,但为了同时满足接触疲劳强度,需按接触疲劳强度算得的分度圆直径 来计算应有的齿数,于是有 取 ,则 4、几何尺寸计算(1)计算中心距 将中心距圆整为 。(2)按圆整后的中心距修正螺旋角 因 值改变不多,故参数 、 、 等不必修正。(3)计算大、小齿轮的分度圆直径(4)计算齿轮宽度 圆整后取 , 。五 轴的设计计算一、高速轴的设计1、求作用在齿轮上的力高速级齿轮的分度圆直径为d 2、选取材料可选轴的材料为45钢,调质处理。3、计算轴的最小直径,查表可取 应该设计成齿轮轴,轴的最小直径显然是安装连接大带轮处,为使 与带轮相配合,且对于直径 的轴有一个键槽时,应增大5%-7%,然后将轴径圆整。故取 。4、拟定轴上零件的装配草图方案(见下图)5、根据轴向定位的要求,确定轴的各段直径和长度(1)根据前面设计知大带轮的毂长为93mm,故取 ,为满足大带轮的定位要求,则其右侧有一轴肩,故取 ,根据装配关系,定 (2)初选流动轴承7307AC,则其尺寸为 ,故 , 段挡油环取其长为,则 。(3) 段右边有一定位轴肩,故取 ,根据装配关系可定 ,为了使齿轮轴上的齿面便于加工,取 。(4)齿面和箱体内壁取a=16mm,轴承距箱体内壁的距离取s=8mm,故右侧挡油环的长度为19mm,则 (5)计算可得 、(6)大带轮与轴的周向定位采用普通平键C型连接,其尺寸为 ,大带轮与轴的配合为 ,流动轴承与轴的周向定位是过渡配合保证的,此外选轴的直径尺寸公差为m6.求两轴承所受的径向载荷 和 带传动有压轴力 (过轴线,水平方向), 。将轴系部件受到的空间力系分解到铅垂面和水平面上两个平面力系图一 图二 图三 [注]图二中 通过另加弯矩而平移到作用轴线上图三中 通过另加转矩而平移到指向轴线同理 6 、求两轴承的计算轴向力 和 对于 型轴承,轴承的派生轴向力 故 7、求轴承的当量动载荷 和 对于轴承1 对于轴承2 查表可得径向载荷系数和轴向载荷系数分别为:对于轴承1 , 对于轴承2 , 8、求该轴承应具有的额定载荷值因为 则有 故 符合要求。9、弯矩图的计算水平面: , N,则其各段的弯矩为:BC段: 由弯矩平衡得M- CD段: 由弯矩平衡得铅垂面: 则其各段弯矩为:AB段: 则 BC段: 则 CD段: 则 做弯矩图如下 从轴的结构图以及弯矩和扭矩图中可以看出截面 是轴的危险截面。现将计算出的截面 处的 、 及 的值列于下表 表3载荷 水平面 垂直面 支持力 弯矩 总弯矩 扭矩 10、按弯扭合成应力校核轴的强度进行校核时,通常只校核轴上承受最大弯矩和扭矩的截面(即危险截面 )的强度。根据计算式及上表的数据,以及轴单向旋转,扭转切应力为脉动循环变应力,取 ,轴的计算应力 前已选定轴的材料为45钢,调质处理,查表可得 ,因此 ,故安全。11、键的选择和校核高速轴上与大带轮相配合的轴上选择键连接,由于大带轮在轴端部,故选用单圆头平键(C型)根据 ,从表6-1中查得键的截面尺寸为:宽度: 高度: ,由轮毂宽度并参考键的长度系列,取键长为: 键、轴承和轮毂材料都为钢查表可得 取其平均植, 键的工作长度 键和轮毂键槽的接触高度 则 ,故合适。所以选用:键C GB/T 1096-200312、确定轴上圆角和倒角尺寸取轴端倒角为 ,各轴肩处圆角半径为2。二、中间轴的设计1、求作用在齿轮上的力因为高速轴的小齿轮与中速轴的大齿轮相啮合,故两齿轮所受的 、 、 都是作用力与反作用力的关系,则大齿轮上所受的力为 中速轴小齿轮上的三个力分别为2、选取材料可选轴的材料为45钢,调质处理。3、计算轴的最小直径,查表可取 轴的最小直径显然是安装轴承处,为使轴承便于安装,且对于直径 的轴有一个键槽时,应增大5%-7%,然后将轴径圆整。故取 。4、拟定轴上零件的装配草图方案(见下图)5、根据轴向定位的要求,确定轴的各段直径和长度(1)初选滚动轴承7008AC,则其尺寸为: 故 用挡油环定位轴承,故 段右边有一定位轴肩,故 低速级小齿轮与箱体内壁距离为16 ,与箱体内壁距离为8 ,故左边挡油环长为24 ,则 (2)低速级小齿轮轮毂为95 ,即 取两齿面的距离为8 ,即 (3)右边也用挡油环定位轴承和低速级大齿轮,故 。 段轴长略短与其齿轮毂长,又毂长为55 ,故取 、 、 各有一定位轴肩,故依次可取 (4)计算可得 6、轴上零件的周向定位低速级大齿轮的轴采用普通平键A型连接。其尺寸为 齿轮与轴的配合为 ,滚动轴承与轴的周向定位是过渡配合保证的,此外选轴的直径尺寸公差为 。求两轴承所受的径向载荷 和 将轴系部件受到的空间力系分解到铅垂面和水平面上两个平面力系图一 图二 图三 7、求两轴承的计算轴向力 和 由齿轮中计算得, 对于 型轴承,轴承的派生轴向力 算得 所以 8、求轴承的当量动载荷 和 对于轴承1 对于轴承2 查表可得径向载荷系数和轴向载荷系数分别为:对于轴承1 , 对于轴承2 , 9、求该轴承应具有的额定载荷值因为 则有 故 符合要求。10、弯矩图的计算水平面: 。AB段: 则 即 BC段: 则 CD段: 则 。铅垂面: AB段:BC段:CD段:做弯矩图如下从轴的结构图以及弯矩和扭矩图中可以看出截面 是轴的危险截面。现将计算出的截面 处的 、 及 的值列于下表 表4载荷 水平面 垂直面 支持力 弯矩 总弯矩 扭矩 11、按弯扭合成应力校核轴的强度进行校核时,通常只校核轴上承受最大弯矩和扭矩的截面(即危险截面 )的强度。根据计算式及上表的数据,以及轴单向旋转,扭转切应力为脉动循环变应力,取 ,轴的计算应力 前已选定轴的材料为45钢,调质处理,查表可得 , ,故安全。 12、键的选择和校核一般的8级以上精度的齿轮有空心精度要求,应选用平键连接,由于齿轮不在轴端,故选用圆头普通平键(A型) 取键长 ,键、轴承和轮毂材料都为钢查表可得 取其平均植, 键的工作长度 键和轮毂键槽的接触高度 则 ,故合适。所以选用:键 GB/T 1096-200313、确定轴上圆角和倒角尺寸取轴端倒角为 ,各轴肩处圆角半径见365页……三、低速轴的设计1、求作用在齿轮上的力因为高速轴的小齿轮与中速轴的大齿轮相啮合,故两齿轮所受的 、 、 都是作用力与反作用力的关系,则2、选取材料可选轴的材料为45钢,调质处理。3、计算轴的最小直径,查表可取 轴的最小直径显然是安装联轴器处轴的直径 ,为了使所选的轴直径 与联轴器的孔径相配合,且对于直径 的轴有两个键槽时,应增大10%-15%,然后将轴径圆整,故取 。并选取所需的联轴器型号联轴器的计算转矩 ,查表可得,考虑到转矩变化小,故取 其公称转矩为 。半联轴器的孔径 ,长度 ,半联轴器与轴配合的毂孔长度 4、拟定轴上零件的装配草图方案(见下图)5、根据轴向定位的要求,确定轴的各段直径和长度①为了满足半联轴器安装的轴向定位要求,Ⅰ-Ⅱ轴段右端需制出一轴肩,故Ⅱ-Ⅲ段的直径 。 ②查手册99页,选用 型弹性柱销联轴器L③初选滚动轴承7051AC,则其尺寸为 故 左边轴承安装处有挡油环,取其长度为20mm,则 ④挡油环右侧用轴肩定位,故可取 ⑤取齿面与箱体内壁距离 轴承座距箱体内壁距离为 。用挡油环对齿面定位时,为了使油环可靠的压紧齿轮, 段应略短于轮毂宽度,故取 所以取 ⑥齿轮左侧用轴肩定位,取 则 ,轴换宽度 ,取 。⑦由装配关系可确定 ⑧计算得 , , 。6、轴上零件的周向定位 齿轮、半联轴器与轴的周向定位均采用普通平键 型 连接。轴与齿轮连接采用平键 ,L=70 ,齿轮轮毂与轴的配合为 。同样半联轴器与轴连接,采用键 。半联轴器与轴的配合为 。滚动轴承与轴的周向定位是由过渡配合保证的,此外选轴的直径尺寸公差为 。7、轴上齿轮所受切向力 ,径向力 ,轴向力 , 。8、求两轴承所受的径向载荷 和 将轴系部件受到的空间力系分解到铅垂面和水平面上两个平面力系图一 图二 图三 9、求两轴承的计算轴向力 和 对于 型轴承,轴承的派生轴向力 故 10、求轴承的当量动载荷 和 , 。查表可得径向载荷系数和轴向载荷系数分别为:对于轴承1 , 对于轴承2 , 因轴承运转载荷平稳,按表13-6, ,取 则 。 。11、求该轴承应具有的额定载荷值因为 则有 预期寿命 故合格12、弯矩图的计算水平面: , .AB段:弯矩为0BC段:CD段:铅垂面: , .AB段弯矩为0BC段:CD段:做弯矩图如下 从轴的结构图以及弯矩和扭矩图中可以看出截面 是轴的危险截面。现将计算出的截面 处的 、 及 的值列于下表 表5载荷 水平面 垂直面 支持力 弯矩 总弯矩 扭矩 13、按弯扭合成应力校核轴的强度进行校核时,通常只校核轴上承受最大弯矩和扭矩的截面(即危险截面 )的强度。根据计算式及上表的数据,以及轴单向旋转,扭转切应力为脉动循环 变应力,取 ,轴的计算应力前已选定轴的材料为45钢,调质处理,查表可得 ,因此 ,故安全。14、键的选择和校核选键型为普通平键(A) 根据 ,从表6-1中查得键的截面尺寸为:宽度 =25 ,高度 。取键长 。键轴和毂的材料都是钢,有表6-2查得许用挤压应力 ,取平均值 。键的工作长度 ,键与轮毂键槽的接触高度 , 故选取键A: GB/T 1096-20037、确定轴上圆角和倒角尺寸取轴端倒角为 ,各轴肩处圆角半径为2。六.箱体结构的设计减速器的箱体采用铸造(HT200)制成,采用剖分式结构为了保证齿轮佳合质量,大端盖分机体采用 配合.1. 机体有足够的刚度在机体为加肋,外轮廓为长方形,增强了轴承座刚度2. 考虑到机体内零件的润滑,密封散热。因其传动件速度小于12m/s,故采用侵油润油,同时为了避免油搅得沉渣溅起,齿顶到油池底面的距离H为40mm为保证机盖与机座连接处密封,联接凸缘应有足够的宽度,联接表面应精创,其表面粗糙度为 3. 机体结构有良好的工艺性.铸件壁厚为10,圆角半径为R=3。机体外型简单,拔模方便.4. 对附件设计 A 视孔盖和窥视孔在机盖顶部开有窥视孔,能看到 传动零件齿合区的位置,并有足够的空间,以便于能伸入进行操作,窥视孔有盖板,机体上开窥视孔与凸缘一块,有便于机械加工出支承盖板的表面并用垫片加强密封,盖板用铸铁制成,用M6紧固B 油螺塞:放油孔位于油池最底处,并安排在减速器不与其他部件靠近的一侧,以便放油,放油孔用螺塞堵住,因此油孔处的机体外壁应凸起一块,由机械加工成螺塞头部的支承面,并加封油圈加以密封。C 油标:油标位在便于观察减速器油面及油面稳定之处。油尺安置的部位不能太低,以防油进入油尺座孔而溢出.D 通气孔:由于减速器运转时,机体内温度升高,气压增大,为便于排气,在机盖顶部的窥视孔改上安装通气器,以便达到体内为压力平衡.E 盖螺钉:启盖螺钉上的螺纹长度要大于机盖联结凸缘的厚度。钉杆端部要做成圆柱形,以免破坏螺纹.F 位销:为保证剖分式机体的轴承座孔的加工及装配精度,在机体联结凸缘的长度方向各安装一圆锥定位销,以提高定位精度.G 吊钩:在机盖上直接铸出吊钩和吊环,用以起吊或搬运较重的物体.减速器机体结构尺寸如下:名称 符号 计算公式 结果箱座壁厚 10箱盖壁厚 9箱盖凸缘厚度 12箱座凸缘厚度 15箱座底凸缘厚度 25地脚螺钉直径 M24地脚螺钉数目 查手册 6轴承旁联接螺栓直径 M12机盖与机座联接螺栓直径 =() M10轴承端盖螺钉直径 =() 10视孔盖螺钉直径 =() 8定位销直径 =() 8 , , 至外机壁距离 查机械课程设计指导书表4 342218 , 至凸缘边缘距离 查机械课程设计指导书表4 2816外机壁至轴承座端面距离 = + +(8~12)50大齿轮顶圆与内机壁距离 > 15齿轮端面与内机壁距离 > 10机盖,机座肋厚 9 轴承端盖外径 +(5~) 120(1轴)125(2轴)150(3轴)轴承旁联结螺栓距离 120(1轴)125(2轴)150(3轴)七. 润滑密封设计对于二级圆柱齿轮减速器,因为传动装置属于轻型的,且传速较低,所以其速度远远小于 ,所以采用脂润滑,箱体内选用SH0357-92中的50号润滑,装至规定高度.油的深度为H+ H=30 =34所以H+ =30+34=64其中油的粘度大,化学合成油,润滑效果好。密封性来讲为了保证机盖与机座联接处密封,联接凸缘应有足够的宽度,联接表面应精创,其表面粗度应为 密封的表面要经过刮研。而且,凸缘联接螺柱之间的距离不宜太大,国150mm。并匀均布置,保证部分面处的密封性。八、课程设计心得体会 作为一名机械设计制造及自动化大三的学生,我觉得能做类似的课程设计是十分有意义,而且是十分必要的。在已度过的大三的时间里我们大多数接触的是专业基础课。我们在课堂上掌握的仅仅是专业基础课的理论面,如何去锻炼我们的实践面?如何把我们所学到的专业基础理论知识用到实践中去呢?我想做类似的大作业就为我们提供了良好的实践平台。在做本次课程设计的过程中,我感触最深的当数查阅大量的设计手册了。为了让自己的设计更加完善,更加符合工程标准,一次次翻阅机械设计手册是十分必要的,同时也是必不可少的。我们是在作设计,但我们不是艺术家。他们可以抛开实际,尽情在幻想的世界里翱翔,我们是工程师,一切都要有据可依.有理可寻,不切实际的构想永远只能是构想,永远无法升级为设计。 作为一名专业学生掌握一门或几门制图软件同样是必不可少的,由于本次大作业要求用 auto CAD制图,因此要想更加有效率的制图,我们必须熟练的掌握它。虽然过去从未独立应用过它,但在学习的过程中带着问题去学我发现效率好高,记得大一学CAD时觉得好难就是因为我们没有把自己放在使用者的角度,单单是为了学而学,这样效率当然不会高。边学边用这样才会提高效率,这是我作本次课程设计的第二大收获。但是由于水平有限,难免会有错误,还望老师批评指正。参考文献〔1〕濮良贵,纪明刚. 机械设计. 7版. 北京:高等教育出版社, 2001.〔2〕张策, 机械原理与机械设计[M]. 北京:机械工业出版社, 2004.[3] 吴宗泽,罗胜国. 机械设计课程设计手册. 北京: 高等教育出版社, 2007. [4] 王伯平.互换性与测量技术基础(第2版). 北京: 机械工业出版社,2006

