首页 > 论文发表知识库 > 发光材料研究前沿论文题目

发光材料研究前沿论文题目

发布时间:

发光材料研究前沿论文题目

ML28-1 杯芳烃化合物的合成及其在氟化反应中的相转移催化作用ML28-2 高效液相色谱分离硝基甲苯同分异构体ML28-3 甲烷部分氧化反应的密度泛函研究ML28-4 硝基吡啶衍生物的结构及其光化学的研究ML28-5 酰胺衍生的P,O配体参与的Suzuki偶联反应及其在有机合成中的应用ML28-6 磺酰亚胺的新型加成反应的研究ML28-7 纯水相Reformatsky反应的研究ML28-8 一个合成邻位氨基醇化合物的绿色新反应ML28-9 恶二唑类双偶氮化合物的合成与光电性能研究ML28-10 CO气相催化偶联制草酸二乙酯的宏观动力学研究ML28-11 三芳胺类空穴传输材料及其中间体的合成研究ML28-12 光敏磷脂探针的合成、表征和光化学性质研究ML28-13 脱氢丙氨酸衍生物的合成及其Michael加成反应研究ML28-14 5-(4-硝基苯基)-10,15,20-三苯基卟啉的亲核反应研究ML28-15 醇烯法合成异丙醚的研究ML28-16 手性螺硼酸酯催化的前手性亚胺的不对称硼烷还原反应研究ML28-17 甾类及相关化合物的结构与生物活性关系研究ML28-18 金属酞菁衍生物的合成与其非线性光学性能的研究ML28-19 新型手性氨基烷基酚的合成及其不对称诱导ML28-20 水滑石类化合物催化尿素醇解法合成有机碳酸酯研究ML28-21 膜催化氧化正丁烷制顺酐ML28-22 甲醇选择性催化氧化制早酸甲酯催化剂的研制与反应机理研究ML28-23 甲酸甲酯水解制甲酸及其动力学的研究ML28-24 催化甲苯与甲醇侧链烷基化反应制取苯乙烯和乙苯的研究ML28-25 烯胺与芳基重氮乙酸酯的新反应研究 ML28-26 核酸、蛋白质相互作用研究及毛细管电泳电化学发光的应用ML28-27 H-磷酸酯在合成苄基膦酸和肽衍生物中的应用ML28-28 微波辐射下三价锰离子促进的2-取代苯并噻唑的合成研究ML28-29 铜酞菁—苝二酰亚胺分子体系的光电转换特性研究ML28-30 新型膦配体的合成及烯烃氢甲酰化反应研究ML28-31 肼与羰基化合物的反应及其机理研究ML28-32 离子液体条件下杂环化合物的合成研究ML28-33 超声波辐射、离子液体以及无溶剂合成技术在有机化学反应中的应用研究ML28-34 有机含氮小分子催化剂的设计、合成及在不对称反应中的应用ML28-35 金属参与的不对称有机化学反应研究ML28-36 黄酮及噻唑类衍生物的合成研究ML28-37 钐试剂产生卡宾的新方法及其在有机合成中的应用ML28-38 琥珀酸酯类内给电子体化合物的合成与性能研究ML28-39 3-甲基-4-芳基-5-(2-吡啶基)-1,2,4-三唑铜(II)配合物的合成、晶体结构及表征ML28-40 直接法合成二甲基二氯硅烷的实验研究ML28-41 中性条件下傅氏烷基化反应的初步探索IIβ-溴代醚新合成方法的初步探索ML28-42 几种氧化苦参jian类似物的合成ML28-43 环丙烷和环丙烯类化合物的合成研究ML28-44 基于甜菜碱的超分子设计与研究ML28-45 新型C2轴对称缩醛化合物合成研究ML28-46 环状酰亚胺光化学性质研究及消毒剂溴氯甘脲的制备ML28-47 蛋白质吸附的分子动力学模拟ML28-48 富硫功能化合物的分子设计与合成ML28-49 ABEEM-σπ模型在Diels-Alder反应中的应用ML28-50 快速确定丙氨酸-α-多肽构象稳定性的新方法ML28-51 SmI2催化合成含氮杂环化合物的研究及负载化稀土催化剂的探索ML28-52 新型金属卟啉化合物的合成及用作NO供体研究ML28-53 磁性微球载体的合成及其对酶的固定化研究ML28-54 甾体—核苷缀合物的合成及其性质研究ML28-55 非键作用和库仑模型预测甘氨酸-α-多肽构象稳定性ML28-56 多酸基有机-无机杂化材料的合成和结构表征ML28-57 5-芳基-2-呋喃甲醛-N-芳氧乙酰腙类化合物的合成、表征及生物活性研究ML28-58 氟喹诺酮类化合物的合成、表征及其生物活性研究ML28-59 手性有机小分子催化剂催化的Baylis-Hillman反应和直接不对称Aldol反应ML28-60 多核铁配合物通过水解途径识别蛋白质a螺旋ML28-61 一种简洁地获取结构参数的方法及应用ML28-62 水杨酸甲酯与硝酸钇的反应性研究及其应用ML28-63 脯氨酸及其衍生物催化丙酮与醛的不对称直接羟醛缩合反应的量子化学研究ML28-64 新型荧光分子材料的合成及其发光性能研究ML28-65 枸橼酸西地那非中间体1-甲基-3-丙基-4-硝基吡唑-5-羧酸的合成研究ML28-66 具有生物活性的含硅混合二烃基锡化合物的研究ML28-67 直接法合成三乙氧基硅烷的研究ML28-68 具有生物活性的含硅混合三烃基锡化合物的研究ML28-69 过氧钒有机配合物的合成及其对水中有机污染物氧化降解的催化性能研究ML28-70 查耳酮化合物的合成与晶体化学研究ML28-71 二唑衍生物的合成研究ML28-72 2-噻吩甲酸-2,2’-联吡啶二元、三元稀土配合物的合成、表征及光致发光ML28-73 3’,5’-二硫代脱氧核苷的合成及其聚合性质的研究ML28-74 β-烷硫基丁醇和丁硫醇类化合物及其衍生物的合成研究ML28-75 新型功能性单体丙烯酰氧乙基三甲基氯化铵合成与研究ML28-76 5-取代吲哚衍生物结构和性能的量子化学研究ML28-77 新型水溶性手性胺膦配体的合成和在芳香酮不对称转移氢化中的应用ML28-78 大豆分离蛋白的接枝改性及其溶液行为研究ML28-79 N-(4-乙烯基苄基)-1-氮杂苯并-34-冠-11的合成和其自由基聚合反应的研究ML28-80 稀土固体超强酸催化合成酰基二茂铁ML28-81 硒(硫)杂环化合物与金属离子的合成与表征ML28-82 新型二阶非线性光学发色团分子的设计、合成与性能研究ML28-83 对△~4-烯-3-酮结构的甾体选择性脱氢生成△~(4,6)-二烯-3-酮结构的研究ML28-84 对苯基苯甲酸稀土二元、三元配合物的合成、表征及荧光性能研究ML28-85 D-π-A共轭结构有机分子的设计合成及理论研究ML28-86 羧酸酯一步法嵌入式烷氧基化反应研究ML28-87 分子内电荷转移化合物溶液及超微粒分散体系的光学性质研究ML28-88 手性氨基烷基酚的合成ML28-89 酪氨酸酶的模拟及酚的选择性邻羟化反应研究ML28-90 单分子膜自组装结构与性质的研究ML28-91 氯苯三价阳离子离解势能面的理论研究ML28-92 香豆素类化合物的合成与晶体化学研究ML28-93 离子液体的合成及离子液体中的不对称直接羟醛缩合反应研究ML28-94 五元含氮杂环化合物的合成研究ML28-95 ONOO~-对胰岛素的硝化和一些因素对硝化影响的体外研究ML28-96 酶解多肽一级序列分析与反应过程建模及结构变化初探ML28-97 一系列二茂铁二取代物的合成和表征ML28-98 N2O4-N2O5-HNO3分析和相平衡及硝化环氧丙烷研究ML28-99 光催化甲烷和二氧化碳直接合成乙酸的研究ML28-100 N-取代-4-哌啶酮衍生物的合成研究ML28-101 电子自旋标记方法对天青蛋白特征分析ML28-102 材料中蛋白质含量测定及蛋白质模体分析ML28-103 具有不同取代基的偶氮芳烃化合物的合成及其性能研究ML28-104 非光气法合成六亚甲基二异氰酸酯(HDI)ML28-105 邻苯二甲酸的溶解度测定及其神经网络模拟ML28-106 甲壳多糖衍生物的合成及其应用研究ML28-107 吲哚类化合物色谱容量因子构致关系ab initio方法研究ML28-108 全氯代富勒烯碎片的亲核取代反应初探ML28-109 自催化重组藻胆蛋白结构与功能的关系ML28-110 二茂铁衍生的硫膦配体的合成及在喹啉不对称氢化中的应用ML28-111 离子交换电色谱纯化蛋白质的研究ML28-112 氨基酸五配位磷化合物的合成、反应机理及其性质研究ML28-113 手性二茂铁配体的合成及其在碳—碳键形成反应中的应用研究ML28-114 水溶性氨基卟啉和磺酸卟啉的合成研究ML28-115 金属卟啉催化空气氧化对二甲苯制备对甲基苯甲酸和对苯二甲酸ML28-116 简单金属卟啉催化空气氧化环己烷和环己酮制备己二酸的选择性研究ML28-117 四苯基卟啉锌掺杂8-羟基喹啉铝与四苯基联苯二胺的电致发光性能研究ML28-118 可降解聚乳酸/羟基磷灰石有机无机杂化材料的制备及性能研究ML28-119 大豆分离蛋白接枝改性及应用研究ML28-120 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-121 常压非热平衡等离子体用于甲烷转化的研究ML28-122 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-123 蛋白质在晶体界面上吸附的分子动力学模拟ML28-124 微乳条件下氨肟化反应的探索性研究ML28-125 微波辅助串联Wittig和Diels-Alder反应的研究ML28-126 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-127 3-乙基-4-苯基-5-(2-吡啶基)-1,2,4-三唑配合物的合成、晶体结构及表征ML28-128 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-129 具有生物活性的1,2,4-恶二唑类衍生物的合成研究ML28-130 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-131 PhSeCF2TMS的合成及转化ML28-132 离子液体中脂肪酶催化(±)-薄荷醇拆分的研究ML28-133 脂肪胺取代蒽醌衍生物及其前体化合物合成ML28-134 萘酰亚胺类一氧化氮荧光探针的设计、合成及光谱研究ML28-135 微波条件下哌啶催化合成取代的2-氨基-2-苯并吡喃的研究ML28-136 镍催化的有机硼酸与α,β-不饱和羰基化合物的共轭加成反应研究ML28-137 茚满二酮类光致变色化合物的制备与表征ML28-138 新型手性螺环缩醛(酮)化合物的合成ML28-139 芳醛的合成及凝胶因子的设计及合成ML28-140 固定化酶柱与固定化菌体柱耦联—高效拆分乙酰-DL-蛋氨酸ML28-141 苯酚和草酸二甲酯酯交换反应产品的减压歧化反应研究ML28-142 有机物临界性质的定量构性研究ML28-143 3-噻吩丙二酸的合成及卤代芳烃亲核取代反应ML28-144 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-145 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-146 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-147 功能性离子液的合成及在有机反应中的应用ML28-148 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-149 气相色谱研究β-二酮酯化合物的互变异构ML28-150 二元烃的混合物过热极限的测定与研究ML28-151 芳杂环取代咪唑化合物的合成及洛汾碱类过氧化物化学发光性能测定ML28-152 卤代苯基取代的咪唑衍生物的合成及其荧光性能的研究ML28-153 取代并四苯衍生物的合成及其应用ML28-154 苯乙炔基取代的杂环及稠环化合物的合成ML28-155 吸收光谱在有机发光材料研发材料中的应用ML28-156 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-157 苯并噻吩-3-甲醛的合成研究ML28-158 微波辅助串联Wittig和Diels-Alder反应的研究ML28-159 超声辐射下过渡金属参与的药物合成反应研究ML28-160 呋喃酮关键中间体—3,4-二羟基-2,5-己二酮的合成研究ML28-161 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-162 吡咯双希夫碱及其配合物的制备与表征ML28-163 负载型Lewis酸催化剂的制备及催化合成2,6-二甲基萘的研究ML28-164 PhSeCF2TMS的合成及转化ML28-165 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-166 多取代β-CD衍生物的合成及其对苯环类客体分子识别ML28-167 多取代_CD衍生物的合成及其对苯环类客体分子识别ML28-168 柿子皮中类胡萝卜素化合物的分离鉴定及稳定性研究ML28-169 毛细管电泳研究致癌物3-氯-1,2-丙二醇ML28-170 超临界水氧化苯酚体系的分子动力学模拟ML28-171 甲烷和丙烷无氧芳构化反应研究ML28-172 2-取代咪唑配合物的合成、晶体结构及表征ML28-173 气相色谱研究β-二酮酯化合物的互变异构ML28-174 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-175 二元烃的混合物过热极限的测定与研究ML28-176 氨基酸在多羟基化合物溶液中的热力学研究ML28-177 分子印迹膜分离水溶液中苯丙氨酸异构体研究ML28-178 杯[4]芳烃酯的合成及中性条件下对醇的酯化反应研究ML28-179 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-180 双氨基甲酸酯化合物的合成及分子自组装研究ML28-181 由芳基甲基酮合成对应的半缩水合物的新方法ML28-182 取代芳烃的选择性卤代反应研究ML28-183 吡啶脲基化合物的合成、分子识别及配位化学研究ML28-184 丙烯(氨)氧化原位漫反射红外光谱研究ML28-185 嘧啶苄胺二苯醚类先导结构的发现和氢化铝锂驱动下邻位嘧啶参与的苯甲酰胺还原重排反应的机理研究ML28-186 酰化酶催化的Markovnikov加成与氮杂环衍生物的合成ML28-187 多组分反应合成嗪及噻嗪类化合物的研究ML28-188 脂肪酶构象刻录及催化能力考察ML28-189 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-190 烯基铟化合物与高碘盐偶联反应的研究及其在有机合成中的应用ML28-191 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-192 邻甲苯胺的电子转移机理及组分协同效应研究ML28-193 负载型非晶态Ni-B及Ni-B-Mo合金催化剂催化糠醛液相加氢制糠醇的研究ML28-194 含吡啶环套索冠醚及配合物的合成与性能研究ML28-195 芳烃侧链分子氧选择性氧化反应研究ML28-196 多组分复合氧化物对异丁烯制甲基丙烯醛氧化反应的催化性能研究ML28-197 多孔甲酸盐[M3(HCOO)6]及其客体包合物的合成、结构和性质ML28-198 纳米修饰电极的制备及其应用于蛋白质电化学的研究ML28-199 对于几种蛋白质模型分子的焓相互作用的研究ML28-200 氨基酸、酰胺、多羟基醇化合物相互作用的热力学研究......