前 言机械设计综合课程设计在机械工程学科中占有重要地位,它是理论应用于实际的重要实践环节。本课程设计培养了我们机械设计中的总体设计能力,将机械设计系列课程设计中所学的有关机构原理方案设计、运动和动力学分析、机械零部件设计理论、方法、结构及工艺设计等内容有机地结合进行综合设计实践训练,使课程设计与机械设计实际的联系更为紧密。此外,它还培养了我们机械系统创新设计的能力,增强了机械构思设计和创新设计。本课程设计的设计任务是展开式二级圆柱齿轮减速器的设计。减速器是一种将由电动机输出的高转速降至要求的转速比较典型的机械装置,可以广泛地应用于矿山、冶金、石油、化工、起重运输、纺织印染、制药、造船、机械、环保及食品轻工等领域。本次设计综合运用机械设计及其他先修课的知识,进行机械设计训练,使已学知识得以巩固、加深和扩展;学习和掌握通用机械零件、部件、机械传动及一般机械的基本设计方法和步骤,培养学生工程设计能力和分析问题,解决问题的能力;提高我们在计算、制图、运用设计资料(手册、 图册)进行经验估算及考虑技术决策等机械设计方面的基本技能,同时给了我们练习电脑绘图的机会。最后借此机会,对本次课程设计的各位指导老师以及参与校对、帮助的同学表示衷心的感谢。由于缺乏经验、水平有限,设计中难免有不妥之处,恳请各位老师及同学提出宝贵意见。带式输送机概论带式输送机是一种摩擦驱动以连续方式运输燃料的机械。应用它可以将物料在一定的输送线上,从最初的供料点到最终的卸料点间形成一种物料的输送流程。它既可以进行碎散物料的输送,也可以进行成件物品的输送。除进行纯粹的物料输送外,还可以与各工业企业生产流程中的工艺过程的要求相配合,形成有节奏的流水作业运输线。所以带式输送机广泛应用于现代化的各种工业企业中。在矿山的井下巷道、矿井地面运输系统、露天采矿场及选矿厂中,广泛应用带式输送机。它用于水平运输或倾斜运输。使用非常方便。输送机发展历史中国古代的高转筒车和提水的翻车,是现代斗式提升机和刮板输送机的雏形;17世纪中,开始应用架空索道输送散状物料;19世纪中叶,各种现代结构的输送机相继出现。1868年,在英国出现了带式输送机;1887年,在美国出现了螺旋输送机;1905年,在瑞士出现了钢带式输送机;1906年,在英国和德国出现了惯性输送机。此后,输送机受到机械制造、电机、化工和冶金工业技术进步的影响,不断完善,逐步由完成车间内部的输送,发展到完成在企业内部、企业之间甚至城市之间的物料搬运,成为材料搬运系统机械化和自动化不可缺少的组成部分。输送机的特点带式输送机是煤矿最理想的高效连续运输设备,与其他运输设备(如机车类)相比具有输送距离长、运量大、连续输送等优点,而且运行可靠,易于实现自动化和集中化控制,尤其对高产高效矿井,带式输送机已成为煤炭开采机电一体化技术与装备的关键设备。带式输送机主要特点是机身可以很方便的伸缩,设有储带仓,机尾可随采煤工作面的推进伸长或缩短,结构紧凑,可不设基础,直接在巷道底板上铺设,机架轻巧,拆装十分方便。当输送能力和运距较大时,可配中间驱动装置来满足要求。根据输送工艺的要求,可以单机输送,也可多机组合成水平或倾斜的运输系统来输送物料。带式输送机广泛地应用在冶金、煤炭、交通、水电、化工等部门,是因为它具有输送量大、结构简单、维修方便、成本低、通用性强等优点。带式输送机还应用于建材、电力、轻工、粮食、港口、船舶等部门。一、 设计任务书设计一用于带式运输机上同轴式二级圆柱齿轮减速器1. 总体布置简图2. 工作情况工作平稳、单向运转3. 原始数据运输机卷筒扭矩(N•m) 运输带速度(m/s) 卷筒直径(mm) 使用年限(年) 工作制度(班/日)350 380 10 14. 设计内容(1) 电动机的选择与参数计算(2) 斜齿轮传动设计计算(3) 轴的设计(4) 滚动轴承的选择(5) 键和联轴器的选择与校核(6) 装配图、零件图的绘制(7) 设计计算说明书的编写5. 设计任务(1) 减速器总装配图1张(0号或1号图纸)(2) 齿轮、轴、轴承零件图各1张(2号或3号图纸)(3) 设计计算说明书一份二、 传动方案的拟定及说明为了估计传动装置的总传动比范围,以便选择合适的传动机构和拟定传动:方案,可由已知条件计算其驱动卷筒的转速nw:三. 电动机的选择1. 电动机类型选:Y行三相异步电动机2. 电动机容量(1) 卷筒轴的输出功率(2) 电动机的输出功率传动装置的总效率式中, 为从电动机至卷筒轴之间的各传动机构和轴承的效率。由《机械设计课程设计》(以下未作说明皆为此书中查得)表2-4查得:V带传动 ;滚动轴承 ;圆柱齿轮传动 ;弹性联轴器 ;卷筒轴滑动轴承 ,则故(3) 电动机额定功率由第二十章表20-1选取电动机额定功率由表2-1查得V带传动常用传动比范围 ,由表2-2查得两级展开式圆柱齿轮减速器传动比范围 ,则电动机转速可选范围为可选符合这一范围的同步转速的电动3000 。根据电动机所需容量和转速,由有关手册查出只有一种使用的电动机型号,此种传动比方案如下表:电动机型号 额定功率电动机转速传动装置传动比Y100L-2 3 同步 满载 总传动比 V带 减速器3000 2880 2三、 计算传动装置总传动比和分配各级传动比1. 传动装置总传动比2. 分配各级传动比取V带传动的传动比 ,则两级圆柱齿轮减速器的传动比为按展开式布置考虑润滑条件,为使两级大齿轮直径相近由图12展开式曲线的则i所得 符合一般圆柱齿轮传动和两级圆柱齿轮减速器传动比的常用范围。四、计算传动装置的运动和动力参数:按电动机轴至工作机运动传递路线推算,得到各轴的运动和动力参数1.各轴转速:2.各轴输入功率:Ⅰ~Ⅲ轴的输出功率分别为输入功率乘轴承效率,卷筒轴输出功率则为输入功率乘卷筒的传动效率,计算结果见下表。3. 各轴输入转矩:Ⅰ~Ⅲ轴的输出转矩分别为输入转矩乘轴承效率,卷筒轴输出转矩则为输入转矩乘卷筒的传动效率,计算结果见下表。综上,传动装置的运动和动力参数计算结果整理于下表:轴名 功率转矩转速传动比效率输入 输出 输入 输出电机轴 2880 轴 轴 201. 轴 卷筒轴 第三章 主要零部件的设计计算§ 展开式二级圆柱齿轮减速器齿轮传动设计§ 高速级齿轮传动设计1. 选定齿轮类型、精度等级、材料及齿数1)按以上的传动方案,选用直齿圆柱齿轮传动。2)运输机为一般工作,速度不高,故选用8级精度(GB 10095-88)。3) 材料选择。考虑到制造的方便及小齿轮容易磨损并兼顾到经济性,两级圆柱齿轮的大、小齿轮材料均用45钢,大齿轮为正火处理,小齿轮热处理均为调质处理且大、小齿轮的齿面硬度分别为260HBS,215HBS。4)选小齿轮的齿数 ,大齿轮的齿数为 。2. 按齿面接触强度设计由设计公式进行试算,即(1) 确定公式内的各计算数值1) 试选载荷系数2) 由以上计算得小齿轮的转矩:3) 查6-12(机械设计基础)表选取齿宽系数 ,查图6-37(机械设计基础)按齿面硬度的小齿轮的接触疲劳强度极限 ;大齿轮的接触疲劳强度极限 。计算接触疲劳许用应力,取失效概率为1%,安全系数S=14)计算应力循环次数5) 按接触疲劳寿命系数(2) 计算:1) 带入 中较小的值,求得小齿轮分度圆直径 的最小值为3) 计算齿宽: 取 ,4) 计算分度圆直径与模数、中心距:模数: 取第一系列标准值m=分度圆直径:中心距:5) 校核弯曲疲劳强度:符合齿形因数 由图6-40得 =, =弯曲疲劳需用应力:1) 查图6-41得弯曲疲劳强度极限 : ;2) 查图6-42取弯曲疲劳寿命系数3) 计算弯曲疲劳许用应力.取弯曲疲劳安全系数S=1,得4) 校核计算:<<故弯曲疲劳强度足够确定齿轮传动精度:圆周速度:对照表6-9(机械设计基础)根据一般通用机械精度等级范围为6~8级可知,齿轮精度等级应选8级§ 低速级齿轮传动设计1. 选定齿轮类型、精度等级、材料及齿数1)按以上的传动方案,选用直齿圆柱齿轮传动。2)运输机为一般工作,速度不高,故选用8级精度(GB 10095-88)。3) 材料选择。考虑到制造的方便及小齿轮容易磨损并兼顾到经济性,两级圆柱齿轮的大、小齿轮材料均用45钢,热处理均为正火调质处理且大、小齿轮的齿面硬度分别为200HBS,250HBS,二者材料硬度差为40HBS。4)选小齿轮的齿数 ,大齿轮的齿数为 ,取 。2. 按齿面接触强度设计由设计公式进行试算,即2) 确定公式内的各计算数值1) 试选载荷系数2) 由以上计算得小齿轮的转矩3) 查表及其图选取齿宽系数 ,由图6-37按齿面硬度的小齿轮的接触疲劳强度极限 ;大齿轮的接触疲劳强度极限 。4) 计算接触疲劳许用应力,取失效概率为1%,安全系数S=15) 查图6-42取弯曲疲劳寿命系数按接触疲劳寿命系数模数: 由表6-2取第一系列标准模数分度圆直径:中心距:齿宽:校核弯曲疲劳强度:复合齿形因数 由图6-40得6)计算接触疲劳许用应力,取失效概率为1%,安全系数S=1得校核计算: <<故弯曲疲劳强度足够确定齿轮传动精度:圆周速度:对照表6-9(机械设计基础)根据一般通用机械精度等级范围为6~8级可知,齿轮精度等级应选8级对各个轴齿轮相关计算尺寸表6-3高速轴齿轮各个参数计算列表名称 代号 计算公式齿数 Z模数压力角齿高系数顶隙系数齿距 P齿槽宽 e齿厚 s齿顶高齿根高齿高 h分度圆直径 d基圆直径齿顶圆直径齿根圆直径中心距表6-3低速轴齿轮各个参数计算列表名称 代号 计算公式齿数 Z模数压力角齿高系数顶隙系数齿距 P齿槽宽 e齿厚 s齿顶高齿根高齿高 h分度圆直径 d基圆直径齿顶圆直径齿根圆直径中心距V带的设计1)计算功率2)选择带型据 和 =2880由图10-12<械设计基础>选取z型带3)确定带轮基准直径由表10-9确定 <械设计基础>1) 验算带速因为 故符合要求2) 验算带长初定中心距由表10-6选取相近3) 确定中心距4) 验算小带轮包角故符合要求5) 单根V带传递额定功率据 和 查图10-9得8) 时单根V带的额定功率增量:据带型及 查表10-2<械设计基础>得10)确定带根数查表10-3 查表10-4 <械设计基础>11) 单根V带的初拉力查表10-512)用的轴上的力13带轮的结构和尺寸以小带轮为例确定其结构和尺寸,由图10-11<械设计基础>带轮宽§ 轴系结构设计§ 高速轴的轴系结构设计一、轴的结构尺寸设计根据结构及使用要求,把该轴设计成阶梯轴且为齿轮轴,共分七段,其中第5段为齿轮,如图2所示:图2由于结构及工作需要将该轴定为齿轮轴,因此其材料须与齿轮材料相同,均为合金钢,热处理为调制处理, 材料系数C为118。所以,有该轴的最小轴径为:考虑到该段开键槽的影响,轴径增大6%,于是有:标准化取其他各段轴径、长度的设计计算依据和过程见下表:表6 高速轴结构尺寸设计阶梯轴段 设计计算依据和过程 计算结果第1段(考虑键槽影响)第2段(由唇形密封圈尺寸确定)20()50第3段 由轴承尺寸确定(轴承预选6004 B1=12)2023第4段24()145第5段 齿顶圆直径齿宽3338第6段2410第7段2023二、轴的受力分析及计算轴的受力模型简化(见图3)及受力计算L1= L2= L3=40三、轴承的寿命校核鉴于调整间隙的方便,轴承均采用正装.预设轴承寿命为3年即12480h.校核步骤及计算结果见下表:表7 轴承寿命校核步骤及计算结果计算步骤及内容 计算结果6007轴承A端 B端由手册查出Cr、C0r及e、Y值 Cr=计算Fs=eFr(7类)、Fr/2Y(3类) FsA= FsB=计算比值Fa/Fr FaA /FrA>e FaB /FrB< e确定X、Y值 XA= 1,YA = 0, XB =1 YB=0查载荷系数fP 计算当量载荷P=Fp(XFr+YFa) PA= PB=计算轴承寿命小于12480h由计算结果可见轴承6007合格.表8 中间轴结构尺寸设计阶梯轴段 设计计算依据和过程 计算结果第1段由轴承尺寸确定(轴承预选6008 )第2段(考虑键槽影响)45()第3段第4段99109第5段4639考虑到低速轴的载荷较大,材料选用45,热处理调质处理,取材料系数所以,有该轴的最小轴径为:考虑到该段开键槽的影响,轴径增大6%,于是有:标准化取其他各段轴径、长度的设计计算依据和过程见下表:表10 低速轴结构尺寸设计阶梯轴段 设计计算依据和过程 计算结果第1段(考虑键槽影响)(由联轴器宽度尺寸确定)()142第2段(由唇形密封圈尺寸确定)64()50第3段6616第4段 由轴承尺寸确定(轴承预选6014C )7024第5段7875第6段208820第7段齿宽+1080()119§ 各轴键、键槽的选择及其校核因减速器中的键联结均为静联结,因此只需进行挤压应力的校核.一、 高速级键的选择及校核:带轮处键:按照带轮处的轴径及轴长选 键B8X7,键长50,GB/T1096联结处的材料分别为: 45钢(键) 、40Cr(轴)二、中间级键的选择及校核:(1) 高速级大齿轮处键: 按照轮毂处的轴径及轴长选 键B14X9GB/T1096联结处的材料分别为: 20Cr (轮毂) 、45钢(键) 、20Cr(轴)此时, 键联结合格.三、低速级级键的选择及校核(1)低速级大齿轮处键: 按照轮毂处的轴径及轴长选 键B22X14,键长 GB/T1096联结处的材料分别为: 20Cr (轮毂) 、45钢(键) 、45(轴)其中键的强度最低,因此按其许用应力进行校核,查手册其该键联结合格(2)联轴器处键: 按照联轴器处的轴径及轴长选 键16X10,键长100,GB/T1096联结处的材料分别为: 45钢 (联轴器) 、45钢(键) 、45(轴)其中键的强度最低,因此按其许用应力进行校核,查手册其该键联结合格.第四章 减速器箱体及其附件的设计§箱体结构设计根据箱体的支撑强度和铸造、加工工艺要求及其内部传动零件、外部附件的空间位置确定二级齿轮减速器箱体的相关尺寸如下:(表中a=)表12 箱体结构尺寸名称 符号 设计依据 设计结果箱座壁厚 δ 11考虑铸造工艺,所有壁厚都不应小于8箱盖壁厚 δ1 ≥8 箱座凸缘厚度 b δ 箱盖凸缘厚度 b1 δ1 箱座底凸缘厚度 b2 δ 地脚螺栓直径 df 24()地脚螺栓数目 n 时,n=66轴承旁联结螺栓直径 d1 18箱盖与箱座联接螺栓直径 d 2 (~)df 12轴承端盖螺钉直径和数目 d3,n (~)df,n 10,6窥视孔盖螺钉直径 d4 (~)df 8定位销直径 d (~) d 2 9轴承旁凸台半径 R1 c2 16凸台高度 h 根据位置及轴承座外径确定,以便于扳手操作为准 34外箱壁至轴承座端面距离 l1 c1+c2+ (5~10) 42大齿轮顶圆距内壁距离 ∆1 >δ 11齿轮端面与内壁距离 ∆2 >δ 10箱盖、箱座肋厚 m1 、 m m1≈δ1 = m≈δ= 7轴承端盖凸缘厚度 t (1~) d3 10轴承端盖外径 D2 D+(5~) d3 120轴承旁边连接螺栓距离S120第五章 运输、安装和使用维护要求1、减速器的安装(1)减速器输入轴直接与原动机连接时,推荐采用弹性联轴器;减速器输出轴与工作机联接时,推荐采用齿式联轴器或其他非刚性联轴器。联轴器不得用锤击装到轴上。(2)减速器应牢固地安装在稳定的水平基础上,排油槽的油应能排除,且冷却空气循环流畅。(3)减速器、原动机和工作机之间必须仔细对中,其误差不得大于所用联轴器的许用补偿量。(4)减速器安装好后用手转动必须灵活,无卡死现象。(5)安装好的减速器在正式使用前,应进行空载,部分额定载荷间歇运转1~3h后方可正式运转,运转应平稳、无冲击、无异常振动和噪声及渗漏油等现象,最高油温不得超过100℃;并按标准规定检查轮齿面接触区位置、面积,如发现故障,应及时排除。2、使用维护本类型系列减速器结构简单牢固,使用维护方便,承载能力范围大,公称输入功率—6660kw,公称输出转矩100—,不怕工况条件恶劣,是适用性很好,应用量大面广的产品。可通用于矿山、冶金、运输、建材、化工、纺织、轻工、能源等行业的机械传动。但有以下限制条件:1.减速器高速轴转速不高于1000r/min;2.减速器齿轮圆周速度不高于20m/s;3.减速器工作环境温度为—40~45℃,低于0℃时,启动前润滑油应预热到8℃以上,高于45℃时应采取隔热措施。3、减速器润滑油的更换:(1)减速器第一次使用时,当运转150~300h后须更换润滑油,在以后的使用中应定期检查油的质量。对于混入杂质或变质的油须及时更换。一般情况下,对于长期工作的减速器,每500~1000h必须换油一次。对于每天工作时间不超过8h的减速器,每1200~3000h换油一次。(2)减速器应加入与原来牌号相同的油,不得与不同牌号的油相混用。牌号相同而粘度不同的油允许混合用。(3)换油过程中,蜗轮应使用与运转时相同牌号的油清洗。(4)工作中,当发现油温温升超过80℃或油池温度超过100℃及产生不正常的噪声等现象时,应停止使用,检查原因。如因齿面胶合等原因所致,必须排除故障,更换润滑油后,方可继续运转。减速器应定期检修。如发现擦伤、胶合及显著磨损,必须采用有效措施制止或予以排除。备件必须按标准制造,更新的备件必须经过跑合和负荷试验后才能正式使用。 用户应有合理的使用维护规章制度,对减速器的运转情况和检验中发现的问题应做认真的记录 。小 结转眼两周的时间过去了,感觉时间过得真快,忙忙碌碌终于把机械设计做出来了。我通过这次设计学到了很多东西。使我对机械设计的内容有了进一步的了解.因为刚结束课程就搞设计,还没有来得及复习,所以刚开始遇到好多的问题,都感觉很棘手.因为机械设计是把我们这学期所学知识全部综合起来了,还用到了许多先前开的课程,例如金属工艺学,材料力学,机械原理等.首先,我们要运用知识想好用什么结构,然后进行轴大小长短的设计,要校核,选轴承。最后还要校核低速轴,看能否用。键也是一件重要的零件,校核也不可避免。所有这些都用到了力学和机械设计得内容,可是我当时力学没有学好,机械设计又没完全掌握,做这次设计真是不容易啊!.但通过这次机械设计学到了许多,不仅是在知识方面,重要是在观念方面。以往我们不管做什么都有现成的东西,而我们只要算别人现有的东西就可以了,其实那就是抄。但现在很多是自己设计,没有约束了反而不知所措了。其次,我在这次设计中出现了许多问题,经过常老师得指点,我学到了许多课本上没有的东西他并且给我们讲了一些实际用到的经验.收获真是破多啊!最后就是我们大学的课程开了这么多,我们一定要把基础打牢,为以后的综合运用打下基础啊.这次机械设计课程就体现了,我们现在很缺乏把自己学的东西联系起来的能力.最后我总结一下通过这次机械设计我学到的。实践出真知,不假。通过设计我现在可以了解真正的设计是一个怎样的程序啊.而且其中出现了许多错误,为以后工作增加经验。虽然机设很累,但我很充实,我学到了许多知识,我增加了社会竞争力,我又多了解了机械,又进步了。总之,这次机械设计虽然很累,但是我学到了好多自己从前不知道和没有经历的经验。参 考 文 献1 <<机械设计>>第八版 濮良贵主编 高等教育出版社 ,20062 <<机械设计课程设计>>第1版 . 王昆,何小柏主编 .机械工业出版社 ,20043 <<机械原理>> 申永胜主编 清华大学出版社 ,19994 <<材料力学 >> 刘鸿文主编 高等教育出版社 ,20045 <<几何公差与测量>>第五版 甘永力主编 上海科学技术出版社 ,20036 <<机械制图>>