我也不是很清楚的啊

一、比较好写的材料科学论文题目:1、表面活性剂在纳米材料科学中的应用2、高分辨透射X射线三维成像在材料科学中的应用3、“面向新世纪材料科学与工程专业建设与人才培养的综合改革与实践”实践教学改革报告4、提高材料科学与工程专业毕业设计质量的探索与实践5、材料科学与工程专业实验教学改革与实践6、激光技术在材料科学中的应用7、材料科学与工程专业平台课程材料物理性能本科生教学改革的探讨8、量子化学计算方法在材料科学领域的初步应用9、材料科学与工程专业的工程教育实践10、嵌入原子方法理论及其在材料科学中的应用11、现代球墨铸铁的诞生,应用及技术发展趋势:20世纪材料科学最重大的技术进 ?12、表面处理技术现状及其在材料科学中的应用13、固态组合化学及其在材料科学中的应用14、核辐射技术及其在材料科学领域的应用15、分形论在材料科学中的应用16、材料科学与工程专业实验教学的改革17、材料科学与工程实践教学体系的建立与实施18、仿地成岩的新一代胶凝材料——凝石——自然科学、材料科学与循环经济的新焦点19、无机新材料研究与材料科学20、材料科学与工程导论课程双语教学实践初探二、材料科学毕业论文题目推荐:1、试论材料科学与工程的内涵与研究方法2、材料科学中的介电谱技术3、材料科学与工程课程实验教学改革思路4、基于材料科学和材料加工有机结合的新型实验课程体系5、材料科学与工程专业实验教学体系的改革6、材料科学的一个新生长点——生态材料学7、体视学在材料科学研究中的进展与展望8、材料科学:材料实验——管线钢落锤撕裂试验方法的建立、应用及发展9、复合材料科学与工程10、材料科学专业研究应用型人才培养模式的改革与探索11、金相学史话(6):电子显微镜在材料科学中的应用12、材料科学与工程专业实践教学环节的现状与对策13、X射线吸收精细结构谱在材料科学中的应用14、电子理论在材料科学中的应用15、“材料科学基础”课程的教学改革与实践16、材料科学与工程学院课程教学团队建设的措施与成效17、计算机在材料科学中的应用18、材料科学中的计算机模拟19、材料科学数据库的发展现状20、材料科学与工程专业材料概论双语教学探讨三、大学材料科学论文题目大全集:1、智能材料———材料科学发展新趋势2、材料科学与工程专业学生实践创新能力的培养3、材料科学与工程专业教学改革与发展设想4、材料科学中的分子动力学模拟研究进展5、三维原子探针及其在材料科学研究中的应用6、计算机模拟技术在材料科学中的应用7、二十一世纪初的材料科学技术8、材料科学数据库的研究现状及其发展趋势9、材料科学与工程虚拟仿真实验教学中心的建设10、分子模拟软件CERIUS2及其在材料科学中的应用11、材料科学与工程专业本科生生产实习的改革与实践12、人工神经网络在材料科学研究中的应用13、材料科学基础的教学改革与实践14、美国和欧洲的材料科学与工程教育(一)15、人工神经网络在材料科学中的应用与展望16、材料科学与工程专业的实践教学改革与实践17、研究型教学在“材料科学基础”课程的实践与思考18、应用型本科《材料科学基础》课程建设与改革19、面向未来的材料科学与工程专业教学改革与实践20、材料科学基础课程教学改革与实践四、最新材料科学论文选题参考:1、磁控溅射技术及其在材料科学中的应用2、材料科学与工程专业教学平台实验室综合实验课程改革初探3、发展生物质材料与生物质材料科学4、扫描电子显微镜及其在材料科学中的应用5、分子动力学模拟及其在材料科学中的应用6、材料科学与工程实验教学示范中心建设的思考与实践7、纳米材料科学中的谱学研究8、现代球墨铸铁的诞生、应用及技术发展趋势--20世纪材料科学最重大的技术进展之一9、电子背散射衍射在材料科学研究中的应用10、材料科学与工程实验教学中心的改革与实践11、材料科学与工程专业的课程体系和实验教学体系建设12、面向21世纪的材料科学与工程本科教育13、选择合适审稿人提高刊物学术质量--《武汉理工大学学报-材料科学版》(英文版)遴选审稿人的体会14、材料科学中的分形15、材料科学与工程专业应用型人才培养的思考16、材料科学与工程专业平台实验室建设与管理17、材料化学课程的内容设置及其与材料科学的关系18、《材料科学基础》综合设计型实验教学的探索19、材料科学中的分形理论应用进展20、材料科学技术的生长点五、大学生优秀材料科学论文题目:1、溶胶—凝胶工艺在材料科学中的应用2、材料科学与工程专业实验课程体系的改革3、第一原理方法在材料科学中的应用4、多孔材料引论——材料科学与工程系列5、跨世纪材料科学技术的若干热点问题6、跨世纪材料科学技术的若干热点问题(摘要)7、跨世纪材料科学技术的若干热点问题8、均恒强磁场在材料科学中的应用9、大材料专业“材料科学基础”课程的教改认识与实践10、固体力学与材料科学交缘的几个新课题11、现代扫描电镜的发展及其在材料科学中的应用12、论材料科学的理论基础13、材料科学中的点击化学14、分形理论及其在材料科学中的应用15、稳恒强磁场技术的发展及其在材料科学中的应用16、纳米压痕技术在材料科学中的应用17、电子背散射衍射技术及其在材料科学中的应用18、基于ESI数据库的材料科学领域文献计量分析研究19、非线性光学晶体材料科学20、光化学基本原理与光子学材料科学

1. 溶胶-凝胶法制备纳米材料研究进展2. 电子显微镜在纳米材料研究中的应用3. SPM与纳米材料组装研究进展4. 稀土发光纳米材料的研究进展5. II-VI族纳米材料研究进展6. 纳米材料在生命科学中的应用研究进展7. III-V族纳米材料研究进展8. 仿生技术与纳米材料研究进展9. 纳米机器人研究进展10. 纳米技术与国防安全11. 纳米科技中的伦理学研究进展12. 纳米技术与军事现代化研究进展13. 水热法在纳米科技中的应用14. 激光拉曼光谱在纳米材料分析中的研究进展15. 纳米材料粒度分析研究进展16. 纳米蓄能材料研究进展17. 锂离子电池纳米材料研究进展18. 染料敏化太阳能电池用纳米材料研究进展19. 纳米科技人才的培养与需求现状

发光材料研究前沿技术论文

稀土掺杂氟化物多波长红外显示材料的研究摘 要本文简单介绍了稀土发光原理、上转换发光材料的大致发展史、红外上转换发光材料的应用以及当前研究现状。以PbF2为基质材料,ErF3为激活剂,YbF3为敏化剂,采用高温固相反应法制备了PbF2: Er,Yb上转换发光材料。重点讨论了制备过程中,制备工艺中的烧结时间、烧结温度对红外激光显示材料发光效果的影响。研究了Er3+/Yb3+发光系统在1064nm激光激发下的荧光光谱和上转换发光的性质。实验表明,在1064nm激光激发下,材料可以发射出绿色和红色荧光,是一种新型的红外激光显示材料。关键字:1064nm 上转换 红外激光显示 Er3+/Yb3+AbstractThis paper simply described the rare earth luminescence mechanism, the development of up-conversion materials and their applications were systematically explained. Present situation of the research on infrared up-conversion luminescence is also presented. PbF2 as matrix, ErY3 as activator and YbF3 as sensitizer were adopted to synthesize PbF2: Er,Yb up-conversion material with high temperature solid-phase reaction. A great emphasize was paid on the factors that effect on the luminescence properties of infrared laser displayed materials such as sinter temperature, time of sinter. The luminescence system of Er3+/Yb3+, their fluorescence spectrum and their character of up-conversion with 1064nm LD as an excitation source were studied. The experimental results that intense green and wed up-conversion emissions were observed under 1064nm LD excitation, which is a new type of infrared laser displayed Words: 1064nm Up-conversion Infrared laser displayed materials Er3+/Yb3+目 录摘要Abstract第一章 绪论 稀土元素的光谱理论简介 稀土元素简介 稀土离子能级 晶体场理论 基质晶格的影响 上转换发光材料的发展概况 上转换发光的基本理论 激发态吸收 光子雪崩上转换 能量传递上转换 敏化机制与掺杂方式 敏化机制 掺杂方式 上转换发光材料的应用 本论文研究目的及内容 8第二章 红外激光显示材料的合成与表征 红外激光显示材料的合成 实验药品 实验仪器 样品的制备 红外激光显示材料的表征 XRD 荧光光谱 12第三章 结果与讨论 基质材料的确定 助熔剂的选择 烧结时间的确定 烧结温度的确定 掺杂浓度的确定 17结 论 21参考文献 22致 谢 23第一章 绪论 稀土元素的光谱理论简介 稀土元素简介稀土元素是指周期表中IIIB族,原子序数为21的钪(Sc):39的钇(Y)和原子序数57至71的镧系中的镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),共17个元素[1]。稀土元素的原子具有未充满的受到外界屏蔽的4f和5d电子组态,因此具有丰富的电子能级和长寿命激发态,能级跃迁通道多达20余万个,可以产生多种多样的辐射吸收和发射。稀土化合物发光是基于它们的4f电子在f-f组态之内或f-d组态之间的跃迁。稀土发光材料具有许多优点:(1)与一般元素相比,稀土元素4f电子层构型的特点,使其化合物具有多种荧光特性;(2)稀土元素由于4f电子处于内存轨道,受外层s和P轨道的有效屏蔽,很难受到外部环境的干扰,4f能级差极小,f-f跃迁呈现尖锐的线状光谱,发光的色纯度高;(3)荧光寿命跨越从纳秒到毫秒6个数量级;(4)吸收激发能量的能力强,转换效率高;(5)物理化学性质稳定,可承受大功率的电子束、高能辐射和强紫外光的作用。稀土离子能级稀土离子具有4f电子壳层,但在原子和自由离子的状态由于宇称禁戒,不能发生f-f电子跃迁[3&7]。在固体中由于奇次晶场项的作用宇称禁戒被解除,可以产生f-f跃迁,4f轨道的主量子数是4,轨道量子数是3,比其他的s,p,d轨道量子数都大,能级较多。除f-f跃迁外,还有4f-5d,4f-6s,4f-6p电子跃迁。由于5d,6s,6p能级处于更高的能级位置,所以跃迁波长较短,除个别离子外,大多数都在真空紫外区域。由于4f壳层受到5s2,5p6壳层的屏蔽作用,对外场作用的反应不敏感,所以在固体中其能级和光谱都具有原子状态特征。因此,f-f跃迁的光谱为锐线,4f壳层到其他组态的跃迁是带状光谱,因为其他组态是外壳层,受环境影响较大。稀土离子在化合物中一般出现三价状态,在可见和红外光区观察的光谱大都属于4fN组态内的跃迁,在给定组态后确定光谱项的一般方法是利用角动量耦合和泡利原理选出合理的光谱项,但这种方法在电子数多,量子数大时,相当麻烦且容易出错。所以,对稀土离子不太适合。利用群论方法,采用U7>R7>G2>R3群链的分支规则可以方便地给出4fN组态的全部正确的光谱项,通常用大写的英文字母表示光谱项的总轨道角动量的量子数的数目,如S,P,D,F,G,H,I,K,L,M,N,O,Q……分别表示总轨道角动量的量子数为0,1,2,3,4,5,6,7,8,9,10,11,12,……,25+l表示光谱项的多重性,S是总自旋量子数。在光谱学中,用符号2S+1L表示光谱项。 晶体场理论晶体场理论认为,当稀土离子掺入到晶体中,受到周围晶格离子的影响时,其能级不同自由离子的情况。这个影响主要来自周围离子产生的静电场,通常称为晶体场[2]。晶体场使离子的能级劈裂和跃迁几率发生变化。稀土离子在固体中形成典型的分立发光中心。在分立发光中心中,参与发光跃迁的电子是形成中心离子本身的电子,电子的跃迁发生在离子本身的能级之间。中心的发光性质主要取决于离子本身,而基质晶格的影响是次要的。稀土离子的4f电子能量比5s,5p轨道高,但是5s,5p轨道在4f轨道的外面,因而5s,5p轨道上的电子对晶体场起屏蔽作用,使4f电子受到晶体场的影响大大减小。稀土离子4f电子受到晶体场的作用远远小于电子之间的库仑作用,也远远小于4f电子的自旋—轨道作用。考虑到电子之间的库仑作用和自旋—轨道作用,4f电子能级用2J+I LJ表示。晶体场将使具有总角动量量子数J的能级分裂,分裂的形式和大小取决于晶体场的强度和对称性。稀土离子4f能级的这种分裂,对周围环境(配位情况、晶场强度、对称性)非常敏感,可作为探针来研究晶体、非晶态材料、有机分子和生物分子中稀土离子所在局部环境的结构,且2J+I LJ能级重心在不同的晶体中大致相同,稀土离子4f电子发光有特征性,因而很容易根据谱线位置辨认是什么稀土离子在发光。 基质晶格的影响基质晶格对f→d跃迁的光谱位置有着强烈的影响,另外其对f→f跃迁的影响表现在三个方面:(1)可改变三价稀土离子在晶体场所处位置的对称性,使不同跃迁的谱强度发生明显的变化;(2)可影响某些能级的分裂;(3)某些基质的阴离子团可吸收激发能量并传递给稀土离子而使其发光,即基质中的阴离子团起敏化中心的作用。特别是阴离子团的中心离子(Me)和介于中间的氧离子O2-以及取代基质中阳离子位置的稀土离子(RE)形成一直线,即Me-O-RE接近180°时,基质阴离子团对稀土离子的能量传递最有效。 上转换发光材料的发展概况发光是物体内部以某种方式吸收的能量转换为光辐射的过程。发光学的内容包括物体发光的条件、过程和规律,发光材料与器件的设计原理、制备方法和应用,以及光和物质的相互作用等基本物理现象。发光物理及其材料科学在信息、能源、材料、航天航空、生命科学和环境科学技术中的应用必将促进光电子产业的迅猛发展,这对全球的信息高速公路的建设以及国家经济和科技的发展起着举足轻重的推动作用。三价镧系稀土离子具有极丰富的电子能谱,因为稀土元素原子的电子构型中存在4f轨道,为多种能级跃迁创造了条件,在适当波长的激光的激发下可以产生众多的激光谱线,可从红外光谱区扩展到紫外光谱区。因此,稀土离子发光研究一直备受人们的关注。60年代末,Auzel在钨酸镱钠玻璃中意外发现,当基质材料中掺入Yb3+离子时,Er3+、Ho3+和Tm3+稀土离子在红外光激发下可发出可见光,并提出了“上转换发光”的观点[5&4]。所谓的上转换材料就是指受到光激发时,可以发射比激发波长短的荧光的材料。其特点是激发光光子能量低于发射光子的能量,这是违反Stokes定律的。因此上转换发光又称为“反Stokes发光”。从七十年代开始,上转换的研究转移到单频激光上转换。到了八十年代由于半导体激光器泵浦源的发展及开发可见光激光器的需求,使其得到快速发展。特别是近年来随着激光技术和激光材料的进一步发展,频率上转换在紧凑型可见激光器、光纤放大器等领域的巨大应用潜力更激起广大科学工作者的兴趣,把上转换发光的研究推向高潮,并取得了突破性实用化的进展。随着频率上转换材料研究的深入和激光技术的发展,人们在考虑拓宽其应用领域和将已有的研究成果转换成高科技产品。1996年在CLEO会议上,Downing与Macfarlanc等人合作提出了三色三维显示方法,双频上转换三维立体显示被评为1996年物理学最新成就之一,这种显示方法不仅可以再现各种实物的立体图像,而且可以随心所欲的显示各类经计算机处理的高速动态立体图像,具有全固化、实物化、高分辨、可靠性高、运行速度快等优点[15]。上转换发光材料的另一项很有意义的应用就是荧光防伪或安全识别,这是一个应用前景极其广阔的新兴研究方向。由于在一种红外光激发下,发出多条可见光谱线且各条谱线的相对强度比较灵敏地依赖于上转换材料的基质材料与材料的制作工艺,因而仿造难、保密强、防伪效果非常可靠。目前,研究的稀土离子主要集中在Nd3+,Er3+,Ho3+,Tm3+和Pr3+等三价阳离子。Yb3+离子由于其特有的能级特性,是一种最常用的敏化离子。一般来说,要制备高效的上转换材料,首先要寻找合适的基质材料,当前研究的上转换材料多达上百种,有玻璃、陶瓷、多晶粉末和单晶。其化合物可分为:(1)氟化物;(2)氧化物;(3)卤氧化物;(4)硫氧化物;(5)硫化物等。迄今为止,上转换发光研究取得了很大的进展,人们已在氟化物玻璃、氟氧化物玻璃及多种晶体中得到了不同掺杂稀土离子的蓝绿上转换荧光。 上转换发光的基本理论通过多光子机制把长波辐射转换成短波辐射称为上转换,其特点是吸收光子的能量低于发射光子的能量[2&8]。稀土离子上转换发光是基于稀土离子4f电子能级间的跃迁产生的。由于4f外壳层电子对4f电子的屏蔽作用,使得4f电子态间的跃迁受基质的影响很小,每种稀土离子都有其确定的能级位置,不同稀土离子的上转换发光过程不同。目前可以把上转过程归结于三种形式:激发态吸收、光子雪崩和能量传递上转换。激发态吸收激发态吸收(Excited Stated Absorption简写为ESA)是上转换发光中的最基本过程,如图1-1所示。首先,发光中心处于基态能级E0的电子吸收一个ω1的光子,跃迁到中间亚稳态E1上,E1上的电子又吸收一个ω2光子,跃迁到高能级E2上,当处于能级E2上的电子向基态跃迁时,就发射一个高能光子。图1-1 上转换的激发态吸收过程 光子雪崩上转换光子雪崩上转换发光于1979年在LaCl3∶Pr3+材料中首次发现。1997年,N. Rakov等报道了在掺Er3+氟化物玻璃中也出现了雪崩上转换。由于它可以作为上转换激光器的激发机制,而引起了人们的广泛的注意。“光子雪崩”过程是激发态吸收和能量传输相结合的过程,如图1-2所示,一个四能级系统,Mo、M1、M2分别为基态和中间亚稳态,E为发射光子的高能级。激发光对应于M1→E的共振吸收。虽然激发光光子能量同基态吸收不共振,但总会有少量的基态电子被激发到E与M2之间,而后弛豫到M2上。M2上的电子和其他离子的基态电子发生能量传输I,产生两个位于M1的电子。一个M1的电子在吸收一个ω1的光子后激发到高能级E。而E能级的电子又与其他离子的基态相互作用,产生能量传输II,则产生三个为位于M1的电子,如此循环,E能级上的电子数量像雪崩一样急剧地增加。当E能级的电子向基态跃迁时,就发出能量为ω的高能光子。此过程就为上转换的“光子雪崩”过程。图1-2 光子雪崩上转换能量传递上转换能量转移(Energy Transfer,简写成ET)是两个能量相近的激发态离子通过非辐射过程藕合,一个回到低能态,把能量转移给另一个离子,使之跃迁到更高的能态。图1-3列出了发生能量传递的几种可能途径:(a)是最普通的一种能量传递方式,处于激发态的施主离子把能量传给处于激发态的受主离子,使受主离子跃迁到更高的激发态去;(b)过程称为多步连续能量传递,在这一过程中,只有施主离子可以吸收入射光子的能量,处于激发态的施主离子与处于基态的受主离子间通过第一步能量传递,把受主离子跃迁到中间态,然后再通过第二步能量传递把受主离子激发到更高的激发态;(c)过程可命名为交叉弛豫能量传递(Cross Relaxation Up-conversion,简称CR),这种能量传递通常发生在相同离子间,在这个过程中,两个相同的离子通过能量传递,使一个离子跃迁到更高的激发态,而另一个离子弛豫到较低的激发态或基态上去;(d)过程为合作发光过程的原理图,两个激发态的稀土离子不通过第三个离子的参与而直接发光,他的一个明显的特征是没有与发射光子能量匹配的能级,这是一种奇特的上转换发光现象;(e)过程为合作敏化上转换,两个处于激发态的稀土离子同时跃迁到基态,而使受主离子跃迁到较高的能态。(a)普通能量传递 (b)多步连续能量传递(c)交叉弛豫能量传递 (d)合作发光能量传递(e)合作敏化上转换能量传递图1-3 几种能量传递过程的示意图稀土离子的上转换发光都是多光子过程,在多光子过程中,激发光的强度与上转换荧光的强度有如下关系:Itamin ∝ Iexcitationn其中Itamin表示上转换荧光强度,Iexcitation表示激发光强度,在双对数坐标下,上转换荧光的强度与激发光的强度的曲线为一直线,其斜率即为上转换过程所需的光子数n,这个关系是确定上转换过程是几光子过程的有效方法。 敏化机制与掺杂方式 敏化机制通过敏化作用提高稀土离子上转换发光效率是常用的一种方法[9]。其实质是敏化离子吸收激发能并把能量传递给激活离子,实现激活离子高能级的粒子数布居,从而提高激活离子的转换效率,这个过程可以表述如下:Dexc+A→D+AexcD表示施主离子,A是受主离子,下标“exc”表示该离子处于激发态。Yb3+离子由于特有的能级结构,是最常用的也是最主要的一种敏化离子。(1)直接上转换敏化对与稀土激活中心(如Er3+,Tm3+,Ho3+)和敏化中心Yb3+共掺的发光材料,由于Yb3+的2F5/2能级在910-1000nm均有较强吸收,吸收波长与高功率红外半导体激光器的波长相匹配。若用激光直接激发敏化中心Yb3+,通过Yb3+离子对激活中心的多步能量传递,可再将稀土激活中心激发至高能级而产生上转换荧光,这类过程会导致上转换荧光明显增强,称之为直接上转换敏化。图1-4以Yb3+/Tm3+共掺杂为例给出了该激发过程的示意图。图1-4 直接上转换敏化(2)间接上转换敏化由于Yb3+离子对910-1000 nm间泵浦激光吸收很大,泵浦激光的穿透深度非常小,因此虽然在表面的直接上转换敏化能极大的提高上转换效率,但它却无法应用到上转换光纤系统中。针对这种情况,国际上与1995-1996年首次提出了“间接上转换敏化”方法[7]。间接上转换敏化的模型首先在Tm3+/Yb3+双掺杂体系中提出的:当激活中心为Tm3+时,如果激发波长与Tm3+的3H6→3H4吸收共振,激活中心Tm3+就被激发至3H4能级,随后处于3H4能级的Tm3+离子与位于2F5/2能级的Yb3+离子发生能量传递,使Yb3+离子的2F5/2能级上有一定的粒子数布居。然后处于激发态2F5/2的Yb3+离子再与Tm3+进行能量传递,实现Tm3+的1G4能级的粒子数布居,这样就通过Tm3+→Yb3+→Tm3+献的能量过程间接地把Tm3+离子激发到了更高能级1G4。从而导致了Tm3+离子的蓝色上转换荧光。图1-5给出了间接上转换敏化的示意图。考虑到稀土离子的敏化作用与前述的上转换机理,在实现上转换发光的掺杂方式通常要考虑如下几点:(1)敏化离子在激发波长处有较大的吸收截面和较高的掺杂浓度;(2)敏化离子与激活离子之间有较大的能量传递几率;(3)激活离子中间能级有较长的寿命。图1-5 间接上转换敏化 掺杂方式表1-1给出了当前研究比较多的掺杂体系,表中同时列出了某一掺杂体系对应的激发波长、基质材料、敏化机制等。表1-1 常见的掺杂体系稀土离子组合 激发波长 基质材料 敏化机制单掺杂 Er3+ 980nm ZrO2纳米晶体 —Nd3+ 576nm ZnO–SiO2–B2O3 —Tm3+ 660nm AlF3/CaF2/BaF2/YF3 —双掺杂 Yb3+:Er3+ 980nm Ca3Al2Ge3O12玻璃 直接敏化Yb3+:Ho3+ 980nm YVO4 直接敏化Yb3+:Tm3+ 800nm 氟氧化物玻璃 间接敏化Yb3+:Tb3+ 1064nm 硅sol–gel玻璃 合作敏化Yb3+:Eu3+ 973nm 硅sol–gel玻璃 合作敏化Yb3+:Pr3+ 1064nm LnF3/ZnF2/SrF2 BaF2/GaF2/NaF 直接敏化Nd3+:Pr3+ 796nm ZrF4基玻璃 直接敏化三掺杂 Yb3+: Nd3+ :Tm3+ 800nm ZrF4基玻璃 间接敏化Yb3+: Nd3+ :Ho3+ 800nm ZrF4基玻璃 间接敏化Yb3+: Er3+ :Tm3+ 980nm PbF2:CdF2玻璃 直接敏化 上转换发光材料的应用稀土掺杂的基质材料在波长较长的红外光激发下,可发出波长较短的红、绿、蓝、紫等可见光。通常情况下,上转换可见光包含多个波带,每个波带有多条光谱线,这些谱线的不同强度组合可合成不同颜色的可见光[7]。掺杂离子、基质材料、样品制备条件的改变,都会引起各荧光带的相对强度变化,不同样品具有独特的谱线强度分布与色比关系(我们定义上转换荧光光谱中各荧光波段中的峰值相对强度比称为色比,通常以某以一波段的峰值强度为标准)。因而上转换发光材料可应用到荧光防伪或安全识别上来。上转换发光材料在荧光防伪或安全识别应用上的一个研究重点是制备上转换效率高,具有特色的防伪材料,实现上转换荧光防伪材料能够以配比控制色比;也就是通过调整稀土离子种类、浓度以及基质材料的种类、结构和配比,达到控制色比关系。 本论文研究目的及内容Nd:YAG激光器发出1064nm的激光,在激光打孔、激光焊接、激光核聚变等领域具有广泛的应用价值,是最常用的激光波段。然而,由于人眼对1064nm的红外光不可见,因此,需要采用对1064nm激光响应的红外激光显示材料制备的显示卡进行调准和校正。本论文采用氟化物作为基质,掺杂稀土离子,通过配方和工艺研究,制备对1064nm响应的红外激光显示材料。研究组分配比、烧结温度、气氛和时间等对粉体性能的影响。并采用XRD和荧光光谱分析等测试手段对粉体进行表征。确定最佳烧结温度、组分配比,最终获得对1064nm具有优异红外转换性能的红外激光显示材料。第二章 红外激光显示材料的合成与表征经过多年研究,红外响应发光材料取得了很大进展,现已实现了氟化物玻璃、氟氧化物玻璃、及多种晶体中不同稀土离子掺杂的蓝绿上转换荧光。然而上转换荧光的效率距离实际实用还有很大的差距,尤其是蓝光,其效率更低。因此,寻找新的红外激光显示材料仍在研究之中,本文主要研究对1064nm响应的发光材料。本章研究了双掺杂Er3+/Yb3+不同基质材料的蓝绿上转换荧光,得到了发光效果较好的稀土掺杂氟化物的红外激光显示材料,得到了一些有意义的研究结果。 红外激光显示材料的合成 实验药品(1)合成材料所用的化学试剂主要有:LaF3,BaF2,Na2SiF6,NaF,氢氟酸,浓硝酸等。稀土化合物为Er2O3、Yb2O3,纯度在4N以上。(2)ErF3、YbF3的配制制备Yb3+/Er3+共掺氟化物的红外激光显示材料使用的ErF3,YbF3是在实验室合成的。实验采用稀土氧化物,称取适量的Er2O3,Yb2O3放在烧杯1和烧杯2中,滴加稍微过量的硝酸(浓度约为8mol/L),置于恒温加热磁力搅拌器上搅拌,直至烧杯1中出现粉红色溶液、烧杯2中出现无色溶液停止。其化学反应如下:Er2O3+6HNO3→2Er(NO3)3+3H2OYb2O3+6HNO3→2Yb(NO3)3+3H2O再往烧杯1和烧杯2中分别都加入氢氟酸,烧杯1中生成粉红色ErF3沉淀,烧杯2中生成白色絮状YbF3沉淀,其化学反应如下:Er(NO3)3+3HF→ErF3↓+3HNO3Yb(NO3)3+3HF→YbF3↓+3HNO3生成的ErF3、YbF3沉淀使用循环水式多用真空泵进行分离,并多次使用蒸馏水进行洗涤,将从溶液中分离得到的沉淀倒入烧杯放入电热恒温干燥箱,在100℃条件下保温12小时,得到了实验所需的ErF3、YbF3,装入广口瓶中备用。 实验仪器SH23-2恒温加热磁力搅拌器(上海梅颖浦仪器仪表制造有限公司)PL 203电子分析天平(梅特勒一托多利仪器上海有限公司)202-0AB型电热恒温干燥箱(天津市泰斯特仪器有限公司)SHB-111型循环水式多用真空泵(郑州长城科工贸有限公司)WGY-10型荧光分光光度计(天津市港东科技发展有限公司)DXJ-2000型晶体分析仪(丹东方圆仪器有限公司)1064nm半导体激光器(长春新产业光电技术有限公司)4-13型箱式电阻炉(沈阳市节能电炉厂) 样品的制备(1)实验方法本实验样品制备方法是:以稀土化合物YbF3、ErF3,基质氟化物为原料,引入适量的助熔剂,采用高温固相法合成红外激光显示材料。高温固相法是将高纯度的发光基质和激活剂、辅助激活剂以及助熔剂一起,经微粉化后机械混合均匀,在较高温下进行固相反应,冷却后粉碎、筛分即得到样品[8]。这种固体原料混合物以固态形式直接参与反应的固相反应法是制备多晶粉末红外激光显示材料最为广泛使用的方法。在室温下固体一般并不相互反应,高温固相反应的过程分为产物成核和生长两部分,晶核的生成一般是比较困难的,因为在成核过程中,原料的晶格结构和原子排列必须作出很大调整,甚至重新排列。显然,这种调整和重排要消耗很多能量。因而,固相反应只能在高温下发生,而且一般情况下反应速度很慢。根据Wagner反应机理可知,影响固体反应速度的三种重要因素有:①反应固体之间的接触面积及其表面积;②产物相的成核速度;③离子通过各物相特别是通过产物相时的扩散速度。而任何固体的表面积均随其颗粒度的减小而急剧增加,因此,在固态反应中,将反应物充分研磨是非常必要的[6]。而同时由于在反应过程中在不同反应物与产物相之间的不同界面处可能形成的物相组成是不同的,因此可能导致产物组成的不均匀,所以固态反应需要进行多次研磨以使产物组成均匀。另外,如果体系存在气相和液相,往往能够帮助物质输运,在固相反应中起到重要作用,因此在固相反应法制备发光材料时往往加入适量助熔剂。在有助熔剂存在的情况下,高温固相反应的传质过程可通过蒸发-凝聚、扩散和粘滞流动等多种机制进行。(2)实验步骤根据配方中各组分的摩尔百分含量(表3-1,表3-2,表3-3中给出了实验所需主要样品的成分与掺杂稀土离子浓度),准确计算各试剂的质量,使用电子天平精确称量后,把原料置于玛瑙研钵中研磨均匀后装入陶瓷坩埚中(粉体敦实后大概占坩埚体积的1/3),再放入电阻炉中保温一段时间。冷却之后即得到了实验所述的红外激光显示材料样品。图2-1为实验流程图:图2-1 实验流程图 红外激光显示材料的表征 XRDX射线衍射分析是当今研究晶体精细结构、物相分析、晶粒集合和取向等问题的最有效的方法之一[10&9]。通常采用粉末状晶体或多晶体为试样的X射线衍射分析被称为粉末法X射线衍射分析。1967年,Hugo 鉴于计算机处理大量数据的能力,在粉末中子衍射结构分析中,提出了全粉末衍射图最小二乘拟合结构修正法。1977年,Malmros等人把这个方法引入X射线粉末衍射分析中,从此Rietveld分析法的研究开始迅速发展起来[16&10]。本实验采用丹东方圆仪器有限公司生产的DXJ-2000型晶体分析仪对粉末样品进行数据采集,主要测试参数为:Cu靶Kα线,管压45kV,管流35Ma,狭缝DSlmm、.、SS1 mm,扫描速度10度/min(普通扫描)、度/min(步进扫描),通过测试明确所制备的材料是否形成特定晶体结构的晶相,也可以简单判断随着掺杂量的增加,是否在基质中有第二相形成或者掺杂的物质同基质一起形成固溶体。

稀土发光材料稀土发光材料:Rare Earth Luminescent Materials 稀土发光是由稀土4f电子在不同能级间跃出而产生的,因激发方式不同,发光可区分为光致发光(photoluminescence)、阴极射线发光(cathodluminescence)、电致发光(electroluminescence)、放射性发光(radiation luminescence)、X射线发光(X-ray luminescence)、摩擦发光(triboluminescence)、化学发光(chemiluminescence)和生物发光(bioluminescence)等。稀土发光具有吸收能力强,转换效率高,可发射从紫外线到红外光的光谱,特别在可见光区有很强的发射能力等优点。稀土发光材料已广泛应用在显示显像、新光源、X射线增光屏等各个方面。 稀土发光材料制造方法:(1)气相法:气体冷凝法;真空蒸发法;溅射法;化学气相沉积法(CVD);等离子体法;化学气相输运法等。(2)固相法:高温固相合成法;自蔓延燃烧合成法(SHS);室温和低热固相反应法;低温燃烧合成法;冲击波化学合成法;机械合金化法等。(3)液相法:沉淀法;均相沉淀法;共沉淀法;化合物沉淀法;熔盐法;水热氧化法;水热沉淀法;水热晶化法;水热合成法;水热脱水法;水热阳极氧化法;胶溶法;相转变法;气溶胶法;喷雾热解法;包裹沉淀法;溶胶-凝胶法;微乳液法;微波合成法等。稀土发光材料的主要应用:(1)光源:日光灯 Ca5(PO4)3(Cl,F):[Sb3+,Mn2+]; BaMg2Al16O27:Eu2+; MgAl11O16:[Ce3+, Tb3+]; Y2O3:Eu3+高压汞灯 Y(PV)O4:Eu; YVO4:Eu,Tb黑光灯 YPO4:Ce,Th; MgSrBF3:Eu固体光源 GaP;GaAs;GaN;InGaN;YAG:Ce(2)显示:数字符号显示 发光二极管(LED)平板图像显示 OLED(3)显像:黑白电视 Gd2O2S:Tb彩色电视 Y2O3:Eu; Y2O2S:Eu飞点扫描 Y2SiO5:CeX射线成像 (Zn, Cd)S:Ag; CaWO4; BaFCl:Eu2+; La2O2S:Tb3+; Gd2O2S:Tb3+(4)探测:闪烁晶体 CsI, TlCl(5)激光:固体激光材料 YAG:Nd3+; YAP:Nd3+; YLF:Nd3+玻璃激光材料 掺Nd3+硅酸盐、硼酸盐和磷酸盐玻璃化学计量激光 PrCl3; NdP5O14; NdLiP4O12; NdKP4O12; NdK3(PO4)2; NdAl3(BO3)4; NdK5(MoO4)4液体激光 Eu3+激活的苯酰丙酮(BA)、二苯酰甲烷(DBM)、三氟乙酰丙酮(TFA)和苯三氟丙酮(BTFA)等气体激光 Sm(I), Eu(I), Eu(II), Tm(I), Yb(I), Yb(II), Yb等金属蒸气稀土发光材料专利技术集 1、一种制取长余辉发光材料的方法 2、稀土alo-bo绿色发光材料的制备 3、一种光致长余辉发光材料组合物及其制备方法 4、农膜稀土荧光粉转换剂的制备 5、用于测温技术的稀土荧光体 6、水性蓄能发光涂料 7、一种红外防伪发光材料的制备方法及其应用 8、光致发光釉及其制造方法 9、发光漆及其应用 10、铝酸盐高亮度长余辉发光材料及其制备方法 11、一种发光红磷光体 12、一种艳红色稀土荧光粉及其配制方法 13、稀土荧光探伤渗透液 14、碳还原法合成灯用稀士兰.绿两种荧光粉 15、包裹型稀土激活碱土金属铝酸盐发光材料及其制备工艺 16、稀土铝酸盐绿色发射荧光体的制备方法 17、稀土材料发光粉 18、一类高聚物稀土荧光组合物及其用途 19、稀土高分子光致发光材料及其合成方法 20、自发光颜料的生产方法 21、一种在254纳米紫外光下发光的复合材料 22、陶瓷发光材料及其制造工艺 23、一类高效稀土有机配合物电致发光材料及其制备方法 24、陶瓷发光材料制造工艺及制品 25、稀土石榴石绿色荧光体及制备方法 26、新型上转换发光材料及其制备方法 27、一种含稀土的氧化物红色发光材料及其制备方法 28、稀土发光材料的制备方法 29、一种半透明度高的发光材料制造方法 30、多色彩稀土荧光粉及其配制方法 31、稀土激活铝硅酸盐长余辉发光材料及其制备方法 32、长余辉无机发光材料的制备方法 33、一种新型的发光材料及其应用 34、用紫光二极管转换成发白光的稀土发光材料 35、稀土氧化物红色荧光粉及其制备方法 36、一种硼铝酸盐荧光粉及其制备方法 37、一种合成长余辉发光材料的新方法 38、含稀土有机无机纳米杂化发光材料的合成方法 39、多离子激活的碱土铝酸盐光致长余辉发光材料及制造方法 40、发光材料 41、拟薄水铝石晶种化稀土发光材料制备工艺 42、高聚物稀土化合物纳米杂化发光材料的合成方法 43、夜光材料的合成工艺 44、红色荧光粉的制造工艺 45、红色荧光粉 46、一种紫光或紫外激发的硼磷酸盐荧光粉及其制备方法 47、碱金属锡磷酸盐基发光材料及其制备方法 48、一种稀土激活的y2sio5荧光粉及其制备方法和应用 49、稀土氧化物基纳米发光粉体的制备方法 50、一种稀土掺杂的纳米级氧化钇基发光粉体的制备方法 51、稀土红色荧光粉及其制备方法 52、稀土掺杂钽酸盐透明发光薄膜及其制备方法 53、长余辉高亮度发光材料及其制备方法 54、机器可读荧光磷光防伪材料、该材料的制作方法及其应用 55、一种制备铕激活的钇钆硼酸盐荧光粉的方法 56、稀土绿色长余辉发光材料及其制备方法 57、高色纯度稀土钒磷酸钇钆铕红色荧光体及其制造方法 58、热固性发光粉末涂料及其制造方法 59、一种稀土荧光复合物及其用途 60、一种制备铝酸盐长余辉发光粉的方法 61、稀土包膜转光材料制备工艺 62、新型光存储发光材料及其用途 63、一种光固化稀土红色荧光防伪油墨及其制备方法 64、一种真空紫外激发的绿色硼酸盐发光材料及其制备方法 65、一种红色长余辉发光材料及其合成方法和应用 66、包含稀土元素硫化物的场发射白色发光材料及其制造方法 67、含联吡啶衍生物的稀土配合物及其作为电致发光材料的应用 68、包含稀土元素硫化物的绿色发光材料及其制造方法 69、稀土蓝色荧光材料、其制备方法和用途 70、一种晶格缺陷可调控型长余辉发光材料 71、电致发光材料 72、钇取代的硫代铝酸钡发光材料 73、一种人工合成的长余辉高亮度发光粉及其制备方法 74、用于电致发光荧光体的喷镀沉积方法 75、一种红色荧光粉的制备方法 76、耐蚀性陶瓷、含耐蚀性陶瓷的发光管及发光管的制造方法 77、发红色光余辉性光致发光荧光体和该荧光体的余辉性灯泡 78、含有稀土类元素的微粒和使用其的荧光探针 79、一种功能性纳米稀土荧光微粒及其制备和应用 80、氮化物荧光体,其制造方法及发光装置

我这里有很多材料,欢迎来537寻找!