我觉得这个内容很多啊,但是你的具体要求好像又有差异,建议你网上找找

摘要 齿轮传动是现代机械中应用最广的一种传动形式。它是由齿轮、轴、轴承及箱体组成的减速装置,用于原动机和工作机或执行机构之间,起匹配转速和传递扭矩的作用。齿轮减速器的特点是效率高、寿命长、维护方便,因此应用广泛。本设计讲述了带式运输机的传动装置——二级圆柱齿轮减速器的设计过程。首先进行了传动方案的拟定选择V带和同轴式二级圆柱齿轮减速器为传动装置,然后进行减速器和v带的设计计算(电动机的选择、V带设计、齿轮传动设计、轴的结构设计、选择并验算联轴器、键的选择和校核和轴承的润滑、大齿轮加工工艺编制等内容)运用AutoCAD软件进行齿轮减速器的二维平面设计,完成齿轮减速器的二维零件图绘制和装配图的绘制。关键词:齿轮啮合 轴传动 传动比 传动效率

毕业论文二级减速器

25 全自动洗衣机控制系统的设计26 生产线上运输升降机的自动化设计27 实验用减速器的设计28 手机充电器的模具设计29 鼠标盖的模具设计30 双齿减速器设计31 双铰接剪叉式液压升降台的设计32 水泥瓦模具设计与制造工艺分析33 四层楼电梯自动控制系统的设计34 塑料电话接线盒注射模设计35 塑料模具设计36 同轴式二级圆柱齿轮减速器的设计37 托板冲模毕业设计38 推动架设计39 椭圆盖注射模设计40 万能外圆磨床液压传动系统设计41 五寸软盘盖注射模具设计42 锡林右轴承座组件工艺及夹具设计43 心型台灯塑料注塑模具毕业设计44 机械手设计45 机械手自动控制系统的PLC实现方法研究46 汽车制动系统实验台设计47 数控多工位钻床设计48 数控车床主轴和转塔刀架毕业设计49 送布凸轮的设计和制造50 CA6140车床后托架夹具设计51 带式输送机毕业设计论文52 电火花加工论文53 机床的数控改造及发展趋势54 机械加工工艺规程毕业论文55 机械手毕业论文56 基于ANSYS的齿轮泵有限元分析57 可编程序控制器在机床数控系统中应用探讨58 矿石铲运机液压系统设计59 汽车连杆加工工艺及夹具设计论文60 数控车床半闭环控制系统设计61 数控多工位钻床设计62 数控机床体积定位精度的测量与补偿63 数控机床维修64 数控加工工艺与编程65 塑料注射模设计与制造66 新型电动执行机构67 液力传动变速箱设计与仿真论文68 轴类零件的加工工艺论文69 中型货车变速器的设计70 数控钻床横、纵两向进给系统的设计71 经济型数控车床控制系统设计72 Y210—2型电动机定子铁芯冲压模具设计73 双坐标十字滑台设计及控制74 注射器盖毕业设计75 二级减速器的毕业设计Q Q 1 0 7 0 2 6 5 1 0 1

摘要 齿轮传动是现代机械中应用最广的一种传动形式。它是由齿轮、轴、轴承及箱体组成的减速装置,用于原动机和工作机或执行机构之间,起匹配转速和传递扭矩的作用。齿轮减速器的特点是效率高、寿命长、维护方便,因此应用广泛。本设计讲述了带式运输机的传动装置——二级圆柱齿轮减速器的设计过程。首先进行了传动方案的拟定选择V带和同轴式二级圆柱齿轮减速器为传动装置,然后进行减速器和v带的设计计算(电动机的选择、V带设计、齿轮传动设计、轴的结构设计、选择并验算联轴器、键的选择和校核和轴承的润滑、大齿轮加工工艺编制等内容)运用AutoCAD软件进行齿轮减速器的二维平面设计,完成齿轮减速器的二维零件图绘制和装配图的绘制。关键词:齿轮啮合 轴传动 传动比 传动效率

摘要 本文在参考常规下运带式输送机设计方法的基础上,分析了常见驱动方式和制动方式用于长运距、大运量下运带式输送机上的优缺点,提出该运输机可采用的驱动和制动方式;分析了常见软起动装置及其选型方法,归纳总结出长运距、大运量变坡输送下运带式输送机设计中的关键问题和可靠驱动方案和制动方式优化组合的可行方案;通过常规设计计算,提出了合理确定张紧位置、张紧方式及张紧力大小的方法;对驱动装置及各主要部件进行了选型并校核。长距离变坡下运带式输送机运行工况复杂,在设计方面需考虑各种可能的工况,并计算最危险工况下输送机的各项参数,同时为保证运行过程中输送机各组成部分能适应载荷及工况的变化需将拉紧力统一,然后重新计算各工况下输送机参数,最终确定整机参数。本论文对长运距、大运量变坡下运带式输送机,综合考虑各方面的因素,采用合理的驱动方案、制动方式和软启动装置组合,有效保证长运距、大运量变坡下运带式输送机的可靠运行。关键词:带式输送机 下运 长距离 变坡目 录1 绪论………………………………………………………………………………12.输送机的发展与现状……………………………………………………………国内外带式输送机的发展与现状 ……………………………………………国外煤矿用带式输送机技术现状和发展趋势 ……………………………国内煤矿用带式输送机的技术现状及存在的问题 ………………………我国煤矿用带式输送机的发展 ……………………………………………选题背景 ………………………………………………………………………主要技术参数 ………………………………………………………………线路参数 ……………………………………………………………………物料特性 ……………………………………………………………………带式输送机工作环境 ………………………………………………………本课题的研究内容 ……………………………………………………………长运距、大运量下运带式输送机关键技术分析研究 ……………………带式输送机的设计及驱动、制动方案的分析 ……………………………63长距离、大运量下运带式输送机关键技术的分析 ……………………………下运带式输送机基本组成 ……………………………………………………驱动方案的确定 ………………………………………………………………带式输送机制动技术 …………………………………………………………84 长距离大运量下运带式输送机的设计………………………………………… 带式输送机原始参数………………………………………………………… 带式输送机的设计计算………………………………………………………输送带运行速度的选择……………………………………………………输送带宽度计算……………………………………………………………初选输送带…………………………………………………………………输送机布置形式及基本参数的确定…………………………………………输送带布置形式……………………………………………………………输送机基本参数的确定……………………………………………………线路阻力的计算………………………………………………………………输送带张力的计算……………………………………………………………张力计算时各种运行工况的讨论………………………………………… 最大发电状态下张力计算 ………………………………………………… 最大电动状态下张力计算 …………………………………………………满载状态下张力计算………………………………………………………三种工况综合分析张力计算………………………………………………电机数量与配比的选择…………………………………………………… 滚筒的选择与减速器的选择…………………………………………………传动滚筒直径的选择………………………………………………………改向滚筒直径选择…………………………………………………………减速器的选型……………………………………………………………… 制动器装置的选择……………………………………………………………目前主要的制动装置原理与性能…………………………………………制动器的选用原则…………………………………………………………制动器的选择………………………………………………………………软起动装置的选择…………………………………………………………… 目前主要的软起动装置原理与性能……………………………………… 软起动装置的选用…………………………………………………………拉紧装置………………………………………………………………………张紧位置的确定……………………………………………………………拉紧力及拉紧形成的计算…………………………………………………拉紧装置选择………………………………………………………………325 结论………………………………………………………………………………34致谢 ………………………………………………………………………………35参考文献 …………………………………………………………………………36外文文献原文译文