磷光转换白光发光二极管(pc-WLEDs)广泛应用于液晶显示器(LCDs)的节能照明和背光照明。窄带绿色和红色发光荧光粉在显示应用中实现宽色域是十分必要的。以Si6-zAlzOzN8-z:Eu2+(β-sialon:Eu2+)表达的Eu2+掺杂的β-sialon荧光屏可发射窄带绿色(宽度45-60 nm),具有较高的量子效率。β-sialon:Eu2+除了具有较高的化学和热稳定性外,还具有较小程度的热猝灭发光。 在掺杂的荧光粉中,发光中心通常取代了主晶体结构中的阳离子位置 。然而,由于Si4+和Al3+的离子尺寸比Eu2+小得多,在β-sialon的阳离子位置取代Eu2+相当困难。在β-sialon晶体结构中,(Si, Al)(O, N)4四面体形成了一个三维网络,其一维通道平行于c轴,Eu原子占据了一维通道的间隙位置。低温光谱证实了β-sialon晶格中的Eu2+可发射窄带绿色。在β-sialon的一维通道中存在两个晶态位点,由于β-sialon晶体结构中Eu2+的掺入量较小,通过粉末X射线衍射(XRD)分析难以获得Eu2+的位置信息,现有研究还没有提供确凿的实验数据来证明Eu2+在一维通道中的明确位置。

日本国家材料研究所的一项最新课题 利用单晶XRD和电子探针显微分析(EPMA),阐明了Eu2+发光中心在β-sialon:Eu2+荧光粉中的位置 。相关论文以题为“Structure elucidation of luminescent centers in green emitting Eu2+ doped Si6-zAlzOzN8-z phosphors”发表在Scripta Materialia。

论文链接:

本研究用β-sialon:Eu2+荧光粉样品由α-Si3N4、Al2O3和Eu2O3合成的。将混合的起始材料装入氮化硼坩埚,在 MPa氮气氛围下,在2000 下燃烧15小时。从合成后的粉末中,挑选高结晶度的颗粒进行分析。

通过试验和模拟分析相结合,将Eu定位在(0,0,1/4)的2a通道位置,为了寻找Eu的位置,在包含一维通道的(001)和(110)截面上,用差分傅里叶合成法描述了没有Eu的结构模型的剩余电子密度。模拟分析这表明几乎所有的Eu都位于(0,0,1/4)的通道位置。在Eu各向异性位移参数中,U33值()大于U11值(=U22) ()。一维通道只被Eu占据了很小的一部分,并且一个Eu与另一个Eu相邻的可能性无限接近于零。在先前的STEM测量中,观察区域的样品厚度约为 nm,并且在一维通道中观察到单个Eu原子。在方向上没有相邻原子,位移参数比相邻阴离子所在的其他方向大。精化计算出Eu与相邻阴离子的原子间距分别为(3个阴离子)和(6个阴离子),然而阴离子位置反映了平均的β-sialon结构。

1 单元细胞中β-sialon沿方向的晶体结构

图2 (a) 365nm光激发的β-sialon:Eu2+荧光粉的发射光谱和照片;(b)β-sialon:Eu2+荧光粉粒子在365nm脉冲光激发下的发射衰减曲线

图3 不含Eu的β-sialon结构模型的剩余电子密度计算

通过单晶X射线衍射(XRD)和电子探针(EPMA)表征了Eu在Eu2+掺杂的绿色β-sialon荧光粉中的位置。Eu位于一维通道中(0,0,1/4)的2a位置。掺杂的Eu大部分位于间隙位置。在此结构分析的基础上,未来的研究可进一步分析发光性能,本文为发光材料的研究有积极作用。(文:破风)

材料研究前沿热点论文题目

建设创新科技园,是新时期、新形势下我国高新区的重要发展导向,是推进国家高新区“二次创业”的核心工作,下面是我为大家精心推荐的关于创新科技论文题目,希望能够对您有所帮助。 关于创新科技论文题目 1.对中国在明代中期以后科学技术落后于世界先进水平的原因分析 2.机械测试系统原理与应用的展望 3.西南石油大学大学生科技创新基地建立的深远意义 4.自然科学发展的前沿动态分析 5.简述机械工程的内容及意义 6.现代高新技术与可持续发展的辨证关系 7.对"科学技术是第一生产力"的最新认识 8.从自然科学角度谈科学发展观 9.试论近代科学技术与现代科学技术的区别和联系 10.简述自然科学对构建和谐社会的影响 11.说明人类文明与材料发展的关系 12.常规能源和新能源有何不同 13.对如何提高西南石油大学学生创新成果质量的探索与研究 14.基础学科(如力学、数学等)的研究与工程应用(或现代人类生活)的关系 15.理论学习与工程应用的关系 16.创新(科学研究)的立足点与意义 关于创新科技论文 科技创新与创新驱动 摘要:从历史借鉴和中外对比等视角,分析科技创新与上层建筑领域创新的关系,探讨如何消除科技创新的非技术障碍,以便使上层建筑更好地适应经济基础,促使科学技术更好地发挥第一生产力的引领作用。 关键词:科技创新:创新驱动:上层建筑 历史证明,人类社会的发展靠创新驱动。自有人类文明史以来,往往首先由科技创新促进生产力发展,进而由生产方式、思想文化和体制机制的创新驱动,合力推动人类社会的不断进步。 当今中国,经过改革开放30年,从科技创新到生产方式创新,都有不同程度的体现,较好地促进了生产力的发展和生产关系的适应。但在上层建筑领域,从思想文化到体制机制,却还有许多方面禁锢束缚着创新驱动力的发挥。本文将从历史借鉴和中外对比等视角,分析科技创新与上层建筑领域创新的关系,探讨如何消除科技创新的非技术障碍,以便使上层建筑更好地适应经济基础,促使科学技术更好地发挥第一生产力的引领作用。 1创新驱动的历史借鉴 人类的文明历史,主要从东方开始。古埃及、古巴比伦、古印度和中国都是世界文明的重要发祥地,而同为世界文明发祥地的古希腊,则更具文明创新的特征。毕达哥拉斯的数学、欧几里得的几何学、阿基米德的物理学、德谟克利特的原子论、赫拉克利特的辩证唯物论、苏格拉底的哲学体系、亚里士多德的科学体系、柏拉图的理想国、伊璧鸠鲁的无神论、梭伦的政治改革和伯里克利的民主政治等等,无不对世界的科学、哲学、文化、教育、伦理和政治产生着深刻的影响。当然,这些成就并不完全是希腊人的发明,却体现了希腊人的创新。 14世纪到16世纪,是欧洲出现资本主义萌芽并开始发展的时期。新兴资产阶级为了改变束缚资本主义发展的各种封建观念和制度,在科教哲文等方面表现了许多创新理念。他们以“人文主义”为旗帜,开始了长达两个世纪的文艺复兴运动。哥白尼、伽利略、培根、但丁、薄伽丘、达・芬奇、拉斐尔、莫尔、莎士比亚等代表人物,犹如灿烂群星,照亮了欧洲中世纪黑暗的上空,从思想上动摇了封建统治的根基。 18世纪是一个启蒙的世纪,一个继文艺复兴后第二次思想大解放的世纪。在这个世纪里,以牛顿经典力学为代表的科学发现,以瓦特蒸汽机发明应用为代表的技术创新,极大地推动了生产力发展,但同时受到封建生产关系和上层建筑的严重障碍。面对“万马齐喑”的封建禁锢,不仅有伏尔泰、孟德斯鸠、卢梭、狄德罗等思想家,哥德、席勒、笛福等文学家,还有亚当・斯密、大卫・李加图等经济学家,边沁等法学家、伦理学家,与广大人民群众一道,共同造就了人类历史上一个不同寻常的世纪。 启蒙运动作为人类历史上一次重大思想解放和文化创新,促进了欧洲的生产方式和社会制度创新,激发了18世纪到19世纪欧、美、日、俄的技术革命和工业革命。使“资产阶级在它不到一百年的阶级统治中,所创造的生产力,比过去一切世代创造的全部生产力还要多,还要大”(马克思语)。启蒙运动还孕育了马克思主义,马克思主义三大来源的代表人物黑格尔等均诞生于启蒙运动时期。启蒙运动也促进了美国的独立,杰斐逊就是根据启蒙运动的理念起草了《独立宣言》,并激励美国人民赢得了独立战争的胜利。 人类进入20世纪,一场以爱因斯坦相对论、量子力学理论创新推动的原子能、无线电、电子信息、航天航空以及新材料、生物工程等方面的科技革命席卷全球。特别是20世纪中后期计算机网络技术的发明和应用普及,更是对人们的生产方式、生活方式乃至思维方式等都产生着革命性的变革。由此产生的多元文化和多种经济成份的融合,正以浩荡之势,促进着人们思想观念和社会制度及组织结构的不断创新。 2非技术创新驱动的中外对比 中国的科学技术在15世纪前曾处于世界先进水平。四大发明(活印、火药、指南、造纸)、五大技术(瓷器、纺织、造船、建筑、水利)都产生过世界性影响。然而当文艺复兴、启蒙运动、技术革命、工业革命推动欧洲和美、日、俄等国家快速发展时,我们却一次次错过了发展机遇。究其原因,主要是中国创新驱动的非技术因素严重束缚了科技创新能力,阻碍了生产力的发展。 思想文化的历史对比 中国是人类灿烂文化的发源地之一。特别在春秋战国时的百家争鸣,出现了空前的思想活跃,形成了一批影响后世2000多年的独创思想和优秀文化。但自秦汉开始,统治阶级出于封建统治需要,先是“焚书坑儒”,继而“废除百家、独尊儒术”,将“三纲五常”的封建教义加以固化,在“万口一辞,不可破也,千年一律,不可知也”的思想禁锢下,民众中逐步形成唯书唯上、墨守成规的保守风气。“枪打出头鸟,出头椽先烂”、“木秀于林,风必摧之”的观念严重束缚着人们的创新热情。相比之下,欧洲国家虽然也有上千年的“中世纪黑暗”,但经过文艺复兴、启蒙运动等数次思想解放的洗礼,培育了深厚的创新文化。崇尚科学、追求真理、勇于创新、宽容失败的理念得到了较为广泛的认同。当然,欧洲国家科学精神与创新文化的形成,也是他们许多代人奋斗牺牲的结果,正是布鲁诺以生命的代价捍卫哥白尼的“日心说”,赫胥黎以“斗犬”精神宣扬达尔文的“进化论”等,“从此自然科学才开始从神学中解放出来”(恩格斯语)。 科学素质的历史对比 中国是一个尊师重教的国家,却又是一个国民科学素质不高的国家。据中国科协公布的2000年中国科学素养调查:中国每千人只有14人具备基本科学素养。这一比例仅为美国的1/23和欧盟国家的1/15。造成这种差异,首先是教育理念和目标的不同。中国千百年来把读书做官作为目标,把四书八股作为教材,把朱熹的“集注”作为唯一标准,不能越雷池半步,使人们从读书起就被扼杀了创新精神,缺失了科学知识。而欧美国家办学以培养对社会有用人才为目标,教授内容也以自然科学、实用技术为主,人文思想也强调科学精神和创新思维,因而培养了大批创新人才。如牛津、剑桥两所大学就培养了培根、牛顿、达尔文、雪莱、亚当・斯密等著名人物和上百名诺贝尔奖获得者。其次是对科学普及认识重视程度的差异。在我国,虽然对科技创新已高度重视,但对科学普及的相辅相成作用认识不足。创新型国家则把科普看作科技的应有之义,如各种专业博物馆为代表的科普场馆在欧洲国家数不胜数,更是市民的必去、常去之处,成为这些国家重视国民科学素质培养的生动风景线。 体制机制的历史对比 中国长期的封建统治,本身缺乏对科技创新体制机制的制度性设置和安排,相反封建的社会制度和政治体制对科技创新形成严重禁锢。新中国建立以后,国家高度重视科技工作,形成了较完整的独立科研体系。但由于我国尚处在计划经济体制向市场经济体系的转型期,企业为主体、市场为导向的科技创新的体制机制还不完善。而在创新型发达国家,早在18世纪 就形成了有利于科技创新的体制。到19世纪,这些国家科技创新的企业主体地位、社会组织的管理功能和创新活动的市场竞争机制等,均已较为成熟完善。企业、社会组织和市场机制对科技创新起到了主导作用,政府则主要从政策导向、税收杠杆和法律保障方面进行宏观引导、管理和规范。因而创新成果与市场直接接轨,更有利于科技成果的产业化和商品化。 法治环境的历史对比 改革开放以来,我国开始重视科技法规的建设,先后制定了《专利法》、《科技进步法》、《促进科技成果转化法》、《著作权法》、《科学技术普及法》等科技法律,对我国的科技进步和科技创新产生了积极促进作用。但我国的科技法规大多产生于20世纪80年代之后,对科技进步的促进作用还不够深远,加上我国长期的封建人治影响,有法不依、知法违法等现象仍很严重。而在创新型发达国家,鼓励和规范科技活动的法律早在200多年前就形成体系,一些国家还在根本大法中鼓励和保护科技创新,促进科技普及。如美国在1787年宪法中就规定“为促进科学和实用技艺的普及,对作家和发明家的著作和发明,在一定期限内给予专利权的保障”,从而促进了美国的各种发明创造如雨后春笋般地涌现,并极大地促进了美国生产力的发展,使之在20世纪初跃为世界头号强国。 3思想文化和体制机制创新的对策 综上所述,人类社会的进步,总是科技、经济、思想、文化、体制、机制等不断创新而推动的。它们互相依存制约,又相互转化促进。当社会渐进发展时,科技的创新对生产力起主要推动作用,当量变积累到质变,进人飞跃发展阶段时,思想文化、体制机制的变革创新,就成为进一步解放生产力、促进社会进步的更重要方面。在我国,由于改革开放和世界第三次科技革命的推动,生产力快速发展,集聚了足以产生部分质的飞跃的物质能量,因而也对上层建筑的制约因素提出强烈的改革要求。 就科技创新而言,新中国已建成多学科完整的科研体系,并拥有上万亿资产的科学仪器和技术装备,拥有3 300多万专业技术人员队伍。国家统计表明,2007年全社会研发支出达3 664亿元,国家财政用于科学技术的拨款达2 127亿元,应该说,我国的科技创新已具备了雄厚的物质基础。但另一方面,我国规模以上企业75%没有研发机构和研发活动。99,7%的企业没有专利申请和自主知识产权,60%的企业没有自己的商标;全国每年产生数万项科技成果,其转化和产业化率不到10%。这种不成正比的投入产出,说明制约我国科技创新的主要矛盾方面,已从物质条件的制约正逐步转为思想文化、体制机制等非技术因素的束缚。为此,提出如下对策。 弘扬创新精神。培育创新文化 创新精神是科技创新的灵魂,创新精神说到底是科学精神,而科学精神正是马克思主义实事求是世界观的本质体现。创新文化是科技创新的土壤,土壤深厚成果才丰硕。但在思想文化战线,我们面对的是2 000多年封建文化的沉重积淀,封建文化残余的影响不容小视。这就要我们以思想解放大讨论为契机,深刻理解创新文化的内涵,并与我国的传统文化进行比较分析,对其糟粕应坚决批判摈弃,对其精华应与创新文化加以有机融合,努力在思想理论、文艺创作、舆论宣传等方面确定创新精神和创新文化的主体地位,并在各级领导中带头加以宣扬,使之日益深入人心,逐渐蔚然成风。 加强科学普及,提高科学素质 纵观世界科技发展史,科技进步总是靠科技创新和科学普及两轮驱动的。科技创新改变了人类社会的哪个方面,科学普及也会跟踪到那个方面。胡锦涛曾指出“科技创新和科学普及是科技工作的两个重要方面”。但目前,相对科技创新而言,科普工作无论从领导重视程度、科普投入力度,还是人员队伍和设施建设,都明显是一条短腿。如财政投入,中央财政2006年对科普的投入还不到对科技投入的百分之一。科普工作是提高全民科学素质的重要方面,要逐步消除国民科学素质较低对科技创新的基础性制约,实现到2020年建成创新型国家的目标,就要对科普工作高度重视,特别是各级领导的高度重视,能真正如中央领导所要求的“像抓发展那样抓科普,以抓科普来抓发展”,全民科学素质才会在较短时期内有较大提高,中国的科学发展才有最为重要的坚实基础。 明确创新主体。加快制度创新 体制机制的改革与创新,在现阶段,是进一步促进科技创新、解放生产力的关键。体制机制问题,首先要有利于促进企业成为科技创新的主体,通过体制机制的制度性安排,引导创新资源向企业集骤:其次,要通过体制机制的创新,建立起以市场为导向的产学研创新体系和市场激励机制;三是使创新人才包括创新型企业家的形成机制更适应经济社会发展和市场经济的规律。体制机制的创新,既要促进生产关系对生产力的进一步适应,更要改革上层建筑中行政管理体制甚至政治体制中对经济基础的不适应部分,使相关的机构设置、管理职能、运作程序等更有利于科技创新的需要。 完善法制体系,营造法治环境 完善的法制体系是科技创新的根本保障。针对目前科技创新的法制体系不完善、不够刚性及国民的法治意识淡漠等状况,一方面要进一步修订和补充相关法规,并注意在立法中坚持与时俱进、科学合理、公平公正,防止部门利益法律化;在地方立法中要根据实际,使必须条款尽可能具刚性,使各方都有切实可依的法律准绳。另一方面,要大力开展科技创新法规的普及教育,使相关法规深入人心,从而切实增强法治意识。形成良好的法治环境。 创新是人类社会发展的根本动力,创新驱动又是一项庞大的系统工程,不仅应系统推进,更要根据发展的不同阶段,抓住主要矛盾。现阶段,一方面,要下大力气继续抓好科技创新;一方面,要把更大的力量用于实现思想文化创新和体制机制创新,才能取得创新型国家建设的新突破。看了"关于创新科技论文题目"的人还看: 1. 关于科技创新的议论文 2. 有关企业科技创新论文3篇 3. 科技论文题目 4. 关于创新教育的论文 5. 关于创新的议论文5篇

我也不是很清楚的啊

一、比较好写的材料科学论文题目:1、表面活性剂在纳米材料科学中的应用2、高分辨透射X射线三维成像在材料科学中的应用3、“面向新世纪材料科学与工程专业建设与人才培养的综合改革与实践”实践教学改革报告4、提高材料科学与工程专业毕业设计质量的探索与实践5、材料科学与工程专业实验教学改革与实践6、激光技术在材料科学中的应用7、材料科学与工程专业平台课程材料物理性能本科生教学改革的探讨8、量子化学计算方法在材料科学领域的初步应用9、材料科学与工程专业的工程教育实践10、嵌入原子方法理论及其在材料科学中的应用11、现代球墨铸铁的诞生,应用及技术发展趋势:20世纪材料科学最重大的技术进 ?12、表面处理技术现状及其在材料科学中的应用13、固态组合化学及其在材料科学中的应用14、核辐射技术及其在材料科学领域的应用15、分形论在材料科学中的应用16、材料科学与工程专业实验教学的改革17、材料科学与工程实践教学体系的建立与实施18、仿地成岩的新一代胶凝材料——凝石——自然科学、材料科学与循环经济的新焦点19、无机新材料研究与材料科学20、材料科学与工程导论课程双语教学实践初探二、材料科学毕业论文题目推荐:1、试论材料科学与工程的内涵与研究方法2、材料科学中的介电谱技术3、材料科学与工程课程实验教学改革思路4、基于材料科学和材料加工有机结合的新型实验课程体系5、材料科学与工程专业实验教学体系的改革6、材料科学的一个新生长点——生态材料学7、体视学在材料科学研究中的进展与展望8、材料科学:材料实验——管线钢落锤撕裂试验方法的建立、应用及发展9、复合材料科学与工程10、材料科学专业研究应用型人才培养模式的改革与探索11、金相学史话(6):电子显微镜在材料科学中的应用12、材料科学与工程专业实践教学环节的现状与对策13、X射线吸收精细结构谱在材料科学中的应用14、电子理论在材料科学中的应用15、“材料科学基础”课程的教学改革与实践16、材料科学与工程学院课程教学团队建设的措施与成效17、计算机在材料科学中的应用18、材料科学中的计算机模拟19、材料科学数据库的发展现状20、材料科学与工程专业材料概论双语教学探讨三、大学材料科学论文题目大全集:1、智能材料———材料科学发展新趋势2、材料科学与工程专业学生实践创新能力的培养3、材料科学与工程专业教学改革与发展设想4、材料科学中的分子动力学模拟研究进展5、三维原子探针及其在材料科学研究中的应用6、计算机模拟技术在材料科学中的应用7、二十一世纪初的材料科学技术8、材料科学数据库的研究现状及其发展趋势9、材料科学与工程虚拟仿真实验教学中心的建设10、分子模拟软件CERIUS2及其在材料科学中的应用11、材料科学与工程专业本科生生产实习的改革与实践12、人工神经网络在材料科学研究中的应用13、材料科学基础的教学改革与实践14、美国和欧洲的材料科学与工程教育(一)15、人工神经网络在材料科学中的应用与展望16、材料科学与工程专业的实践教学改革与实践17、研究型教学在“材料科学基础”课程的实践与思考18、应用型本科《材料科学基础》课程建设与改革19、面向未来的材料科学与工程专业教学改革与实践20、材料科学基础课程教学改革与实践四、最新材料科学论文选题参考:1、磁控溅射技术及其在材料科学中的应用2、材料科学与工程专业教学平台实验室综合实验课程改革初探3、发展生物质材料与生物质材料科学4、扫描电子显微镜及其在材料科学中的应用5、分子动力学模拟及其在材料科学中的应用6、材料科学与工程实验教学示范中心建设的思考与实践7、纳米材料科学中的谱学研究8、现代球墨铸铁的诞生、应用及技术发展趋势--20世纪材料科学最重大的技术进展之一9、电子背散射衍射在材料科学研究中的应用10、材料科学与工程实验教学中心的改革与实践11、材料科学与工程专业的课程体系和实验教学体系建设12、面向21世纪的材料科学与工程本科教育13、选择合适审稿人提高刊物学术质量--《武汉理工大学学报-材料科学版》(英文版)遴选审稿人的体会14、材料科学中的分形15、材料科学与工程专业应用型人才培养的思考16、材料科学与工程专业平台实验室建设与管理17、材料化学课程的内容设置及其与材料科学的关系18、《材料科学基础》综合设计型实验教学的探索19、材料科学中的分形理论应用进展20、材料科学技术的生长点五、大学生优秀材料科学论文题目:1、溶胶—凝胶工艺在材料科学中的应用2、材料科学与工程专业实验课程体系的改革3、第一原理方法在材料科学中的应用4、多孔材料引论——材料科学与工程系列5、跨世纪材料科学技术的若干热点问题6、跨世纪材料科学技术的若干热点问题(摘要)7、跨世纪材料科学技术的若干热点问题8、均恒强磁场在材料科学中的应用9、大材料专业“材料科学基础”课程的教改认识与实践10、固体力学与材料科学交缘的几个新课题11、现代扫描电镜的发展及其在材料科学中的应用12、论材料科学的理论基础13、材料科学中的点击化学14、分形理论及其在材料科学中的应用15、稳恒强磁场技术的发展及其在材料科学中的应用16、纳米压痕技术在材料科学中的应用17、电子背散射衍射技术及其在材料科学中的应用18、基于ESI数据库的材料科学领域文献计量分析研究19、非线性光学晶体材料科学20、光化学基本原理与光子学材料科学

1. 溶胶-凝胶法制备纳米材料研究进展2. 电子显微镜在纳米材料研究中的应用3. SPM与纳米材料组装研究进展4. 稀土发光纳米材料的研究进展5. II-VI族纳米材料研究进展6. 纳米材料在生命科学中的应用研究进展7. III-V族纳米材料研究进展8. 仿生技术与纳米材料研究进展9. 纳米机器人研究进展10. 纳米技术与国防安全11. 纳米科技中的伦理学研究进展12. 纳米技术与军事现代化研究进展13. 水热法在纳米科技中的应用14. 激光拉曼光谱在纳米材料分析中的研究进展15. 纳米材料粒度分析研究进展16. 纳米蓄能材料研究进展17. 锂离子电池纳米材料研究进展18. 染料敏化太阳能电池用纳米材料研究进展19. 纳米科技人才的培养与需求现状

材料科技前沿研究论文

高分子材料作为一种重要的材料, 经过约半个世纪的发展巳在各个工业领域中发挥了巨大的作用。下文是我为大家整理的有关高分子材料毕业论文的范文,欢迎大家阅读参考! 有关高分子材料毕业论文篇1 浅析高分子材料成型加工技术. 【摘要】高分子材料成型加工技术在工业上取得的飞速发展,介绍高分子材料成型加工技术的发展情况,探讨其创新研究,并详细阐述高分子材料成型加工技术的发展趋势。 【关键词】高分子材料;成型加工;技术 近年来,某些特殊领域如航空工业、国防尖端工业等领域的发展对聚合物材料的性能提出了更高的要求,如高强度、高模量、轻质等,各种特定要求的高强度聚合物的开发研制越来越显迫切。 一、高分子材料成型加工技术发展概况 近50年来,高分子合成工业取得了很大的进展。例如,造粒用挤出机的结构有了很大的改进,产量有了极大的提高。20世纪60年代主要采用单螺杆挤出机造粒,产量约为3t/h;70年代至80年代中期,采用连续混炼机+单螺杆挤出机造粒,产量约为10t/h;80年代中期以来。采用双螺杆挤出机+齿轮泵造粒,产量可以达到40-45t/h,今后的发展方向是产量可高达60t/h。 在l950年,全世界塑料的年产量为200万t。20世纪90年代。塑料产量的年均增长率为,2000年增加至亿t至2010年,全世界塑料产量将达3亿t,此外。合成工业的新近避震使得易于璃确控制树脂的分子结构,加速采用大规模进行低成本的生产。随着汽车工业的发展,节能、高速、美观、环保、乘坐舒适及安全可靠等要求对汽车越来越重要.汽车规模的不断扩大和性能的提高带动了零部件及相关材料工业的发展。为降低整车成本及其自身增加汽车的有效载荷,提高塑料类材料在汽车中的使用量便成为关键。 据悉,目前汽车上100kg的塑料件可取代原先需要100-300kg的传统汽车材料(如钢铁等)。因此,汽车中越来越多的金属件由塑料件代替。此外,汽车中约90%的零部件均需依靠模具成型,例如制造一款普通轿车就需要制造1200多套模具,在美国、日本等汽车制造业发达的国家,模具产业超过50%的产品是汽车用模具。 目前,高分子材料加工的主要目标是高生产率、高性能、低成本和快捷交货。制品方面向小尺寸、薄壁、轻质方向发展;成型加工方面,从大规模向较短研发周期的多品种转变,并向低能耗、全回收、零排放等方向发展。 二、现今高分子材料成型加工技术的创新研究 (一)聚合物动态反应加工技术及设备 聚合物反应加工技术是以现双螺杆挤出机为基础发展起来的。国外的Berstart公司已开发出作为连续反应和混炼的十螺杆挤出机,可以解决其它挤出机(包括双螺杆和四螺杆挤出机)作为反应器所存在的问题。国内反应成型加工技术的研究开发还处于起步阶段,但我国的经济发展强烈要求聚合物反应成型加工技术要有大的发展。指交换法聚碳酸酯(PC)连续化生产和尼龙生产中的比较关键的技术是缩聚反应器的反应挤出设备,我国每年还有数以千万吨计的改性聚合物及其合金材料的生产。关键技术也是反应挤出技术及设备。 目前国内外使用的反应加工设备从原理上看都是传统混合、混炼设备的改造产品,都存在传热、传质过程、混炼过程、化学反应过程难以控制、反应产物分子量及其分布不可控等问题.另外设备投资费用大、能耗高、噪音大、密封困难等也都是传统反应加工设备的缺陷。聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的。 该技术首先从理论上突破了控制聚合物单体或预聚物混合混炼过程及停留时间分布不可控制的难点,解决了振动力场作用下聚合物反应加工过程中的质量、动量及能量传递及平衡问题,同时从技术上解决了设备结构集成化问题。新设备具有体积重量小、能耗低、噪音低、制品性能可控、适应性好、可靠性高等优点,这些优点是传统技术与设备无法比拟或是根本没有的。该项新技术使我国聚合物反应加工技术直接切人世界技术前沿,并在该领域处于技术领先地位。 (二)以动态反应加工设备为基础的新材料制备新技术 1.信息存储光盘盘基直接合成反应成型技术。此技术克服传统方式的中间环节多、周期长、能耗大、储运过程易受污染、成型前处理复杂等问题,将光盘级PC树脂生产、中间储运和光盘盘基成型三个过程整合为一体,结合动态连续反应成型技术,研究酯交换连续化生产技术,研制开发精密光盘注射成型装备,达到节能降耗、有效控制产品质量的目的。 2.聚合物/无机物复合材料物理场强化制备新技术。此技术在强振动剪切力场作用下对无机粒子表面特性及其功能设计(粒子设计),在设计好的连续加工环境和不加或少加其它化学改性剂的情况下,利用聚合物使无机粒子进行原位表面改性、原位包覆、强制分散,实现连续化制备聚合物/无机物复合材料。 3.热塑性弹性体动态全硫化制备技术。此技术将振动力场引入混炼挤出全过程,控制硫化反直进程,实现混炼过程中橡胶相动态全硫化.解决共混加工过程共混物相态反转问题。研制开发出拥有自主知识产权的热塑性弹性体动态硫化技术与设备,提高我国TPV技术水平。 三、高分子材料成型加工技术的发展趋势 近年来,各个新型成型装备国家工程研究中心在出色完成了国家级火炬计划预备项目和国家“八五”、“九五”重点科技计划(攻关)等项目同时,非常注重科技成果转化与产业化,完成产业化工程配套项目20多项,创办了广州华新科机械有限公司和北京华新科塑料机械有限公司,使其有自主知识产权的新技术与装备在国内外推广应用。塑料电磁动态塑化挤出设备已形成了7个规格系列,近两年在国内20多个省、市、自治区推广应用近800台(套)。销售额超过亿元,还有部分新设备销往荷兰、泰国、孟加拉等国家.产生了良好的经济效益和社会效益。 例如PE电磁动态发泡片材生产线2000年和2001年仅在广东即为国家节约外汇近1600万美元,每条生产线一年可为制品厂节约21万k的电费。塑料电磁动态注塑机已开发完善5个规格系列,投入批量生产并推向市场;塑料电磁动态混炼挤出机的中试及产业化工作已完成,目前开发完善的4个规格正在生产试用。并逐步推向市场目前新设备的市场需求情况很好,聚合物新型成型装备国家工程研究中心正在对广州华新科机械有限公司进行重组。将技术与资本结合,引入新的管理、市场等机制,争取在两三年内实现新设备年销售额超亿。我国已加入WTO,各个行业都将面临严峻挑战。 综上所述,我国必须走具有中国特色的发展高分子材料成型加工技技术与装备的道路,打破国外的技术封锁,实现由跟踪向跨越的转变;把握技术前沿,培育自主知识产权。促进科学研究与产业界的结合,加快成果转化为生产力的进程,加快我国高分子材料成型加工高新技术及其产业的发展是必由之路。 参考文献: [1]Chris Rauwendaal,Polymer Extrusion,Carl Hanser Verlag,Munich/FkG,l999. [2]瞿金平,聚合物动态塑化成型加工理论与技术[M].北京:科学出版社,2005 427435. [3]瞿金平,聚合物电磁动态塑化挤出方法及设备[J].中国专利,I990;美国专利5217302,1993. 有关高分子材料毕业论文篇2 浅论高分子材料的发展前景 摘要:随着生产和科技的发展,以及人们对知识的追求,对高分子材料的性能提出了各种各样新的要求。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。本文主要分析了高分子材料的发展前景和发展趋势。 关键词:高分子材料;发展;前景 一 高分子材料的发展现状与趋势 高分子材料作为一种重要的材料, 经过约半个世纪的发展巳在各个工业领域中发挥了巨大的作用。从高分子材料与国民经济、高技术和现代生活密切相关的角度说, 人类已进人了高分子时代。高分子材料工业不仅要为工农业生产和人们的衣食住行用等不断提供许多量大面广、日新月异的新产品和新材料又要为发展高技术提供更多更有效的高性能结构材料和功能性材料。 鉴于此, 我国高分子材料应在进一步开发通用高分子材料品种、提高技术水平、扩大生产以满足市场需要的基础上重点发展五个方向:工程塑料,复合材料,液晶高分子材料,高分子分离材料,生物医用高分子材料。近年来,随着电气、电子、信息、汽车、航空、航天、海洋开发等尖端技术领域的发展和为了适应这一发展的需要并健进其进? 步的发展, 高分子材料在不断向高功能化高性能化转变方面日趋活跃,并取得了重大突破。 二 高分子材料各领域的应用 1高分子材料在机械工业中的应用 高分子材料在机械工业中的应用越来越广泛, “ 以塑代钢” ,“ 塑代铁” 成为目前材料科学研究的热门和重点。这类研究拓宽了材料选用范围,使机械产品从传统的安全笨重、高消耗向安全轻便、耐用和经济转变。如聚氨酉旨弹性体,聚氨醋弹性体的耐磨性尤为突出, 在某些有机溶剂 如煤油、砂浆混合液中, 其磨耗低于其它材料。聚氨醋弹性体可制成浮选机叶轮、盖板, 广泛使用在工况条件为磨粒磨损的浮选机械上。又如聚甲醛材料聚甲醛具有突出的耐磨性, 对金属的同比磨耗量比尼龙小, 用聚四氟乙烯、机油、二硫化钥、化学润滑等改性, 其摩擦系数和磨耗量更小, 由于其良好的机械性能和耐磨性, 聚甲醛大量用于制造各种齿轮、轴承、凸轮、螺母、各种泵体以及导轨等机械设备的结构零部件。在汽车行业大量代替锌、铜、铝等有色金属, 还能取代铸铁和钢冲压件。 2 高分子材料在燃料电池中的应用 高分子电解质膜的厚度会对电池性能产生很大的影响, 减薄膜的厚度可大幅度降低电池内阻, 获得大的功率输出。全氟磺酸质子交换 膜的大分子主链骨架结构有很好的机械强度和化学耐久性, 氟素化合物具有僧水特性, 水容易排出, 但是电池运转时保水率降低, 又要影响电解质膜的导电性, 所以要对反应气体进行增湿处理。高分子电解质膜的加湿技术, 保证了膜的优良导电性, 也带来电池尺寸变大增大左右、系统复杂化以及低温环境下水的管理等问题。现在一批新的高分子材料如增强型全氟磺酸型高分子质子交换膜耐高温芳杂环磺酸基高分子电解质膜纳米级碳纤维材料新的一导电高分子材料等等, 已经得到研究工作者的关注。 3 高分子材料在现代农业种子处理中的应用及发展 高分子材料在现代农业种子处理中的应用:新一代种子化学处理一般可分为物理包裹利用干型和湿形高分子成膜剂, 包裹种子。种子表面包膜利用高分子成膜剂将农用药物和其他成分涂膜在种子表面。种子物理造粒将种子和其他高分子材料混和造粒, 以改善种子外观和形状, 便于机械播种。高分子材料在现代农业种子处理中研究开发进展:种子处理用高分子材料已经从石油型高分子材料逐步向天然型以及功能型高分子材料的方向发展。其中较为常见和重要的高分子材料类型包括多糖类天然高分子材料, 具有在低温情况下维持较好膜性能的高分子材料, 高吸水性材料, 温敏材料, 以及综合利用天然生物资源开发的天然高分子材料等, 其中利用可持续生物资源并发的种衣剂尤为引人关注。 4 高分子材料在智能隐身技术中的应用 智能隐身材料是伴随着智能材料的发展和装备隐身需求而发展起来的一种功能材料,它是一种对外界信号具有感知功能、信息处理功能。自动调节自身电磁特性功能、自我指令并对信号作出最佳响应功能的材料/系统。区别于传统的外加式隐身和内在式雷达波隐身思路设计,为隐身材料的发展和设计提供了崭新的思路,是隐身技术发展的必然趋势 ,高分子聚合物材料以其可在微观体系即分子水平上对材料进行设计、通过化学键、氢键等组装而成具有多种智能特性而成为智能隐身领域的一个重要发展方向。 三 高分子材料的发展前景 1高性能化 进一步提高耐高温,耐磨性,耐老化,耐腐蚀性及高的机械强度等方面是高分子材料发展的重要方向,这对于航空、航天、电子信息技术、汽车工业、家用电器领域都有极其重要的作用。高分子材料高性能化的发展趋势主要有创造新的高分子聚合物,通过改变催化剂和催化体系,合成工艺及共聚,共混及交联等对高分子进行改性,通过新的加工方法改变聚合物的聚集态结构,通过微观复合方法,对高分子材料进行改性。 2高功能化 功能高分子材料是材料领域最具活力的新领域,目前已研究出了各种各样新功能的高分子材料,如可以像金属一样导热导电的高聚物,能吸收自重几千倍的高吸水性树脂,可以作为人造器官的医用高分子材料等。鉴于以上发展,高分子吸水性材料、光致抗蚀性材料、高分子分离膜、高分子催化剂等都是功能高分子的研究方向。 3复合化 复合材料可克服单一材料的缺点和不足,发挥不同材料的优点,扩大高分子材料的应用范围,提高经济效益。高性能的结构复合材料是新材料革命的一个重要方向,目前主要用于航空航天、造船、海洋工程等方面,今后复合材料的研究方向主要有高性能、高模量的纤维增强材料的研究与开发,合成具有高强度,优良成型加工性能和优良耐热性的基体树脂,界面性能,粘结性能的提高及评价技术的改进等方面。 4智能化 高分子材料的智能化是一项具有挑战性的重大课题,智能材料是使材料本身带有生物所具有的高级智能,例如预知预告性,自我诊断,自我修复,自我识别能力等特性,对环境的变化可以做出合乎要求的解答;根根据人体的状态,控制和调节药剂释放的微胶囊材料,根据生物体生长或愈合的情况或继续生长或发生分解的人造血管人工骨等医用材料。由功能材料到智能材料是材料科学的又一次飞跃,它是新材料,分子原子级工程技术、生物技术和人 工智能诸多学科相互融合的一个产物。 5绿色化 虽然高分子材料对我们的日常生活起了很大的促进作用,但是高分子材料带来的污染我们仍然不能小视。那些从生产到使用能节约能源与资源,废弃物排放少,对环境污染小,又能循环利用的高分子材料备受关注,即要求高分子材料生产的绿色化。主要有以下几个研究方向,开发原子经济的聚合反应,选用无毒无害的原料,利用可再生资源合成高分子材料,高分子材料的再循环利用。 四 结束语 高分子材料为我国的经济建设做出了重要的贡献,我国已建立了较完善的高分子材料的研究、开发和生产体系,我国虽然在高分在材料的开发和综合利用方面起步较晚,但目前来看也取得了不错的进步,我们应提高其整体技术水平,致力于创新的高分在聚合反应和方法,开发出多种绿色功能材料和智能材料,以提高人类的生活质量,并满足各项工业和新技术的需求。 参考文献: [1]金关泰.《高分子化学的理论和应用》,中国石化出版社,1997 [2]李善君 纪才圭等.《高分子光化学原理及应用》复旦大学出版社2003 6. [3]李克友, 张菊华, 向福如. 《高分子合成原理及工艺学》,科学出版社,1999 猜你喜欢: 1. 全国高分子材料学术论文报告 2. 全国高分子材料学术论文 3. 全国高分子材料学术论文 4. 全国高分子材料学术论文报告 5. 关于材料学方面论文