二级圆柱减速器毕业论文

前 言机械设计综合课程设计在机械工程学科中占有重要地位,它是理论应用于实际的重要实践环节。本课程设计培养了我们机械设计中的总体设计能力,将机械设计系列课程设计中所学的有关机构原理方案设计、运动和动力学分析、机械零部件设计理论、方法、结构及工艺设计等内容有机地结合进行综合设计实践训练,使课程设计与机械设计实际的联系更为紧密。此外,它还培养了我们机械系统创新设计的能力,增强了机械构思设计和创新设计。本课程设计的设计任务是展开式二级圆柱齿轮减速器的设计。减速器是一种将由电动机输出的高转速降至要求的转速比较典型的机械装置,可以广泛地应用于矿山、冶金、石油、化工、起重运输、纺织印染、制药、造船、机械、环保及食品轻工等领域。本次设计综合运用机械设计及其他先修课的知识,进行机械设计训练,使已学知识得以巩固、加深和扩展;学习和掌握通用机械零件、部件、机械传动及一般机械的基本设计方法和步骤,培养学生工程设计能力和分析问题,解决问题的能力;提高我们在计算、制图、运用设计资料(手册、 图册)进行经验估算及考虑技术决策等机械设计方面的基本技能,同时给了我们练习电脑绘图的机会。最后借此机会,对本次课程设计的各位指导老师以及参与校对、帮助的同学表示衷心的感谢。由于缺乏经验、水平有限,设计中难免有不妥之处,恳请各位老师及同学提出宝贵意见。带式输送机概论带式输送机是一种摩擦驱动以连续方式运输燃料的机械。应用它可以将物料在一定的输送线上,从最初的供料点到最终的卸料点间形成一种物料的输送流程。它既可以进行碎散物料的输送,也可以进行成件物品的输送。除进行纯粹的物料输送外,还可以与各工业企业生产流程中的工艺过程的要求相配合,形成有节奏的流水作业运输线。所以带式输送机广泛应用于现代化的各种工业企业中。在矿山的井下巷道、矿井地面运输系统、露天采矿场及选矿厂中,广泛应用带式输送机。它用于水平运输或倾斜运输。使用非常方便。输送机发展历史中国古代的高转筒车和提水的翻车,是现代斗式提升机和刮板输送机的雏形;17世纪中,开始应用架空索道输送散状物料;19世纪中叶,各种现代结构的输送机相继出现。1868年,在英国出现了带式输送机;1887年,在美国出现了螺旋输送机;1905年,在瑞士出现了钢带式输送机;1906年,在英国和德国出现了惯性输送机。此后,输送机受到机械制造、电机、化工和冶金工业技术进步的影响,不断完善,逐步由完成车间内部的输送,发展到完成在企业内部、企业之间甚至城市之间的物料搬运,成为材料搬运系统机械化和自动化不可缺少的组成部分。输送机的特点带式输送机是煤矿最理想的高效连续运输设备,与其他运输设备(如机车类)相比具有输送距离长、运量大、连续输送等优点,而且运行可靠,易于实现自动化和集中化控制,尤其对高产高效矿井,带式输送机已成为煤炭开采机电一体化技术与装备的关键设备。带式输送机主要特点是机身可以很方便的伸缩,设有储带仓,机尾可随采煤工作面的推进伸长或缩短,结构紧凑,可不设基础,直接在巷道底板上铺设,机架轻巧,拆装十分方便。当输送能力和运距较大时,可配中间驱动装置来满足要求。根据输送工艺的要求,可以单机输送,也可多机组合成水平或倾斜的运输系统来输送物料。带式输送机广泛地应用在冶金、煤炭、交通、水电、化工等部门,是因为它具有输送量大、结构简单、维修方便、成本低、通用性强等优点。带式输送机还应用于建材、电力、轻工、粮食、港口、船舶等部门。一、 设计任务书设计一用于带式运输机上同轴式二级圆柱齿轮减速器1. 总体布置简图2. 工作情况工作平稳、单向运转3. 原始数据运输机卷筒扭矩(N•m) 运输带速度(m/s) 卷筒直径(mm) 使用年限(年) 工作制度(班/日)350 380 10 14. 设计内容(1) 电动机的选择与参数计算(2) 斜齿轮传动设计计算(3) 轴的设计(4) 滚动轴承的选择(5) 键和联轴器的选择与校核(6) 装配图、零件图的绘制(7) 设计计算说明书的编写5. 设计任务(1) 减速器总装配图1张(0号或1号图纸)(2) 齿轮、轴、轴承零件图各1张(2号或3号图纸)(3) 设计计算说明书一份二、 传动方案的拟定及说明为了估计传动装置的总传动比范围,以便选择合适的传动机构和拟定传动:方案,可由已知条件计算其驱动卷筒的转速nw:三. 电动机的选择1. 电动机类型选:Y行三相异步电动机2. 电动机容量(1) 卷筒轴的输出功率(2) 电动机的输出功率传动装置的总效率式中, 为从电动机至卷筒轴之间的各传动机构和轴承的效率。由《机械设计课程设计》(以下未作说明皆为此书中查得)表2-4查得:V带传动 ;滚动轴承 ;圆柱齿轮传动 ;弹性联轴器 ;卷筒轴滑动轴承 ,则故(3) 电动机额定功率由第二十章表20-1选取电动机额定功率由表2-1查得V带传动常用传动比范围 ,由表2-2查得两级展开式圆柱齿轮减速器传动比范围 ,则电动机转速可选范围为可选符合这一范围的同步转速的电动3000 。根据电动机所需容量和转速,由有关手册查出只有一种使用的电动机型号,此种传动比方案如下表:电动机型号 额定功率电动机转速传动装置传动比Y100L-2 3 同步 满载 总传动比 V带 减速器3000 2880 2三、 计算传动装置总传动比和分配各级传动比1. 传动装置总传动比2. 分配各级传动比取V带传动的传动比 ,则两级圆柱齿轮减速器的传动比为按展开式布置考虑润滑条件,为使两级大齿轮直径相近由图12展开式曲线的则i所得 符合一般圆柱齿轮传动和两级圆柱齿轮减速器传动比的常用范围。四、计算传动装置的运动和动力参数:按电动机轴至工作机运动传递路线推算,得到各轴的运动和动力参数1.各轴转速:2.各轴输入功率:Ⅰ~Ⅲ轴的输出功率分别为输入功率乘轴承效率,卷筒轴输出功率则为输入功率乘卷筒的传动效率,计算结果见下表。3. 各轴输入转矩:Ⅰ~Ⅲ轴的输出转矩分别为输入转矩乘轴承效率,卷筒轴输出转矩则为输入转矩乘卷筒的传动效率,计算结果见下表。综上,传动装置的运动和动力参数计算结果整理于下表:轴名 功率转矩转速传动比效率输入 输出 输入 输出电机轴 2880 轴 轴 201. 轴 卷筒轴 第三章 主要零部件的设计计算§ 展开式二级圆柱齿轮减速器齿轮传动设计§ 高速级齿轮传动设计1. 选定齿轮类型、精度等级、材料及齿数1)按以上的传动方案,选用直齿圆柱齿轮传动。2)运输机为一般工作,速度不高,故选用8级精度(GB 10095-88)。3) 材料选择。考虑到制造的方便及小齿轮容易磨损并兼顾到经济性,两级圆柱齿轮的大、小齿轮材料均用45钢,大齿轮为正火处理,小齿轮热处理均为调质处理且大、小齿轮的齿面硬度分别为260HBS,215HBS。4)选小齿轮的齿数 ,大齿轮的齿数为 。2. 按齿面接触强度设计由设计公式进行试算,即(1) 确定公式内的各计算数值1) 试选载荷系数2) 由以上计算得小齿轮的转矩:3) 查6-12(机械设计基础)表选取齿宽系数 ,查图6-37(机械设计基础)按齿面硬度的小齿轮的接触疲劳强度极限 ;大齿轮的接触疲劳强度极限 。计算接触疲劳许用应力,取失效概率为1%,安全系数S=14)计算应力循环次数5) 按接触疲劳寿命系数(2) 计算:1) 带入 中较小的值,求得小齿轮分度圆直径 的最小值为3) 计算齿宽: 取 ,4) 计算分度圆直径与模数、中心距:模数: 取第一系列标准值m=分度圆直径:中心距:5) 校核弯曲疲劳强度:符合齿形因数 由图6-40得 =, =弯曲疲劳需用应力:1) 查图6-41得弯曲疲劳强度极限 : ;2) 查图6-42取弯曲疲劳寿命系数3) 计算弯曲疲劳许用应力.取弯曲疲劳安全系数S=1,得4) 校核计算:<<故弯曲疲劳强度足够确定齿轮传动精度:圆周速度:对照表6-9(机械设计基础)根据一般通用机械精度等级范围为6~8级可知,齿轮精度等级应选8级§ 低速级齿轮传动设计1. 选定齿轮类型、精度等级、材料及齿数1)按以上的传动方案,选用直齿圆柱齿轮传动。2)运输机为一般工作,速度不高,故选用8级精度(GB 10095-88)。3) 材料选择。考虑到制造的方便及小齿轮容易磨损并兼顾到经济性,两级圆柱齿轮的大、小齿轮材料均用45钢,热处理均为正火调质处理且大、小齿轮的齿面硬度分别为200HBS,250HBS,二者材料硬度差为40HBS。4)选小齿轮的齿数 ,大齿轮的齿数为 ,取 。2. 按齿面接触强度设计由设计公式进行试算,即2) 确定公式内的各计算数值1) 试选载荷系数2) 由以上计算得小齿轮的转矩3) 查表及其图选取齿宽系数 ,由图6-37按齿面硬度的小齿轮的接触疲劳强度极限 ;大齿轮的接触疲劳强度极限 。4) 计算接触疲劳许用应力,取失效概率为1%,安全系数S=15) 查图6-42取弯曲疲劳寿命系数按接触疲劳寿命系数模数: 由表6-2取第一系列标准模数分度圆直径:中心距:齿宽:校核弯曲疲劳强度:复合齿形因数 由图6-40得6)计算接触疲劳许用应力,取失效概率为1%,安全系数S=1得校核计算: <<故弯曲疲劳强度足够确定齿轮传动精度:圆周速度:对照表6-9(机械设计基础)根据一般通用机械精度等级范围为6~8级可知,齿轮精度等级应选8级对各个轴齿轮相关计算尺寸表6-3高速轴齿轮各个参数计算列表名称 代号 计算公式齿数 Z模数压力角齿高系数顶隙系数齿距 P齿槽宽 e齿厚 s齿顶高齿根高齿高 h分度圆直径 d基圆直径齿顶圆直径齿根圆直径中心距表6-3低速轴齿轮各个参数计算列表名称 代号 计算公式齿数 Z模数压力角齿高系数顶隙系数齿距 P齿槽宽 e齿厚 s齿顶高齿根高齿高 h分度圆直径 d基圆直径齿顶圆直径齿根圆直径中心距V带的设计1)计算功率2)选择带型据 和 =2880由图10-12<械设计基础>选取z型带3)确定带轮基准直径由表10-9确定 <械设计基础>1) 验算带速因为 故符合要求2) 验算带长初定中心距由表10-6选取相近3) 确定中心距4) 验算小带轮包角故符合要求5) 单根V带传递额定功率据 和 查图10-9得8) 时单根V带的额定功率增量:据带型及 查表10-2<械设计基础>得10)确定带根数查表10-3 查表10-4 <械设计基础>11) 单根V带的初拉力查表10-512)用的轴上的力13带轮的结构和尺寸以小带轮为例确定其结构和尺寸,由图10-11<械设计基础>带轮宽§ 轴系结构设计§ 高速轴的轴系结构设计一、轴的结构尺寸设计根据结构及使用要求,把该轴设计成阶梯轴且为齿轮轴,共分七段,其中第5段为齿轮,如图2所示:图2由于结构及工作需要将该轴定为齿轮轴,因此其材料须与齿轮材料相同,均为合金钢,热处理为调制处理, 材料系数C为118。