材料学是学生接触材料领域、定位未来方向的入门课程,学习和掌握该课程内容意义至关重要。下文是我为大家整理的材料学方面论文的 范文 ,欢迎大家阅读参考!

浅析高分子材料成型加工技术

摘要:近些年来,国防尖端工业和航空工业等特殊领域的发展对高分子材料成型的加工技术要求更高,更精细。在此背景下,理清高分子材料加工技术的发展现状与发展趋势,探讨高分子材料的加工成型的 方法 ,对促进我国高新技术及产业的发展具有重要的意义。

关键词:高分子材料加工方法成型技术

一、前言

近些年来,国防尖端工业和航空工业等特殊领域的发展要求更高性能的聚合物材料,开发研制满足特定要求的高聚合物迫在眉睫[1]。在此背景下,理清高分子材料加工技术的发展现状与发展趋势,探讨高分子材料的加工成型的方法,对促进我国高新技术及产业的发展具有重要的意义。

二、高分子材料成型成型加工技术的相关定义

1.高分子材料

高分子材料是指由相对分子质量较高的化合物为基础构成的材料,其一般基本成分是聚合物或以含有聚合物的性质为主要性能特征的材料;主要是橡胶、塑料、纤维、涂料、胶黏剂和高分子基复合材料。高分子材料独特的结构和易改性与易加工特点,使它具有其他材料不可取代与不可比拟的优异性能,从而广泛运用到科学技术、国防建设和国民经济等领域,并已成为现代社会生活中衣食住行用等各方面不可缺少的材料。

2.高分子材料成型加工技术

在高分子工业的生产中分为高分子材料的制备与加工成型两个过程。高分子材料的成型加工技术就是运用各种加工方法对高分子材料赋予形状,使其成为具有使用价值的各种制品。高分子材料加工主要目的是高性能、高生产率、快捷交货和低成本;向小尺寸、轻质与薄壁方向发展是高分子材料成型技术制品方面的目标;成型加工方向是全回收、零排放、低能耗,从大规模向较短研发周期的多品种转变。判断高分子材料的成型加工技术的质量因素是加工后制品的外观性、尺寸精度、技能性中的耐化学性、耐热性等等。

三、高分子材料成型加工技术的方法

高分子材料的的成型方法有挤出成型、吹塑成型、注塑成型、压延成型、激光成型等。以下介绍的是现今高分子材料成型加工的主要技术方法。

1.挤出成型技术

挤出成型技术是指物料通过挤出机料筒和螺杆间的作用,边受热塑化,边被螺杆向前推送,连续通过机头而制成各种截面制品或半制品的一种加工方法。它的具体原理是高分子原材料自料斗进入料筒,在螺杆旋转作用下,通过料筒内壁和螺杆表面摩擦剪切作用向前输送到加料段,在此松散固体向前输送同时被压实;在压缩段,螺槽深度变浅,进一步压实,同时在料筒外加热和螺杆与料筒内壁摩擦剪切作用,料温升高开始熔融,压缩段结束;均化段使物料均匀,定温、定量、定压挤出熔体,到机头后成型,经定型得到制品。挤出成型又有共挤出技术、挤出注射组合技术、成型技术、反应挤出工艺与固态挤出工艺等。

2.注塑成型技术

注射成型技术是目前塑料加工中最普遍的采用的方法之一,可用来生产空间几何形状非常复杂的塑料制件[2]。注射成型技术根据组合材料的特征,又有以组合惰性气体为特征的气体辅助注射成型,以组合组成化学反应过程为特征的反应注射成型,以组合混合混配为特征的直接注射成型,以组合不同材料为特征的夹心成型等多种方法。

3.吹塑成型技术

吹塑技术一种发展迅速的塑料加工方法。热塑性树脂经挤出或注射成型得到的管状塑料型坯,趁热或加热到软化状态,置于对开模中,闭模后立即在型坯内通入压缩空气,使塑料型坯吹胀而紧贴在模具内壁上,经冷却脱模,即得到各种中空制品。根据型坯制作方法,吹塑可分为挤出吹塑和注射吹塑,新发展起来的有拉伸吹塑和多层吹塑。

四、高分子材料成型加工技术的发展新趋势

目前,高分子加工成型技术正在快速地进步,它的发展总方向是高度集成化、高度产量、高度精密化,不断实现对加工制品材料的聚集态、组织形态与相形态等的控制,最大程度地达到制品高性能的目的。具体的创新技术之处主要体现在以下几项新技术上。

1.聚合物动态反应加工技术

聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的[3]。这项技术解决振动力场下聚合反应加工过程中质量、动量和能量传递与平衡的难点,从技术上解决了设备结构集化的问题。

2.热塑性弹性体动态全硫化制备技术

这项技术引入振动立场到混炼挤出的全过程,实现混炼过程中橡胶相动态全硫化,控制硫化反直的进程,防止共混加工过程共混物相态发生发转。此技术非常有意义,研制发明出新的热塑性弹性体动态硫化技术与设备,能有效地提高我国TPV技术的水平。

3.信息存储光盘盘基直接合成反应成型技术

此技术是将盘级PC树脂生产、中间储运与光盘盘基成型三个过程融合为一体,联系动态连续反应成型技术,研制开发精密光盘注射成型装备,达到有效提高产品质量、节约能源,降低消耗的目的。该技术避免了传统方式中间环节多、能耗大、周期时间长、成型前处理复杂、储运过程易受污染等缺陷。

五、结语

综上所述,我国在新时期要把握高分子成型加工技术的前沿,注重培育自主的知识产权,努力打破国外技术的垄断,实现科学技术研究与产业界的良好结合的目的。这能有效地将科学研究成果转化为实际的生产力,有效地加快我国高分子材料成型加工技术及其相关产业的快速发展。

参考文献

[1] 王云飞;孙伟.浅谈高分子材料成型加工技术[J].城市建设理论研究,2012,(11): 32.

[2] 甄延波.高分子材料成型加工技术的进展[J].化工中间体,2012,(09): 25.

[3]黄贵禹.浅析高分子材料成型加工技术[J].东方 企业 文化 ,2011,(16): 97.

浅析高分子材料成型

摘要:我国的高分子材料成型技术在工业上取得了飞速的发展,本文主要阐述了高分子材料成型的原理以及高分子材料成型的加工技术。

关键词:高分子材料;成型;技术

一、前言

高分子材料是指以高分子化合物为基体组分的材料。高分子材料按来源可分为天然高分子材料、合成高分子材料;按化学组成分类可分为有机高分子材料、无机高分子材料;按性能可分为通用高分子材料、新型高分子材料。高分子材料比传统材料发展迅速的主要原因是原料丰富、制造方便、加工容易、品种繁多、形态多样、性能优异以及在生产和应用领域中所需的投资低,经济效益比较显著。高分子反应加工分为反应挤出和反应注射成型两个部分,目前我国普遍采用的设备包括螺杆挤出机和螺杆注射机。现阶段,我国的高分子材料成型也取得了较好的成绩。

二、高分子材料成型的原理

高分子材料的合成和制备一般都是由几个化工单元操作组成的,高分子反应加工把多个单元操作熔为一体,有关能量的传递和平衡,物料的输运和平衡问题,与一般单个化工单元操作完全不同。传统聚合过程解决传热和传质问题主要是利用溶剂和缓慢反应来进行的,但是在聚合反应加工过程中,物料的温度在数分钟内就能达到400℃~800℃,此时对于反应过程中产生的热,如果不能进行脱除的话,那么降解和炭化将会发生在物料中。传统的加工过程是通过设备给聚合物加热,而需要快速将聚合生成的热量通过设备移去是聚合反应加工所进行的,由此可见,必须从化学和热物理两个方面开展相应的基础研究。

高分子材料的物理机械性能、热性能、加工性能等均取决于其化学结构、分子结构和凝聚态的形态结构,而加工工艺与高分子材料的形态结构关系是非常密切的。

流变学,指从应力、应变、温度和时间等方面来研究物质变形和(或)流动的物理力学。它是力学的一个新分支,它主要研究物理材料在应力、应变、温度湿度、辐射等条件下与时间因素有关的变形和流动的规律。高分子材料成型加工成制备的理论基础是高分子材料流变学。高分子材料的自身的规律和特点是伴随化学反应的高分子材料的流变性质而产生的。

三、高分子材料成型的加工技术

(一)聚合物动态反应加工技术及设备

目前国外已经研发出可以解决其他挤出机作为反应器所存在的问题,即连续反应和混炼的十螺杆挤出机。在我国高分子材料成型加工工业的发展中占有极其重要的地位,但是我国的高分子材料成型的加工技术的开发目前还处于初步阶段。缩聚反应器的反应挤出设备就是指交换法聚碳酸酯连续化生产和尼龙生产中的比较关键的技术,除此之外,我国每年还有数以千万吨的改性聚合物生产,反应挤出技术及设备也是其关键技术。

采用传统的加工设备存在一些问题,例如传热、化学反应过程难以控制等,另外投资费用大、噪音大等问题。无论是在反应加工原理还是设备的结构上,聚合物动态反应加工技术及设备与传统技术都完全不同,将聚合物反应挤出全过程引入到电磁场引起的机械振动场,从而达到控制化学反应过程、反应制品的物理化学性能以及反应生产物的凝聚态结构的目的,这就是聚合物动态反应加工技术及设备。高分子材料成型加工是高能耗过程作业,无论是挤出、注射还是中空吹塑成型塑料原理都必须经过熔融塑化及输送这一基本和共性的过程,目前普遍采用的设备包括螺杆挤出机和螺杆注射机等。该技术使得控制聚合物单体及停留时间分布不可控的问题得到了解决,而且也使得振动立场作用下聚合物反应加工过程中的质量、动量以及能量传递和平衡问题得到了解决,同时也使得设备结构集成化问题得到了解决。新设备的优点很多,例如:体积重量小、适应性好、噪音低、可靠性高等等,而这些技术是传统技术和设备是比不了的。

(二)以动态反应加工设备为基础的新材料制备新技术

此技术的研究实现,加强了我国在该领域内的发言权。以动态反应技术为基础方向,进行深入的研究,从而产生了新的材料制备技术。我们以存储光盘盘基为基础原型,以反应成型技术直接作用于其上。通过对这些技术的研究改进,改变了传统技术中多环节、消耗大、复杂度高、周期长、而且环境污染比较严重等诸多不利因素。通过学习研究,可以把制作光盘的PC树脂原料工业、中途存放、盘基成型工业串联于一体,提高了工业生产效率、减少了资源浪费、能够完全有效的进行控制,而且产品的质量有大幅度的提高。

聚合物/无机物复合材料物理场强化制备新技术。研究表明,对无粒子进行适当的处理,可以得到一些好的效果,比如说利用聚合物进行原位表面改性处理、原位包覆、强制分散等处理后,就可以使我们复合材料成型。

热塑性弹性体动态全硫化制备技术。此技术将混炼引入到振动力场挤出全过程,为实现混炼过程中橡胶相动态全硫化,对硫化反直进程进行控制,从而使得共混加工过程共混物相态反转问题得到了解决。实现自主知识产权的热塑性弹性体动态硫化技术与设备研制开发出来,促进我国TPV技术水平的提高。

四、结语

我国必须根据自身的实际情况来发展高分子材料成型加工技术及设备,把握技术前沿,不断地培育自主知识产权,从而使得我国高分子材料成型技术及其产业发展不断加快。

参考文献:

[1] 黄汉雄. 高分子材料成型加工装备及技术的进展、趋势与对策(下)[J]. 橡塑技术与装备, 2006, (06) :13-18

[2] 黄汉雄. 高分子材料成型加工装备及技术的进展、趋势与对策(上)[J]. 橡塑技术与装备, 2006, (05) :17-27

[3] 王玉东, 付鹏, 李晓光, 赵清香, 刘民英. 尼龙612等温结晶的球晶形态与生成条件[J]. 高分子材料科学与工程, 2009, (09):76-79

[4] 吴刚. 高分子材料成型加工技术的进展[J]. 广东化工, 2008, (09) :8-12

纳米材料技术作为一门高新科学技术,纳米技术具有极大的价值和作用。下面我给大家分享一些纳米材料与技术3000字论文, 希望能对大家有所帮助!纳米材料与技术3000字论文篇一:《试谈纳米复合材料技术发展及前景》 [摘要]纳米材料是指材料显微结构中至少有一相的一维尺度在100nm以内的材料。纳米材料由于平均粒径微小、表面原子多、比表面积大、表面能高,因而其性质显示出独特的小尺寸效应、表面效应等特性,具有许多常规材料不可能具有的性能。纳米材料由于其超凡的特性,引起了人们越来越广泛的关注,不少学者认为纳米材料将是21世纪最有前途的材料之一,纳米技术将成为21世纪的主导技术。 [关键词]高聚物纳米复合材料 一、 纳米材料的特性 当材料的尺寸进入纳米级,材料便会出现以下奇异的物理性能: 1、尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或投射深度等物理特征尺寸相当或更小时,晶体的边界条件将被破坏,非晶态纳米微粒的颗粒表面附近原子密度减小,导致声、光电、磁、热、力学等特性呈现出新的小尺寸效应。如当颗粒的粒径降到纳米级时,材料的磁性就会发生很大变化,如一般铁的矫顽力约为80A/m,而直径小于20nm的铁,其矫顽力却增加了1000倍。若将纳米粒子添加到聚合物中,不但可以改善聚合物的力学性能,甚至还可以赋予其新性能。 2、表面效应 一般随着微粒尺寸的减小,微粒中表面原子与原子总数之比将会增加,表面积也将会增大,从而引起材料性能的变化,这就是纳米粒子的表面效应。 纳米微粒尺寸d(nm) 包含总原子表面原子所占比例(%)103×1042044××1028013099从表1中可以看出,随着纳米粒子粒径的减小,表面原子所占比例急剧增加。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,很容易与 其它 原子结合。若将纳米粒子添加到高聚物中,这些具有不饱和性质的表面原子就很容易同高聚物分子链段发生物理化学作用。 3、量子隧道效应 微观粒子贯穿势垒的能力称为隧道效应。纳米粒子的磁化强度等也具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,这称为纳米粒子的宏观量子隧道效应。它的研究对基础研究及实际 应用,如导电、导磁高聚物、微波吸收高聚物等,都具有重要意义。 二、高聚物/纳米复合材料的技术进展 对于高聚物/纳米复合材料的研究十分广泛,按纳米粒子种类的不同可把高聚物/纳米复合材料分为以下几类: 1、高聚物/粘土纳米复合材料 由于层状无机物在一定驱动力作用下能碎裂成纳米尺寸的结构微区,其片层间距一般为纳米级,它不仅可让聚合物嵌入夹层,形成“嵌入纳米复合材料”,还可使片层均匀分散于聚合物中形成“层离纳米复合材料”。其中粘土易与有机阳离子发生交换反应,具有的亲油性甚至可引入与聚合物发生反应的官能团来提高其粘结。其制备的技术有插层法和剥离法,插层法是预先对粘土片层间进行插层处理后,制成“嵌入纳米复合材料”,而剥离法则是采用一些手段对粘土片层直接进行剥离,形成“层离纳米复合材料”。 2、高聚物/刚性纳米粒子复合材料 用刚性纳米粒子对力学性能有一定脆性的聚合物增韧是改善其力学性能的另一种可行性 方法 。随着无机粒子微细化技术和粒子表面处理技术的 发展 ,特别是近年来纳米级无机粒子的出现,塑料的增韧彻底冲破了以往在塑料中加入橡胶类弹性体的做法。采用纳米刚性粒子填充不仅会使韧性、强度得到提高,而且其性价比也将是不能比拟的。 3、高聚物/碳纳米管复合材料 碳纳米管于1991年由 发现,其直径比碳纤维小数千倍,其主要用途之一是作为聚合物复合材料的增强材料。 碳纳米管的力学性能相当突出。现已测出碳纳米管的强度实验值为30-50GPa。尽管碳纳米管的强度高,脆性却不象碳纤维那样高。碳纤维在约1%变形时就会断裂,而碳纳米管要到约18%变形时才断裂。碳纳米管的层间剪切强度高达500MPa,比传统碳纤维增强环氧树脂复合材料高一个数量级。 在电性能方面,碳纳米管作聚合物的填料具有独特的优势。加入少量碳纳米管即可大幅度提高材料的导电性。与以往为提高导电性而向树脂中加入的碳黑相比,碳纳米管有高的长径比,因此其体积含量可比球状碳黑减少很多。同时,由于纳米管的本身长度极短而且柔曲性好,填入聚合物基体时不会断裂,因而能保持其高长径比。爱尔兰都柏林Trinity学院进行的研究表明,在塑料中含2%-3%的多壁碳纳米管使电导率提高了14个数量级,从10-12s/m提高到了102s/m。 三、前景与展望 在高聚物/纳米复合材料的研究中存在的主要问题是:高聚物与纳米材料的分散缺乏专业设备,用传统的设备往往不能使纳米粒子很好的分散,同时高聚物表面处理还不够理想。我国纳米材料研究起步虽晚但 发展 很快,对于有些方面的研究 工作与国外相比还处于较先进水平。如:漆宗能等对聚合物基粘土纳米复合材料的研究;黄锐等利用刚性粒子对聚合物改性的研究都在学术界很有影响;另外,四川大学高分子 科学 与工程国家重点实验室发明的磨盘法、超声波法制备聚合物基纳米复合材料也是一种很有前景的手段。尽管如此,在总体水平上我国与先进国家相比尚有一定差距。但无可否认,纳米材料由于独特的性能,使其在增强聚合物 应用中有着广泛的前景,纳米材料的应用对开发研究高性能聚合物复合材料有重大意义。特别是随着廉价纳米材料不断开发应用,粒子表面处理技术的不断进步,纳米材料增强、增韧聚合物机理的研究不断完善,纳米材料改性的聚合物将逐步向 工业 化方向发展,其应用前景会更加诱人。 参考 文献 : [1] 李见主编.新型材料导论.北京:冶金工业出版社,1987. [2]都有为.第三期工程科技 论坛 ——‘纳米材料与技术’ 报告 会. [3]rohlich J,Kautz H,Thomann R[J].Polymer,2004,45(7):2155-2164. 纳米材料与技术3000字论文篇二:《试论纳米技术在新型包装材料中的应用》 【摘 要】作为一门高新科学技术,纳米技术具有极大的价值和作用。进入20世纪90年代,纳米科学得到迅速的发展,产生了纳米材料学、纳米化工学、纳米机械学及纳米生物学等,由此产生的纳米技术产品也层出不穷,并开始涉及汽车行业。 【关键词】纳米技术 包装材料 1 纳米技术促进了汽车材料技术的发展 纳米技术可应用在汽车的任何部位,包括发动机、底盘、车身、内饰、车胎、传动系统、排气系统等。例如,在汽车车身部分,利用纳米技术可强化钢板结构,提高车体的碰撞安全性。另外,利用纳米涂料烤漆,可使车身外观色泽更为鲜亮、更耐蚀、耐磨。内装部分,利用纳米材料良好的吸附能力、杀菌能力、除臭能力使室内空气更加清洁、安全。在排气系统方面,利用纳米金属做为触媒,具有较高的转换效果。 由于纳米技术具有奇特功效,它在汽车上得到了广泛的应用,提升汽车性能的同时延长使用寿命。 2 现代汽车上的纳米材料 (1)纳米面漆。汽车面漆是对汽车质量的直观评价,它不但决定着汽车的美观与否,而且直接影响着汽车的市场竞争力。所以汽车面漆除要求具有高装饰性外,还要求有优良的耐久性,包括抵抗紫外线、水分、化学物质及酸雨的侵蚀和抗划痕的性能。纳米涂料可以满足上述要求。纳米颗粒分散在有机聚合物骨架中,作承受负载的填料,与骨架材料相互作用,有助于提高材料的韧性和其它机械性能。研究表明,将10%的纳米级TiO2粒子完全分散于树脂中,可提高其机械性能,尤其可使抗划痕性能大大提高,而且外观好,利于制造汽车面漆涂料;将改性纳米CaCO3以质量分数15%加入聚氨酯清漆涂料中,可提高清漆涂料的光泽、流平性、柔韧性及涂层硬度等。 纳米TiO2是一种抗紫外线辐射材料,加之其极微小颗粒的比表面积大,能在涂料干燥时很快形成网络结构,可同时增强涂料的强度、光洁度和抗老化性;以纳米高岭土作填料,制得的聚甲基丙烯酸甲酯纳米复合材料不仅透明,而且吸收紫外线,同时也可提高热稳定性,适合于制造汽车面漆涂料。 (2)纳米塑料。纳米塑料可以改变传统塑料的特性,呈现出优异的物理性能:强度高,耐热性强,比重更小。随着汽车应用塑料数量越来越多,纳米塑料会普遍应用在汽车上。主要有阻燃塑料、增强塑料、抗紫外线老化塑料、抗菌塑料等。阻燃塑料是燃烧时,超细的纳米材料颗粒能覆盖在被燃材料表面并生成一层均匀的碳化层,起到隔热、隔氧、抑烟和防熔滴的作用,从而起到阻燃作用。 目前汽车设计要求规定,凡通过乘客座舱的线路、管路和设备材料必须要符合阻燃标准,例如内饰和电气部分的面板、包裹导线的胶套,包裹线束的波纹管、胶管等,使用阻燃塑料比较容易达到要求。增强塑料是在塑料中填充经表面处理的纳米级无机材料蒙脱土、CaCO3、SiO2等,这些材料对聚丙烯的分子结晶有明显的聚敛作用,可以使聚丙烯等塑料的抗拉强度、抗冲击韧性和弹性模量上升,使塑料的物理性能得到明显改善。 抗紫外线老化塑料是将纳米级的TiO2、ZnO等无机抗紫外线粉体混炼填充到塑料基材中。这些填充粉体对紫外线具有极好的吸收能力和反射能力,因此这种塑料能够吸收和反射紫外线,比普通塑料的抗紫外线能力提高20倍以上。据报道这类材料经过连续700小时热光照射后,其扩张强度损失仅为10%,如果作为暴露在外的车身塑料构件材料,能有效延长其使用寿命。抗菌塑料是将无机的纳米级抗菌剂利用纳米技术充分地分散于塑料制品中,可将附着在塑料上的细菌杀死或抑制生长。这些纳米级抗菌剂是以银、锌、铜等金属离子包裹纳米TiO2、CaCO3等制成,可以破坏细菌生长环境。据介绍无机纳米抗菌塑料加工简单,广谱抗菌,24小时接触杀菌率达90%,无副作用。 (3)纳米润滑剂。纳米润滑剂是采用纳米技术改善润滑油分子结构的纯石油产品,它不会对润滑油添加剂、稳定剂、处理剂、发动机增润剂和减磨剂等产品产生不良作用,只是在零件金属表面自动形成纯烃类单个原子厚度的一层薄膜。由于这些微小烃类分子间的相互吸附作用,能够完全填充金属表面的微孔,最大可能地减小金属与金属间微孔的摩擦。与高级润滑油或固定添加剂相比,其极压可增加3倍-4倍,磨损面减小16倍。由于金属表面得到了保护,减小了磨损,使用寿命成倍增加。 另外,由于纳米粒子尺寸小,经过纳米技术处理的部分材料耐磨性是黄铜的27倍、钢铁的7倍。目前纳米陶瓷轴承已经应用在奔驰等高级轿车上,使机械转速加快、质量减小、稳定性增强,使用寿命延长。 (4)纳米汽油。纳米汽油最大优点是节约能源和减少污染,目前已经开始研制。该技术是一种利用现代最新纳米技术开发的汽油微乳化剂。它能对汽油品质进行改造,最大限度地促进汽油燃烧,使用时只要将微乳化剂以适当比例加入汽油便可。交通部汽车运输节能技术检测中心的专家经试验后认为,汽车在使用加入该微乳化剂的汽油后,可降低其油耗10%~20%,增加动力性能25%,并使尾气中的污染物(浮碳、碳氢化合物和氮氧化合物等)排放降低50%~80%。它还可以清除积碳,提高汽油的综合性能。更令人注意的是,纳米技术应用在燃料电池上,可以节省大量成本。因为纳米材料在室温条件下具有优异的储氢能力。根据实验结果,在室温常压下,约2/3的氢能可以从这些纳米材料中得以释放,故其能替代昂贵的超低温液氢储存装置。 (5)纳米橡胶。汽车中橡胶材料的应用以轮胎的用量最大。在轮胎橡胶的生产中,橡胶助剂大部分成粉体状,如炭黑、白炭黑等补强填充剂、促进剂、防老剂等。以粉体状物质而言,纳米化是现阶段橡胶的主要发展趋势。新一代纳米技术已成功运用其它纳米粒子作为助剂,而不再局限于使用炭黑或白炭黑,汽车中最大的改变即是,轮胎的颜色已不再仅限于黑色,而能有多样化的鲜艳色彩。另外无论在强度、耐磨性或抗老化等性能上,新的纳米轮胎均较传统轮胎都优异,例如轮胎侧面胶的抗裂痕性能将由10万次提高到50万次。 (6)纳米传感器。传感器是纳米技术应用的一个重要领域,随着纳米技术的进步,造价更低、功能更强的微型传感器将广泛应用在社会生活的各个方面。半导体纳米材料做成的各种传感器,可灵敏地检测温度、湿度和大气成分的变化,这在汽车尾气和大气环境保护上已得到应用。纳米材料来制作汽车尾气传感器,可以对汽车尾气中的污染气体进行吸附与过滤,并对超标的尾气排放情况进行监控与报警,从而更好地提高汽车尾气的净化程度,降低汽车尾气的排放。我国纳米压力传感器的研制已获得成功,产品整体性能超过国外的超微传感器,缩小了我国在这一技术领域与世界先进国家存在的差距。有专家认为,到2020年,纳米传感器将成为主流。 (7)纳米电池。早在1991年被人类发现的碳纳米管韧性很高,导电性极强,兼具金属性和半导体性,强度比钢高100倍, 密度只有钢的1/6。我国科学家最近已经合成高质量的碳纳米材料,使我国新型储氢材料研究一举跃入世界先进行列。此种新材料能储存和凝聚大量的氢气,并可做成燃料电池驱动汽车,储氢材料的发展还会给未来的交通工具带来新型的清洁能源。 结语 随着材料技术的发展,纳米技术已成为当今研究领域中最富有活力,对未来经济和社会发展有着十分重要影响的研究对象。纳米科技正在推动人类社会产生巨大的变革,未来汽车技术的发展,有极大部分与纳米技术密切相关,纳米材料和纳米技术将会给汽车新能源、新材料、新零部件带来深远的影响。对于汽车制造商而言,纳米技术的有效运用,有效地促进技术升级、提升附加价值。相信在不久的将来,纳米技术必将在汽车的制造领域得到更广泛的应用。 参考文献 [1]肖永清.纳米技术在汽车上的应用[J].轻型汽车技术,. [2]潘钰娴,樊琳.纳米材料的研究和应用[J].苏州大学学报(工科版),2002. [3]周李承,蒋易,周宜开,任恕,聂棱.光纤纳米生物传感器的现状及发展[J].传感器技术,2002,(1):18~21 纳米材料与技术3000字论文篇三:《试谈纳米技术及纳米材料的应用》 摘要:本文主要论述了纳米材料的兴起、纳米材料及其性质表现、纳米材料的应用示例、纳米材料的前景展望,以供与大家交流。 关键词:纳米材料;应用;前景展望 1.纳米技术引起纳米材料的兴起 1959年,著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。80年代初,德国科学家成功地采用惰性气体凝聚原位加压法制得纯物质的块状纳米材料后,纳米材料的研究及其制备技术在近年来引起了世界各国的普遍重视。由于纳料材料具有独特的纳米晶粒及高浓度晶界特征以及由此而产生的小尺寸量子效应和晶界效应,使其表现出一系列与普通多晶体和非晶态固体有本质差别的力学、磁、光、电、声等性能,使得对纳米材料的制备、结构、性能及其应用研究成为90年代材料科学研究的 热点 。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。 2.纳米材料及其性质表现 纳米材料 纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。 纳米材料的特殊性质 纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著影响,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料所表现的力、热、声、光、电磁等性质,往往不同于该物质在粗晶状态时表现出的性质。与传统晶体材料相比,纳米材料具有高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量、高电阻、高比热、高热膨胀系数、低热导率、强软磁性能。这些特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特殊导体、分子筛、超微复合材料、催化剂、热交换材料、敏感元件、烧结助剂、润滑剂等领域。 3.纳米材料的应用示例 目前纳米材料主要用于下列方面: 高硬度、耐磨WC-Co纳米复合材料 纳米结构的WC-Co已经用作保护涂层和切削工具。这是因为纳米结构的WC-Co在硬度、耐磨性和韧性等方面明显优于普通的粗晶材料。其中,力学性能提高约一个量级,还可能进一步提高。高能球磨或者化学合成WC-Co纳米合金已经工业化。化学合成包括三个主要步骤:起始溶液的制备与混和;喷雾干燥形成化学性均匀的原粉末;再经流床热化学转化成为纳米晶WC-Co粉末。喷雾干燥和流床转化已经用来批量生产金属碳化物粉末。WC-Co粉末可在真空或氢气氛下液相烧结成块体材料。VC或Cr3C2等碳化物相的掺杂,可以抑制烧结过程中的晶粒长大。 纳米结构软磁材料 Finemet族合金已经由日本的Hitachi Special Metals,德国的Vacuumschmelze GmbH和法国的 Imply等公司推向市场,已制造销售许多用途特殊的小型铁芯产品。日本的 Alps Electric Co.一直在开发Nanoperm族合金,该公司与用户合作,不断扩展纳米晶Fe-Zr-B合金的应用领域。 电沉积纳米晶Ni 电沉积薄膜具有典型的柱状晶结构,但可以用脉冲电流将其破碎。精心地控制温度、pH值和镀池的成份,电沉积的Ni晶粒尺寸可达10nm。但它在350K时就发生反常的晶粒长大,添加溶质并使其偏析在晶界上,以使之产生溶质拖拽和Zener粒子打轧效应,可实现结构的稳定。例如,添加千分之几的磷、流或金属元素足以使纳米结构稳定至600K。电沉积涂层脉良好的控制晶粒尺寸分布,表现为Hall-Petch强化行为、纯Ni的耐蚀性好。这些性能以及可直接涂履的工艺特点,使管材的内涂覆,尤其是修复核蒸汽发电机非常方便。这种技术已经作为 EectrosleeveTM工艺商业化。在这项应用中,微合金化的涂层晶粒尺寸约为100nm,材料的拉伸强度约为锻造Ni的两倍,延伸率为15%。晶间开裂抗力大为改善。 基纳米复合材料 Al基纳米复合材料以其超高强度(可达到)为人们所关注。其结构特点是在非晶基体上弥散分布着纳米尺度的a-Al粒子,合金元素包括稀土(如Y、Ce)和过渡族金属(如 Fe、Ni)。通常必须用快速凝固技术(直接淬火或由初始非晶态通火)获得纳米复合结构。但这只能得到条带或雾化粉末。纳米复合材料的力学行为与晶化后的非晶合金相类似,即室温下超常的高屈服应力和加工软化(导致拉神状态下的塑性不稳定性)。这类纳米材料(或非晶)可以固结成块材。例如,在略低于非晶合金的晶化温度下温挤。加工过程中也可以完全转变为晶体,晶粒尺寸明显大干部份非晶的纳米复合材料。典型的Al基体的晶粒尺寸为100~200nm,镶嵌在基体上的金属间化合物粒子直径约50nm。强度为~1GPa,拉伸韧性得到改善。另外,这种材料具有很好的强度与模量的结合以及疲劳强度。温挤Al基纳米复合材料已经商业化,注册为Gigas TM。雾化的粉末可以固结成棒材,并加工成小尺寸高强度部件。类似的固结材料在高温下表现出很好的超塑性行为:在1s-1的高应变速率下,延伸率大于500%。 4.纳米材料的前景趋向 经过我国材料技术人员多年对纳米技术的研究探索,现在科学家已经能够在实验室操纵单个原子,纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪4大领域高速发展。可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装计算机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子器件、纳米机器人、集成生物化学传感器等将被研究制造出来。 近年来还有一些引人注目的发展趋势新动向,如:(1)纳米组装体系蓝绿光的研究出现新的苗头;(2)巨电导的发现;(3)颗粒膜巨磁电阻尚有潜力;(4)纳米组装体系设计和制造有新进展。