所以,有该轴的最小轴径为:考虑到该段开键槽的影响,轴径增大6%,于是有:标准化取其他各段轴径、长度的设计计算依据和过程见下表:表6 高速轴结构尺寸设计阶梯轴段 设计计算依据和过程 计算结果第1段(考虑键槽影响)第2段(由唇形密封圈尺寸确定)20()50第3段 由轴承尺寸确定(轴承预选6004 B1=12)2023第4段24()145第5段 齿顶圆直径齿宽3338第6段2410第7段2023二、轴的受力分析及计算轴的受力模型简化(见图3)及受力计算L1= L2= L3=40三、轴承的寿命校核鉴于调整间隙的方便,轴承均采用正装.预设轴承寿命为3年即12480h.校核步骤及计算结果见下表:表7 轴承寿命校核步骤及计算结果计算步骤及内容 计算结果6007轴承A端 B端由手册查出Cr、C0r及e、Y值 Cr=计算Fs=eFr(7类)、Fr/2Y(3类) FsA= FsB=计算比值Fa/Fr FaA /FrA>e FaB /FrB< e确定X、Y值 XA= 1,YA = 0, XB =1 YB=0查载荷系数fP 计算当量载荷P=Fp(XFr+YFa) PA= PB=计算轴承寿命小于12480h由计算结果可见轴承6007合格.表8 中间轴结构尺寸设计阶梯轴段 设计计算依据和过程 计算结果第1段由轴承尺寸确定(轴承预选6008 )第2段(考虑键槽影响)45()第3段第4段99109第5段4639考虑到低速轴的载荷较大,材料选用45,热处理调质处理,取材料系数所以,有该轴的最小轴径为:考虑到该段开键槽的影响,轴径增大6%,于是有:标准化取其他各段轴径、长度的设计计算依据和过程见下表:表10 低速轴结构尺寸设计阶梯轴段 设计计算依据和过程 计算结果第1段(考虑键槽影响)(由联轴器宽度尺寸确定)()142第2段(由唇形密封圈尺寸确定)64()50第3段6616第4段 由轴承尺寸确定(轴承预选6014C )7024第5段7875第6段208820第7段齿宽+1080()119§ 各轴键、键槽的选择及其校核因减速器中的键联结均为静联结,因此只需进行挤压应力的校核.一、 高速级键的选择及校核:带轮处键:按照带轮处的轴径及轴长选 键B8X7,键长50,GB/T1096联结处的材料分别为: 45钢(键) 、40Cr(轴)二、中间级键的选择及校核:(1) 高速级大齿轮处键: 按照轮毂处的轴径及轴长选 键B14X9GB/T1096联结处的材料分别为: 20Cr (轮毂) 、45钢(键) 、20Cr(轴)此时, 键联结合格.三、低速级级键的选择及校核(1)低速级大齿轮处键: 按照轮毂处的轴径及轴长选 键B22X14,键长 GB/T1096联结处的材料分别为: 20Cr (轮毂) 、45钢(键) 、45(轴)其中键的强度最低,因此按其许用应力进行校核,查手册其该键联结合格(2)联轴器处键: 按照联轴器处的轴径及轴长选 键16X10,键长100,GB/T1096联结处的材料分别为: 45钢 (联轴器) 、45钢(键) 、45(轴)其中键的强度最低,因此按其许用应力进行校核,查手册其该键联结合格.第四章 减速器箱体及其附件的设计§箱体结构设计根据箱体的支撑强度和铸造、加工工艺要求及其内部传动零件、外部附件的空间位置确定二级齿轮减速器箱体的相关尺寸如下:(表中a=)表12 箱体结构尺寸名称 符号 设计依据 设计结果箱座壁厚 δ 11考虑铸造工艺,所有壁厚都不应小于8箱盖壁厚 δ1 ≥8 箱座凸缘厚度 b δ 箱盖凸缘厚度 b1 δ1 箱座底凸缘厚度 b2 δ 地脚螺栓直径 df 24()地脚螺栓数目 n 时,n=66轴承旁联结螺栓直径 d1 18箱盖与箱座联接螺栓直径 d 2 (~)df 12轴承端盖螺钉直径和数目 d3,n (~)df,n 10,6窥视孔盖螺钉直径 d4 (~)df 8定位销直径 d (~) d 2 9轴承旁凸台半径 R1 c2 16凸台高度 h 根据位置及轴承座外径确定,以便于扳手操作为准 34外箱壁至轴承座端面距离 l1 c1+c2+ (5~10) 42大齿轮顶圆距内壁距离 ∆1 >δ 11齿轮端面与内壁距离 ∆2 >δ 10箱盖、箱座肋厚 m1 、 m m1≈δ1 = m≈δ= 7轴承端盖凸缘厚度 t (1~) d3 10轴承端盖外径 D2 D+(5~) d3 120轴承旁边连接螺栓距离S120第五章 运输、安装和使用维护要求1、减速器的安装(1)减速器输入轴直接与原动机连接时,推荐采用弹性联轴器;减速器输出轴与工作机联接时,推荐采用齿式联轴器或其他非刚性联轴器。联轴器不得用锤击装到轴上。(2)减速器应牢固地安装在稳定的水平基础上,排油槽的油应能排除,且冷却空气循环流畅。(3)减速器、原动机和工作机之间必须仔细对中,其误差不得大于所用联轴器的许用补偿量。(4)减速器安装好后用手转动必须灵活,无卡死现象。(5)安装好的减速器在正式使用前,应进行空载,部分额定载荷间歇运转1~3h后方可正式运转,运转应平稳、无冲击、无异常振动和噪声及渗漏油等现象,最高油温不得超过100℃;并按标准规定检查轮齿面接触区位置、面积,如发现故障,应及时排除。2、使用维护本类型系列减速器结构简单牢固,使用维护方便,承载能力范围大,公称输入功率—6660kw,公称输出转矩100—,不怕工况条件恶劣,是适用性很好,应用量大面广的产品。可通用于矿山、冶金、运输、建材、化工、纺织、轻工、能源等行业的机械传动。但有以下限制条件:1.减速器高速轴转速不高于1000r/min;2.减速器齿轮圆周速度不高于20m/s;3.减速器工作环境温度为—40~45℃,低于0℃时,启动前润滑油应预热到8℃以上,高于45℃时应采取隔热措施。3、减速器润滑油的更换:(1)减速器第一次使用时,当运转150~300h后须更换润滑油,在以后的使用中应定期检查油的质量。对于混入杂质或变质的油须及时更换。一般情况下,对于长期工作的减速器,每500~1000h必须换油一次。对于每天工作时间不超过8h的减速器,每1200~3000h换油一次。(2)减速器应加入与原来牌号相同的油,不得与不同牌号的油相混用。牌号相同而粘度不同的油允许混合用。(3)换油过程中,蜗轮应使用与运转时相同牌号的油清洗。(4)工作中,当发现油温温升超过80℃或油池温度超过100℃及产生不正常的噪声等现象时,应停止使用,检查原因。如因齿面胶合等原因所致,必须排除故障,更换润滑油后,方可继续运转。减速器应定期检修。如发现擦伤、胶合及显著磨损,必须采用有效措施制止或予以排除。备件必须按标准制造,更新的备件必须经过跑合和负荷试验后才能正式使用。 用户应有合理的使用维护规章制度,对减速器的运转情况和检验中发现的问题应做认真的记录 。小 结转眼两周的时间过去了,感觉时间过得真快,忙忙碌碌终于把机械设计做出来了。我通过这次设计学到了很多东西。使我对机械设计的内容有了进一步的了解.因为刚结束课程就搞设计,还没有来得及复习,所以刚开始遇到好多的问题,都感觉很棘手.因为机械设计是把我们这学期所学知识全部综合起来了,还用到了许多先前开的课程,例如金属工艺学,材料力学,机械原理等.首先,我们要运用知识想好用什么结构,然后进行轴大小长短的设计,要校核,选轴承。最后还要校核低速轴,看能否用。键也是一件重要的零件,校核也不可避免。所有这些都用到了力学和机械设计得内容,可是我当时力学没有学好,机械设计又没完全掌握,做这次设计真是不容易啊!.但通过这次机械设计学到了许多,不仅是在知识方面,重要是在观念方面。以往我们不管做什么都有现成的东西,而我们只要算别人现有的东西就可以了,其实那就是抄。但现在很多是自己设计,没有约束了反而不知所措了。其次,我在这次设计中出现了许多问题,经过常老师得指点,我学到了许多课本上没有的东西他并且给我们讲了一些实际用到的经验.收获真是破多啊!最后就是我们大学的课程开了这么多,我们一定要把基础打牢,为以后的综合运用打下基础啊.这次机械设计课程就体现了,我们现在很缺乏把自己学的东西联系起来的能力.最后我总结一下通过这次机械设计我学到的。实践出真知,不假。通过设计我现在可以了解真正的设计是一个怎样的程序啊.而且其中出现了许多错误,为以后工作增加经验。虽然机设很累,但我很充实,我学到了许多知识,我增加了社会竞争力,我又多了解了机械,又进步了。总之,这次机械设计虽然很累,但是我学到了好多自己从前不知道和没有经历的经验。参 考 文 献1 <<机械设计>>第八版 濮良贵主编 高等教育出版社 ,20062 <<机械设计课程设计>>第1版 . 王昆,何小柏主编 .机械工业出版社 ,20043 <<机械原理>> 申永胜主编 清华大学出版社 ,19994 <<材料力学 >> 刘鸿文主编 高等教育出版社 ,20045 <<几何公差与测量>>第五版 甘永力主编 上海科学技术出版社 ,20036 <<机械制图>>

我觉得这个内容很多啊,但是你的具体要求好像又有差异,建议你网上找找

机械设计课程设计原始资料一、设计题目热处理车间零件输送设备的传动装备二、运动简图图11—电动机 2—V带 3—齿轮减速器 4—联轴器 5—滚筒 6—输送带三、工作条件该装置单向传送,载荷平稳,空载起动,两班制工作,使用期限5年(每年按300天计算),输送带的速度容许误差为 ±5%.四、原始数据滚筒直径D(mm):320运输带速度V(m/s):滚筒轴转矩T(N•m):900五、设计工作量1减速器总装配图一张2齿轮、轴零件图各一张3设计说明书一份六、设计说明书内容1. 运动简图和原始数据2. 电动机选择3. 主要参数计算4. V带传动的设计计算5. 减速器斜齿圆柱齿轮传动的设计计算6. 机座结构尺寸计算7. 轴的设计计算8. 键、联轴器等的选择和校核9. 滚动轴承及密封的选择和校核 10. 润滑材料及齿轮、轴承的润滑方法11. 齿轮、轴承配合的选择12. 参考文献七、设计要求1. 各设计阶段完成后,需经指导老师审阅同意后方能进行下阶段的设计;2. 在指定的教室内进行设计. 一. 电动机的选择 一、电动机输入功率 二、电动机输出功率 其中总效率为查表可得Y132S-4符合要求,故选用它。 Y132S-4(同步转速 ,4极)的相关参数 表1额定功率 满载转速 堵转转矩额定转矩 最大转矩额定转矩 质量二. 主要参数的计算一、确定总传动比和分配各级传动比传动装置的总传动比 查表可得V带传动单级传动比常用值2~4,圆柱齿轮传动单级传动比常用值为3~5,展开式二级圆柱齿轮减速器 。初分传动比为 , , 。二、计算传动装置的运动和动力参数 本装置从电动机到工作机有三轴,依次为Ⅰ,Ⅱ,Ⅲ轴,则1、各轴转速2、各轴功率3、各轴转矩表2项目 电机轴 高速轴Ⅰ 中间轴Ⅱ 低速轴Ⅲ转速 1440 576 功率 转矩 传动比 效率 三 V带传动的设计计算一、确定计算功率 查表可得工作情况系数 故 二、选择V带的带型根据 ,由图可得选用A型带。三、确定带轮的基准直径 并验算带速 1、初选小带轮的基准直径 。查表8-6和8-8可得选取小带轮的基准直径 2、验算带速 按计算式验算带的速度 因为 ,故此带速合适。3、计算大带轮的基准直径 按式(8-15a)计算大带轮的基准直径 根据教材表8-8,圆整得 。4、确定V带的中心距 和基准直径 (1)按计算式初定中心距 (2)按计算式计算所需的基准长度 =1364mm查表可选带的基准长度 (3)按计算式计算实际中心距 中心距的变化范围为 。5、验算小带轮上的包角 6、计算带的根数(1)计算单根V带的额定功率 由 查表可得 根据 和A型带,查表可得 、 、 。故 (2)计算V带的根数Z 故取V带根数为6根7、计算单根V带的初拉力的最小值 查表可得A型带的单位长度质量 应使带的实际初拉力 。8、计算压轴力 压轴力的最小值为 四 减速器斜齿圆柱齿轮传动的设计计算一、高速级齿轮1、选定齿轮类型、精度等级、材料及齿数(1)按图所示的传动方案,选用斜齿圆柱齿轮传动。(2)运输装置为一般工作机器,速度不高,故选用7级精度。(3)材料选择:查表可选择小齿轮材料为40 (调质),硬度为280HBS;大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。(4)选小齿轮齿数 ,大齿轮齿数 ,取 (5)选取螺旋角,初选螺旋角 2、按齿面接触强度设计,按计算式试算即 (1)确定公式内的各计算数值①试选 ,由图10-26 , 则有 ②小齿轮传递转矩 ③查图10-30可选取区域系数 查表10-7可选取齿宽系数 ④查表10-6可得材料的弹性影响系数 。⑤查图10-21d得按齿面硬度选取小齿轮的接触疲劳强度极限 ,大齿轮的接触疲劳强度极限 。⑥按计算式计算应力循环次数⑦查图可选取接触疲劳寿命系数 , 。⑧计算接触疲劳许用应力取失效概率为1%,安全系数 ,按计算式(10-12)得(2)计算相关数值①试算小齿轮分度圆直径 ,由计算公式得 ②计算圆周速度 ③计算齿宽 及模数 ④计算总相重合度 ⑤计算载荷系数 查表可得使用系数 ,根据 ,7级精度,查表10-8可得动载系数 ,由表10-4查得 的值与直齿轮的相同,为 , 故载荷系数 ⑥按实际的载荷系数校正所算得的分度圆直径,按计算式得 ⑦计算模数 3、按齿根弯曲强度设计,按计算式(10-17)试算即 (1)确定公式内的各计算数值①、计算载荷系数 ②根据纵向重合度 ,查图10-28可得螺旋角影响系数 。③查图可选取区域系数 , , 则有 ④查表取应力校正系数 , 。⑤查表取齿形系数 , 。(线性插值法)⑥查图10-20C可得小齿轮的弯曲疲劳强度极限 ,大齿轮的弯曲疲劳强度极限 。⑦查图可取弯曲疲劳寿命系数 , 。⑧计算弯曲疲劳许用应力 ,取弯曲疲劳安全系数 ,按计算式(10-22)计算得⑨计算大、小齿轮的 并加以计算大齿轮的数值较大。(2)设计计算 对比计算结果,由齿面接触疲劳强度计算的法面模数大于由齿根弯曲疲劳强度计算的法面模数,故取 ,已可满足弯曲强度,但为了同时满足接触疲劳强度,需按接触疲劳强度算得的分度圆直径 来计算应有的齿数,于是有 取 ,则 4、几何尺寸计算(1)计算中心距 将中心距圆整为 。(2)按圆整后的中心距修正螺旋角 因 值改变不多,故参数 、 、 等不必修正。(3)计算大、小齿轮的分度圆直径(4)计算齿轮宽度 圆整后取 , 。二、低速级齿轮1、选定齿轮类型、精度等级、材料及齿数(1)按图所示的传动方案,选用斜齿圆柱齿轮传动。(2)运输装置为一般工作机器,速度不高,故选用7级精度。(3)材料选择,在同一减速器各级小齿轮(或大齿轮)的材料,没有特殊情况,应选用相同牌号,以减少材料品种和工艺要求,故查表可选择小齿轮材料为40 (调质),硬度为52HRC;大齿轮材料为45钢(调质),硬度为45HRC.(4)选小齿轮齿数 ,大齿轮齿数 (5)选取螺旋角,初选螺旋角 2、按齿面接触强度设计,按计算式试算即 (1)确定公式内的各计算数值①试选 ②小齿轮传递转矩 ③查表10-7可选取齿宽系数 , 查图10-26可选取区域系数 , , 则有 ④查表可得材料的弹性影响系数 。⑤查图得按齿面硬度选取小齿轮的接触疲劳强度极限 ,大齿轮的接触疲劳强度极限 。⑥按计算式计算应力循环次数⑦查图可选取接触疲劳寿命系数 , 。⑧计算接触疲劳许用应力取失效概率为1%,安全系数 ,于是得(2)计算相关数值①试算小齿轮分度圆直径 ,由计算公式得 ②计算圆周速度 ③计算齿宽 及模数 ④计算总相重合度 ⑤计算载荷系数 查表可得使用系数 ,根据 ,7级精度,查表可得动载系数 , , , 故载荷系数 ⑥按实际的载荷系数校正所算得的分度圆直径,按计算式得 ⑦计算模数 3、按齿根弯曲强度设计,按计算式试算即 (1)确定公式内的各计算数值①计算载荷系数 ②根据纵向重合度 ,查图可得螺旋角影响系数 。③计算当量齿数④查表可取齿形系数 , 。⑤查表可取应力校正系数 , 。(线性插值法)⑥查图可得小齿轮的弯曲疲劳强度极限 ,大齿轮的弯曲疲劳强度极限 。⑦查图可取弯曲疲劳寿命系数 , 。⑧计算弯曲疲劳许用应力取弯曲疲劳安全系数 ,按计算式计算⑨计算大、小齿轮的 并加以计算大齿轮的数值较大。(2)设计计算 对比计算结果,由齿面接触疲劳强度计算的法面模数大于由齿根弯曲疲劳强度计算的法面模数,故取 ,已可满足弯曲强度,但为了同时满足接触疲劳强度,需按接触疲劳强度算得的分度圆直径 来计算应有的齿数,于是有 取 ,则 4、几何尺寸计算(1)计算中心距 将中心距圆整为 。(2)按圆整后的中心距修正螺旋角 因 值改变不多,故参数 、 、 等不必修正。(3)计算大、小齿轮的分度圆直径(4)计算齿轮宽度 圆整后取 , 。五 轴的设计计算一、高速轴的设计1、求作用在齿轮上的力高速级齿轮的分度圆直径为d 2、选取材料可选轴的材料为45钢,调质处理。3、计算轴的最小直径,查表可取 应该设计成齿轮轴,轴的最小直径显然是安装连接大带轮处,为使 与带轮相配合,且对于直径 的轴有一个键槽时,应增大5%-7%,然后将轴径圆整。故取 。4、拟定轴上零件的装配草图方案(见下图)5、根据轴向定位的要求,确定轴的各段直径和长度(1)根据前面设计知大带轮的毂长为93mm,故取 ,为满足大带轮的定位要求,则其右侧有一轴肩,故取 ,根据装配关系,定 (2)初选流动轴承7307AC,则其尺寸为 ,故 , 段挡油环取其长为,则 。(3) 段右边有一定位轴肩,故取 ,根据装配关系可定 ,为了使齿轮轴上的齿面便于加工,取 。(4)齿面和箱体内壁取a=16mm,轴承距箱体内壁的距离取s=8mm,故右侧挡油环的长度为19mm,则 (5)计算可得 、(6)大带轮与轴的周向定位采用普通平键C型连接,其尺寸为 ,大带轮与轴的配合为 ,流动轴承与轴的周向定位是过渡配合保证的,此外选轴的直径尺寸公差为m6.求两轴承所受的径向载荷 和 带传动有压轴力 (过轴线,水平方向), 。将轴系部件受到的空间力系分解到铅垂面和水平面上两个平面力系图一 图二 图三 [注]图二中 通过另加弯矩而平移到作用轴线上图三中 通过另加转矩而平移到指向轴线同理 6 、求两轴承的计算轴向力 和 对于 型轴承,轴承的派生轴向力 故 7、求轴承的当量动载荷 和 对于轴承1 对于轴承2 查表可得径向载荷系数和轴向载荷系数分别为:对于轴承1 , 对于轴承2 , 8、求该轴承应具有的额定载荷值因为 则有 故 符合要求。9、弯矩图的计算水平面: , N,则其各段的弯矩为:BC段: 由弯矩平衡得M- CD段: 由弯矩平衡得铅垂面: 则其各段弯矩为:AB段: 则 BC段: 则 CD段: 则 做弯矩图如下 从轴的结构图以及弯矩和扭矩图中可以看出截面 是轴的危险截面。现将计算出的截面 处的 、 及 的值列于下表 表3载荷 水平面 垂直面 支持力 弯矩 总弯矩 扭矩 10、按弯扭合成应力校核轴的强度进行校核时,通常只校核轴上承受最大弯矩和扭矩的截面(即危险截面 )的强度。根据计算式及上表的数据,以及轴单向旋转,扭转切应力为脉动循环变应力,取 ,轴的计算应力 前已选定轴的材料为45钢,调质处理,查表可得 ,因此 ,故安全。11、键的选择和校核高速轴上与大带轮相配合的轴上选择键连接,由于大带轮在轴端部,故选用单圆头平键(C型)根据 ,从表6-1中查得键的截面尺寸为:宽度: 高度: ,由轮毂宽度并参考键的长度系列,取键长为: 键、轴承和轮毂材料都为钢查表可得 取其平均植, 键的工作长度 键和轮毂键槽的接触高度 则 ,故合适。所以选用:键C GB/T 1096-200312、确定轴上圆角和倒角尺寸取轴端倒角为 ,各轴肩处圆角半径为2。二、中间轴的设计1、求作用在齿轮上的力因为高速轴的小齿轮与中速轴的大齿轮相啮合,故两齿轮所受的 、 、 都是作用力与反作用力的关系,则大齿轮上所受的力为 中速轴小齿轮上的三个力分别为2、选取材料可选轴的材料为45钢,调质处理。3、计算轴的最小直径,查表可取 轴的最小直径显然是安装轴承处,为使轴承便于安装,且对于直径 的轴有一个键槽时,应增大5%-7%,然后将轴径圆整。故取 。4、拟定轴上零件的装配草图方案(见下图)5、根据轴向定位的要求,确定轴的各段直径和长度(1)初选滚动轴承7008AC,则其尺寸为: 故 用挡油环定位轴承,故 段右边有一定位轴肩,故 低速级小齿轮与箱体内壁距离为16 ,与箱体内壁距离为8 ,故左边挡油环长为24 ,则 (2)低速级小齿轮轮毂为95 ,即 取两齿面的距离为8 ,即 (3)右边也用挡油环定位轴承和低速级大齿轮,故 。 段轴长略短与其齿轮毂长,又毂长为55 ,故取 、 、 各有一定位轴肩,故依次可取 (4)计算可得 6、轴上零件的周向定位低速级大齿轮的轴采用普通平键A型连接。其尺寸为 齿轮与轴的配合为 ,滚动轴承与轴的周向定位是过渡配合保证的,此外选轴的直径尺寸公差为 。求两轴承所受的径向载荷 和 将轴系部件受到的空间力系分解到铅垂面和水平面上两个平面力系图一 图二 图三 7、求两轴承的计算轴向力 和 由齿轮中计算得, 对于 型轴承,轴承的派生轴向力 算得 所以 8、求轴承的当量动载荷 和 对于轴承1 对于轴承2 查表可得径向载荷系数和轴向载荷系数分别为:对于轴承1 , 对于轴承2 , 9、求该轴承应具有的额定载荷值因为 则有 故 符合要求。10、弯矩图的计算水平面: 。AB段: 则 即 BC段: 则 CD段: 则 。铅垂面: AB段:BC段:CD段:做弯矩图如下从轴的结构图以及弯矩和扭矩图中可以看出截面 是轴的危险截面。现将计算出的截面 处的 、 及 的值列于下表 表4载荷 水平面 垂直面 支持力 弯矩 总弯矩 扭矩 11、按弯扭合成应力校核轴的强度进行校核时,通常只校核轴上承受最大弯矩和扭矩的截面(即危险截面 )的强度。根据计算式及上表的数据,以及轴单向旋转,扭转切应力为脉动循环变应力,取 ,轴的计算应力 前已选定轴的材料为45钢,调质处理,查表可得 , ,故安全。 12、键的选择和校核一般的8级以上精度的齿轮有空心精度要求,应选用平键连接,由于齿轮不在轴端,故选用圆头普通平键(A型) 取键长 ,键、轴承和轮毂材料都为钢查表可得 取其平均植, 键的工作长度 键和轮毂键槽的接触高度 则 ,故合适。所以选用:键 GB/T 1096-200313、确定轴上圆角和倒角尺寸取轴端倒角为 ,各轴肩处圆角半径见365页……三、低速轴的设计1、求作用在齿轮上的力因为高速轴的小齿轮与中速轴的大齿轮相啮合,故两齿轮所受的 、 、 都是作用力与反作用力的关系,则2、选取材料可选轴的材料为45钢,调质处理。3、计算轴的最小直径,查表可取 轴的最小直径显然是安装联轴器处轴的直径 ,为了使所选的轴直径 与联轴器的孔径相配合,且对于直径 的轴有两个键槽时,应增大10%-15%,然后将轴径圆整,故取 。并选取所需的联轴器型号联轴器的计算转矩 ,查表可得,考虑到转矩变化小,故取 其公称转矩为 。半联轴器的孔径 ,长度 ,半联轴器与轴配合的毂孔长度 4、拟定轴上零件的装配草图方案(见下图)5、根据轴向定位的要求,确定轴的各段直径和长度①为了满足半联轴器安装的轴向定位要求,Ⅰ-Ⅱ轴段右端需制出一轴肩,故Ⅱ-Ⅲ段的直径 。 ②查手册99页,选用 型弹性柱销联轴器L③初选滚动轴承7051AC,则其尺寸为 故 左边轴承安装处有挡油环,取其长度为20mm,则 ④挡油环右侧用轴肩定位,故可取 ⑤取齿面与箱体内壁距离 轴承座距箱体内壁距离为 。用挡油环对齿面定位时,为了使油环可靠的压紧齿轮, 段应略短于轮毂宽度,故取 所以取 ⑥齿轮左侧用轴肩定位,取 则 ,轴换宽度 ,取 。⑦由装配关系可确定 ⑧计算得 , , 。6、轴上零件的周向定位 齿轮、半联轴器与轴的周向定位均采用普通平键 型 连接。轴与齿轮连接采用平键 ,L=70 ,齿轮轮毂与轴的配合为 。同样半联轴器与轴连接,采用键 。半联轴器与轴的配合为 。滚动轴承与轴的周向定位是由过渡配合保证的,此外选轴的直径尺寸公差为 。7、轴上齿轮所受切向力 ,径向力 ,轴向力 , 。8、求两轴承所受的径向载荷 和 将轴系部件受到的空间力系分解到铅垂面和水平面上两个平面力系图一 图二 图三 9、求两轴承的计算轴向力 和 对于 型轴承,轴承的派生轴向力 故 10、求轴承的当量动载荷 和 , 。查表可得径向载荷系数和轴向载荷系数分别为:对于轴承1 , 对于轴承2 , 因轴承运转载荷平稳,按表13-6, ,取 则 。 。11、求该轴承应具有的额定载荷值因为 则有 预期寿命 故合格12、弯矩图的计算水平面: , .AB段:弯矩为0BC段:CD段:铅垂面: , .AB段弯矩为0BC段:CD段:做弯矩图如下 从轴的结构图以及弯矩和扭矩图中可以看出截面 是轴的危险截面。现将计算出的截面 处的 、 及 的值列于下表 表5载荷 水平面 垂直面 支持力 弯矩 总弯矩 扭矩 13、按弯扭合成应力校核轴的强度进行校核时,通常只校核轴上承受最大弯矩和扭矩的截面(即危险截面 )的强度。根据计算式及上表的数据,以及轴单向旋转,扭转切应力为脉动循环 变应力,取 ,轴的计算应力前已选定轴的材料为45钢,调质处理,查表可得 ,因此 ,故安全。14、键的选择和校核选键型为普通平键(A) 根据 ,从表6-1中查得键的截面尺寸为:宽度 =25 ,高度 。取键长 。键轴和毂的材料都是钢,有表6-2查得许用挤压应力 ,取平均值 。键的工作长度 ,键与轮毂键槽的接触高度 , 故选取键A: GB/T 1096-20037、确定轴上圆角和倒角尺寸取轴端倒角为 ,各轴肩处圆角半径为2。六.箱体结构的设计减速器的箱体采用铸造(HT200)制成,采用剖分式结构为了保证齿轮佳合质量,大端盖分机体采用 配合.1. 机体有足够的刚度在机体为加肋,外轮廓为长方形,增强了轴承座刚度2. 考虑到机体内零件的润滑,密封散热。因其传动件速度小于12m/s,故采用侵油润油,同时为了避免油搅得沉渣溅起,齿顶到油池底面的距离H为40mm为保证机盖与机座连接处密封,联接凸缘应有足够的宽度,联接表面应精创,其表面粗糙度为 3. 机体结构有良好的工艺性.铸件壁厚为10,圆角半径为R=3。机体外型简单,拔模方便.4. 对附件设计 A 视孔盖和窥视孔在机盖顶部开有窥视孔,能看到 传动零件齿合区的位置,并有足够的空间,以便于能伸入进行操作,窥视孔有盖板,机体上开窥视孔与凸缘一块,有便于机械加工出支承盖板的表面并用垫片加强密封,盖板用铸铁制成,用M6紧固B 油螺塞:放油孔位于油池最底处,并安排在减速器不与其他部件靠近的一侧,以便放油,放油孔用螺塞堵住,因此油孔处的机体外壁应凸起一块,由机械加工成螺塞头部的支承面,并加封油圈加以密封。C 油标:油标位在便于观察减速器油面及油面稳定之处。油尺安置的部位不能太低,以防油进入油尺座孔而溢出.D 通气孔:由于减速器运转时,机体内温度升高,气压增大,为便于排气,在机盖顶部的窥视孔改上安装通气器,以便达到体内为压力平衡.E 盖螺钉:启盖螺钉上的螺纹长度要大于机盖联结凸缘的厚度。钉杆端部要做成圆柱形,以免破坏螺纹.F 位销:为保证剖分式机体的轴承座孔的加工及装配精度,在机体联结凸缘的长度方向各安装一圆锥定位销,以提高定位精度.G 吊钩:在机盖上直接铸出吊钩和吊环,用以起吊或搬运较重的物体.减速器机体结构尺寸如下:名称 符号 计算公式 结果箱座壁厚 10箱盖壁厚 9箱盖凸缘厚度 12箱座凸缘厚度 15箱座底凸缘厚度 25地脚螺钉直径 M24地脚螺钉数目 查手册 6轴承旁联接螺栓直径 M12机盖与机座联接螺栓直径 =() M10轴承端盖螺钉直径 =() 10视孔盖螺钉直径 =() 8定位销直径 =() 8 , , 至外机壁距离 查机械课程设计指导书表4 342218 , 至凸缘边缘距离 查机械课程设计指导书表4 2816外机壁至轴承座端面距离 = + +(8~12)50大齿轮顶圆与内机壁距离 > 15齿轮端面与内机壁距离 > 10机盖,机座肋厚 9 轴承端盖外径 +(5~) 120(1轴)125(2轴)150(3轴)轴承旁联结螺栓距离 120(1轴)125(2轴)150(3轴)七. 润滑密封设计对于二级圆柱齿轮减速器,因为传动装置属于轻型的,且传速较低,所以其速度远远小于 ,所以采用脂润滑,箱体内选用SH0357-92中的50号润滑,装至规定高度.油的深度为H+ H=30 =34所以H+ =30+34=64其中油的粘度大,化学合成油,润滑效果好。密封性来讲为了保证机盖与机座联接处密封,联接凸缘应有足够的宽度,联接表面应精创,其表面粗度应为 密封的表面要经过刮研。而且,凸缘联接螺柱之间的距离不宜太大,国150mm。并匀均布置,保证部分面处的密封性。八、课程设计心得体会 作为一名机械设计制造及自动化大三的学生,我觉得能做类似的课程设计是十分有意义,而且是十分必要的。在已度过的大三的时间里我们大多数接触的是专业基础课。我们在课堂上掌握的仅仅是专业基础课的理论面,如何去锻炼我们的实践面?如何把我们所学到的专业基础理论知识用到实践中去呢?我想做类似的大作业就为我们提供了良好的实践平台。在做本次课程设计的过程中,我感触最深的当数查阅大量的设计手册了。为了让自己的设计更加完善,更加符合工程标准,一次次翻阅机械设计手册是十分必要的,同时也是必不可少的。我们是在作设计,但我们不是艺术家。他们可以抛开实际,尽情在幻想的世界里翱翔,我们是工程师,一切都要有据可依.有理可寻,不切实际的构想永远只能是构想,永远无法升级为设计。 作为一名专业学生掌握一门或几门制图软件同样是必不可少的,由于本次大作业要求用 auto CAD制图,因此要想更加有效率的制图,我们必须熟练的掌握它。虽然过去从未独立应用过它,但在学习的过程中带着问题去学我发现效率好高,记得大一学CAD时觉得好难就是因为我们没有把自己放在使用者的角度,单单是为了学而学,这样效率当然不会高。边学边用这样才会提高效率,这是我作本次课程设计的第二大收获。但是由于水平有限,难免会有错误,还望老师批评指正。参考文献〔1〕濮良贵,纪明刚. 机械设计. 7版. 北京:高等教育出版社, 2001.〔2〕张策, 机械原理与机械设计[M]. 北京:机械工业出版社, 2004.[3] 吴宗泽,罗胜国. 机械设计课程设计手册. 北京: 高等教育出版社, 2007. [4] 王伯平.互换性与测量技术基础(第2版). 北京: 机械工业出版社,2006

二级减速器的设计毕业论文

创新设计类1T卷扬机的设计6-C618数控车床的主传动系统设计CA6140车床经济型数控改装设计 CG2-150型仿型切割机的设计PLC控制自动送水系统设计JK5型垂直提升机设计 T6112镗床液压系统设计 Φ1200熟料圆锥式破碎机播种机的设计步进电机控制电路应用设计 21层电梯的控制 ( 电机的选择 人性化控制、舒适设计)垂直提升机吨的设计 糕点切片机 垂直提升机(JM20吨)的设计 桥式起重机20t 设计及控制直线热矿条筛的设计直线振动输送机的设计轻型平动搬运机械手的设计(改进)取料机液压系统的设计双齿辊破碎机的设计送丝机的设计DQL斗轮堆取料机液压系统设计改造 CG2-150型仿型切割机的设计车床的部分改造 C616车床的横向伺服进给单元改造 C650卧式普通车床PLC电气改造 6-C618数控车床的主传动系统设计C616车床的横向伺服进给单元改造CA6140车床经济型数控改装设计PLC控制类C650卧式普通车床PLC电气改造PLC对XA6132型铣床的电气改造 PLC锅炉燃烧自动控制系统 M7475B型磨床的电气控制的PLC改造 T68型卧式镗床的PLC控制 印刷机的自动化(或无人)控制M7475B型磨床的电气控制的PLC改造PLC对XA6132型铣床的电气改造T68型卧式镗床的PLC控制制造、工艺设计类柴油机飞轮专用钻模 包括设备的选择车床整体式箱体的加工 设备选择 典型零件的数控铣床铣削编程与操作设计 其他单片机对步进电机的控制 T6112镗床液压系统设计单色胶印机的改进倒档齿轮自动焊 锅炉燃烧的自动控制(包括料的自动输送) DQL斗轮堆取料机液压系统设计改造LM型立磨液压力的监控系统基于PRO/E的二级减速器的设计及仿真基于PRO/E的绞肉机的设计及仿真基于PRO/E的齿轮轴的设计及齿轮油泵的装配基于PRO/E的齿轮油泵的三维设计

1、题目:设计一个程序实现

自动:通过改变A/D输入端可变电阻来改变,D/A输入检测量大小,进而改变直流电动机的转速。

手动:在键盘上设置两个按键——①直流电动机加速键;②直流电动机减速键。在手动状态下,每按一次键,电动机的转速均按照约定的速率改变。

用显示器显示的数码移动的速度,来及时的形象的跟踪直流电动机转速的变化情况。

2、设计环境

硬件:

1、A/D转换芯片ADC0809;D/A转换芯片DAC0832

2、直流电动机双极性控制:00H ——逆时针转最快,80H ——停止,FFH ——顺时针转最快。

3、显示器采用164串行输入。串入段码地址:0FF06H (D0) 串入时钟地址:0FE04H (D0)

显示器位控地址:0FE02H (D5~D0)

4、键盘列扫描(4×6)。行地址:0FE00H (D3~D0) 列地址:00FE02H (D5~D0)

5、扩展口:CS0——08000H CS1——0A000H CS2——0C000H

减速器概述 、减速器的主要型式及其特性减速器是一种由封闭在刚性壳体内的齿轮传动、蜗杆传动或齿轮—蜗杆传动所组成的独立部件,常用在动力机与工作机之间作为减速的传动装置;在少数场合下也用作增速的传动装置,这时就称为增速器。减速器由于结构紧凑、效率较高、传递运动准确可靠、使用维护简单,并可成批生产,故在现代机措中应用很广。 减速器类型很多,按传动级数主要分为:单级、二级、多级;按传动件类型又可分为:齿轮、蜗杆、齿轮-蜗杆、蜗杆-齿轮等。 圆柱齿轮减速器当传动比在8以下时,可采用单级圆柱齿轮减速器。大于8时,最好选用二级(i=8—40)和二级以上(i>40)的减速器。单级减速器的传动比如果过大,则其外廓尺寸将很大。二级和二级以上圆柱齿轮减速器的传动布置形式有展开式、分流式和同轴式等数种。展开式最简单,但由于齿轮两侧的轴承不是对称布置,因而将使载荷沿齿宽分布不均匀,且使两边的轴承受力不等。为此,在设计这种减速器时应注意:1)轴的刚度宜取大些;2)转矩应从离齿轮远的轴端输入,以减轻载荷沿齿宽分布的不均匀;3)采用斜齿轮布置,而且受载大的低速级又正好位于两轴承中间,所以载荷沿齿宽的分布情况显然比展开好。这种减速器的高速级齿轮常采用斜齿,一侧为左旋,另一侧为右旋,轴向力能互相抵消。为了使左右两对斜齿轮能自动调整以便传递相等的载荷,其中较轻的龆轮轴在轴向应能作小量游动。同轴式减速器输入轴和输出轴位于同一轴线上,故箱体长度较短。但这种减速器的轴向尺寸较大。圆柱齿轮减速器在所有减速器中应用最广。它传递功率的范围可从很小至40 000kW,圆周速度也可从很低至60m/s一70m/s,甚至高达150m/s。传动功率很大的减速器最好采用双驱动式或中心驱动式。这两种布置方式可由两对齿轮副分担载荷,有利于改善受力状况和降低传动尺寸设计。关键词:减速器 刚性 零部件 方案

1 10L真空搅拌机设计2 8英寸钢管热浸镀锌自动生产线设计3 卧式钢筋切断机的设计4 气门摇臂轴支座毕业设计5 后钢板弹簧吊耳的加工工艺6 环面蜗轮蜗杆减速器7 S195柴油机机体三面精镗组合机床总体设计及夹具设计8 车床主轴箱箱体右侧10-M8螺纹底孔组合钻床设计9 机油盖注塑模具设计10 机油冷却器自动装备线压紧工位装备设计11 5基于AT89C2051单片机的温度控制系统的设计12 基于普通机床的后托架及夹具设计开发13 减速器的整体设计14 搅拌器的设计15 金属粉末成型液压机PLC设计16 精密播种机17 可调速钢筋弯曲机的设计18 空气压缩机V带校核和噪声处理19 冲压拉深模设计20 螺旋管状面筋机总体及坯片导出装置设计21 落料,拉深,冲孔复合模22 膜片式离合器的设计23 内螺纹管接头注塑模具设计24 内循环式烘干机总体及卸料装置设计25 全自动洗衣机控制系统的设计26 生产线上运输升降机的自动化设计27 实验用减速器的设计28 手机充电器的模具设计29 鼠标盖的模具设计30 双齿减速器设计31 双铰接剪叉式液压升降台的设计32 水泥瓦模具设计与制造工艺分析33 四层楼电梯自动控制系统的设计34 塑料电话接线盒注射模设计35 塑料模具设计36 同轴式二级圆柱齿轮减速器的设计37 托板冲模毕业设计38 推动架设计39 椭圆盖注射模设计40 万能外圆磨床液压传动系统设计41 五寸软盘盖注射模具设计42 锡林右轴承座组件工艺及夹具设计43 心型台灯塑料注塑模具毕业设计44 机械手设计45 机械手自动控制系统的PLC实现方法研究46 汽车制动系统实验台设计47 数控多工位钻床设计48 数控车床主轴和转塔刀架毕业设计49 送布凸轮的设计和制造50 CA6140车床后托架夹具设计51 带式输送机毕业设计论文52 电火花加工论文53 机床的数控改造及发展趋势54 机械加工工艺规程毕业论文55 机械手毕业论文56 基于ANSYS的齿轮泵有限元分析57 可编程序控制器在机床数控系统中应用探讨58 矿石铲运机液压系统设计59 汽车连杆加工工艺及夹具设计论文60 数控车床半闭环控制系统设计61 数控多工位钻床设计62 数控机床体积定位精度的测量与补偿63 数控机床维修64 数控加工工艺与编程65 塑料注射模设计与制造66 新型电动执行机构67 液力传动变速箱设计与仿真论文68 轴类零件的加工工艺论文69 中型货车变速器的设计70 数控钻床横、纵两向进给系统的设计71 经济型数控车床控制系统设计72 Y210—2型电动机定子铁芯冲压模具设计73 双坐标十字滑台设计及控制74 注射器盖毕业设计75 二级减速器的毕业设计 联系

二级行星减速器论文答辩

输入轴带动小齿轮转动,小齿轮通过中间轴带动大齿轮转动,最后由输出轴输出,由于大齿轮齿数比'小齿轮齿数多,所以传动速度较慢,最后由输出轴输出时恰好起到减速的作用。

产品的优缺点怎么单独存在呢?二级减速器和谁比较性能优缺点呢?另外,二级减速器也有很多啊,二级直动式减速器,二级行星轮减速器,二级谐波减速器,二级行波减速器等,你要分析哪一种。

应该是用在减速器吧~分一级,二级减速~~齿轮本身没有一级或二级齿轮的说法~~~ 总之级数就是使用齿轮的个数,以为一个不能实现速度的改变,所以多用几个,没个就是一级~依次类推~

减速、增速齿轮箱都可以叫减速器(减速机或减速箱)减速器按减速次数分一级、二级、三级……二级行星减速器是指:该减速器有两次减速(增速),而且是两套行星机构包含两个太阳轮、两个行星架、两个内齿圈、两组行星齿轮(每组3个或4个)

  • 索引序列
  • 二级减速器毕业论文周记
  • 毕业论文二级减速器
  • 二级圆柱减速器毕业论文
  • 二级减速器的设计毕业论文
  • 二级行星减速器论文答辩
  • 返回顶部