环境能源材料研究前沿论文

对建筑节能的几点看法 论文 随着科学技术的日新月异,能源短缺已不容忽视,节约能源已受到世界性的普遍关注,在我国亦不例外。目前,全世界有近30%的能源消耗在建筑物上,长此以往,将严重影响世界经济的可持续发展。因此,能源问题将成为本世纪的热门话题,我们必须从可持续发展的战略出发,使建筑尽可能少地消耗不可再生资源,降低对外界环境的污染,并为使用者提供健康、舒适、与自然和谐的工作及生活空间。中国建筑能耗基本情况我国的建筑能耗量约占全国总用能量的1/4,居耗能首位。近年来我国建筑业得到了快速的发展,需要大量的建造和运行使用能源,尤其是建筑的采暖和空调耗能。据统计,1994年全国仅住宅建筑能耗在基本上不供热水的情况下为×108t标准煤,占当年全社会能源消耗总量×109t标准煤的。目前每年城镇建筑仅采暖一项需要耗能×108t标准煤,占全国能源消费总量的左右,占采暖区全社会能源消费的20%以上,在一些严寒地区,城镇建筑能耗高达当地社会能源消费的50%左右[1]。与此同时,由于建筑供暖燃用大量煤炭等矿物能源,使周围的自然与生态环境不断恶化。在能源的利用过程中,化石类燃料燃烧时排放到大气的污染物中,99%的氮氧化物、99%的CO、91%的SO2、78%的CO2、60%的粉尘和43%的碳化氢是化石类燃料燃烧时产生的,其中煤燃烧产生的占大多数。燃煤产生的大气污染物中SO2占87%、氮氧化物占67%,CO2占71%,烟尘占60%[2]。由于我国是主要以煤而不是以油、气等优质能源作为主要能源消耗的国家,每年由于燃烧矿物燃料向地球大气排放的二氧化碳仅次于美国居世界第二,预计到2020年,中国将取代美国成为世界二氧化碳排放第一大国。因此,中国对于全球气候变暖承担着重大的责任,而作为耗能大户的建筑,其节能也就成为关系国计民生的重大问题。我国节能工作与发达国家相比起步较晚,能源浪费又十分严重。如我国的建筑采暖耗热量:外墙大体上为气候条件接近的发达国家的4~5倍,屋顶为~倍,外窗为~倍;门窗透气性为3~6倍;总耗能是3~4倍[4]。如果听任高耗能建筑大行其道,建筑能耗增长的速度将远远超过我国能源生产可能增长的速度,国家的能源生产势必难以长期支撑这种浪费型需求,从而不得不组织大规模的旧房节能改造,将耗费更多的人力、物力。另外,每年新建和改建的几千万栋建筑要消耗掉几十亿吨林木、砖石和矿物材料,造成森林的过度砍伐,材料资源的大量开采,带来土地的破坏,植被的退化,物种的减少和自然环境的恶化。 几种节能途径1.墙体节能墙体是建筑外围护结构的主体,其所用材料的保温性能直接影响建筑的耗热量。我国以实心粘土砖为墙体材料,保温性能不能满足设计标准。以外墙为例,JGJ26-1995标准规定,在建筑物形体系数(建筑物与室外大气接触的外表面积与其所包围的体积的比值)小于时,北京地区传热系数不超过W/(m2·K),而目前常用的内抹灰砖墙,传热系数都大于上述节能标准数值。因而在节能的前提下,应进一步推广空心砖墙及其复合墙体技术。2.门窗节能外门窗是住宅能耗散失的最薄弱部位,其能耗占住宅总能耗的比例较大,其中传热损失为1/3,冷风渗透为1/3,所以在保证日照、采光、通风、观景要求的条件下,尽量减小住宅外门窗洞口的面积,提高外门窗的气密性,减少冷风渗透,提高外门窗本身的保温性能,减少外门窗本身的传热量。其节能措施有:(1)控制住宅窗墙比。住宅窗墙比是指住宅窗户洞口面积与住宅立面单元面积的比值,JGJ26-1995《民用建筑节能设计标准(采暖居住部分)》对不同朝向的住宅窗墙比做了严格的规定,指出“北向、东向和西向、南向的窗墙比分别不应超过20%、30%、35%”。(2)提高住宅外窗的气密性,减少冷空气渗透。如设置泡沫塑料密封条,使用新型的、密封性能良好的门窗材料。而门窗框与墙间的缝隙可用弹性松软型材料(如毛毡)、弹性密闭型材料(如聚乙烯泡沫材料)、密封膏以及边框设灰口等密封;框与扇的密封可用橡胶、橡塑或泡沫密封条以及高低缝、回风槽等;扇与扇之间的密封可用密封条、高低缝及缝外压条等;扇与玻璃之间的密封可用各种弹性压条等。(3)改善住宅门窗的保温性能。户门与阳台门应结合防火、防盗要求,在门的空腹内填充聚苯乙烯板或岩棉板,以增加其绝热性能;窗户最好采用钢塑复合窗和塑料窗,这样可避免金属窗产生的冷桥,可设置双玻璃或三玻璃,并积极采用中空玻璃、镀膜玻璃,有条件的住宅可采用低辐射玻璃;缩短窗扇的缝隙长度,采用大窗扇,减少小窗扇,扩大单块玻璃的面积,减少窗芯,合理地减少可开启的窗扇面积,适当增加固定玻璃及固定窗扇的面积。(4)设置“温度阻尼区”。所谓温度阻尼区就是在室内与室外之间设有一中间层次,这一中间层次象热闸一样可阻止室外冷风的直接渗透,减少外墙、外窗的热耗损。在住宅中,将北阳台的外门、窗全部用密封阳台封闭起来,外门设防风门斗,防止冷风倒灌,楼梯间设计成封闭式的,对屋顶上人孔进行封闭处理等措施均能收到良好的节能效果。3.屋面节能在不断改进建筑外墙、外窗的保温性能后,还必须进一步加强屋面保温隔热的研究。屋面节能措施的要点,其一是屋面保温层不宜选用密度较大、导热系数较高的保温材料,以免屋面重量、厚度过大;其二是屋面保温层不宜选用吸水率较大的保温材料以防屋面湿作业时因保温层大量吸水而降低保温效果,如选用吸水率较高的保温材料,屋面上应设置排气孔以排除保温层内不易排出的水分。现在,高效保温材料已经开始应用于屋面,一些建筑的屋面保温,采用膨胀珍珠岩保温芯板保温层代替常规的沥青珍珠岩或水泥珍珠岩做法,就克服了常规作法的诸多缺点。这种保温芯板施工方便、价格低廉、不污染环境;芯板为柔性制品,不仅适用于具有平面的屋面,也可用于带有曲面的屋面,其保温工程更可显示出它的优越性。其主要技术指标,表观密度为110~150kg/m3;导热系数为~·K;蓄热系数为~·K。抗压强度大于;吸水率小于;蒸汽渗透系数为×10-7g/[5]。这些指标充分体现了膨胀珍珠岩密度较小,导热系数较低,而且吸水率和蒸汽渗透系数也都很低。这是保温性能好的材料所必须具备的。2001年已经在西宁污水处理厂的数百平方米屋面工程中使用,收到了好的技术经济效果。4.利用太阳能地球拦截的太阳辐射能相当于目前全球电力消费量的1500倍。而在现有技术、经济条件下可供开发利用的太阳能,只占理论资源量的很小一部分。据美国能源部评估,1990年美国太阳能经济可开发资源量约为22Mtce/年,仅为技术可开发量的。所以,太阳能的开发利用有巨大的潜力。太阳能作为一种可再生的洁净能源,是建筑上很具有利用潜力的新能源之一。太阳能在建筑上的利用方式主要有,被动式太阳能采暖、太阳能供热水、主动式太阳能采暖与空调、以及太阳能发电等等。我国太阳能资源丰富,陆地每年接受的太阳辐射能,相当于×1012tec,2/3国土面积的太阳能总辐射量超过[6]。如果将太阳能源充分加以利用,不仅有可能节省大量常规能源,而且有可能在某些区域完全利用太阳能采暖。5.夜间通风夜间通风方法的原理是在夜间引入室外的冷空气,通过冷空气与作为蓄热材料的建筑维护结构接触换热,冷却建筑材料,达到蓄冷目的。在夏季,为了获得舒适的室内环境,则需要空调供冷系统。而此时,因为夜间的室外空气温度比白天低得多,所以夜间室外冷空气则可以作为一种很好的自然冷源加以利用。严格地说,只要室外空气温度低于室内空气温度,此时的室外冷空气就可视为可利用的自然冷源。

在材料学科上,要求学生掌握坚实宽广的基础理论和系统深入的专门知识,了解材料科学的发展前沿。下文是我为大家搜集整理的有关材料学的论文范文的内容,欢迎大家阅读参考!

论高电化学性能聚苯胺纳米纤维/石墨烯复合材料的合成

石墨烯是一种二维单原子层碳原子SP2杂化形成的新型碳材料,因其非凡的导电性和导热性、极好的机械强度、较大的比表面积等特性,引起了国内外研究者极大的关注.石墨烯已经被探索应用在电子和能源储存器件、传感器、透明导电电极、超分子组装以及纳米复合物[8]等领域中.而rGO因易聚集或堆叠而导致电容量较低(101 F/g)[9],这限制了其在超级电容器电极材料领域的应用.

另一方面,PANI作为典型的导电高分子之一,由于合成容易,环境稳定性好和导电性能可调等特性备受关注.具有纳米结构的导电材料,由于纳米效应不但能提高材料固有性能,并开创新的应用领域.PANI纳米结构的合成取得了许多的成果.PANI作为超级电容器电极材料因具有高的赝电容,其电容量甚至可高达3 407 F/g[10];然而,当经过多次充放电时PANI链因多次膨胀和收缩而降解导致其电容损失较大.碳材料具有高的导电性能和稳定的电化学性能,为了提高碳材料的电化学电容和PANI电化学性能的稳定性,人们把纳米结构的PANI与碳材料复合以期获得电容较高且稳定的超级电容器电极材料[11].

作为新型碳材料的石墨烯和PANI的复合引起了极大的关注[12].但是用Hummers法合成的GO直接与PANI复合构建PANI/GO复合电极因导电率低而必须还原GO,化学还原剂的加入虽然还原了部分GO而提高了导电性能,但也在一定程度上钝化了PANI [13],另外排除还原剂又对环境造成一定程度的污染.因而开拓一条简单且环境友好的制备PANI/rGO复合材料作为超级电容器的电极路线仍然是一个难题.

基于以上分析,首先使PANI和GO相互分散和组装,借助水热反应这一绿色环境友好的还原方法制备PANI/rGO复合材料,以期获得高性能的超级电容器电极材料.

1实验部分

原材料

苯胺(AR, 国药集团),经减压蒸馏后使用;氧化石墨烯(自制);过硫酸铵(APS, AR, 湖南汇虹试剂);草酸(OX, AR, 天津市永大化学试剂);十六烷基三甲基溴化铵(CTAB, AR, 天津市光复精细化工研究所).

的制备

PANIF的制备按我们先前提出的方法 [14],制备过程如下:把250 mL去离子水加入三口烧瓶后,依次加入 g CTAB, g 草酸以及 mL苯胺,在12 ℃水浴上搅拌8 h;随后,往上述溶液中一次性加入20 mL含苯胺等量的过硫酸铵水溶液,同样条件下使反应保持7 h.所制备的样品用大量去离子水洗涤至滤液为中性,随后30 ℃真空干燥24 h. 的制备

采用Hummers法制备GO,具体过程如下:向干燥的2 000 mL三口烧瓶(冰水浴)中加入10 g天然鳞片石墨(325目),加入5 g硝酸钠固体,搅拌下加入220 mL浓硫酸,10 min后边搅拌边加入30 g高锰酸钾,在冰水浴下搅拌120 min,再将三口烧瓶移至35 ℃水浴中搅拌180 min,然后向瓶中滴加460 mL去离子水,同时将水浴温度升至95 ℃,保持95 ℃搅拌60 min,再向瓶中快速滴加720 mL去离子水,10 min后加入80 mL双氧水,过10 min后趁热抽滤.将抽干的滤饼转移到烧杯中,加大约800 mL热水及200 mL浓盐酸,趁热抽滤,随后用大量去离子水洗涤直至中性.所得产品边搅拌边超声12 h后5 000 r/min下离心10 min,得氧化石墨烯溶液.

复合材料制备

按照一定比例将含一定量的PANIF液与一定量的 mg/mL 的GO溶液混合,使混合液总体积为30 mL, GO在混合液中的最终浓度为 mg/ mL,磁力搅拌10 min后,将混合液转移到含50 mL聚四氟乙烯内衬的反应釜中进行水热反应,在180 ℃保温3 h;待反应釜自然冷却至室温后取出,用去离子水洗涤产物直至洗液无色后,于60 ℃真空干燥24 h,待用.按照上述步骤制备的PANIF与GO的质量比分别为5,10以及15,相应命名为PAGO5,PAGO10和PAGO15,对应的PANIF质量为75 mg,150 mg和225 mg.

仪器与表征

用日本日立公司S4800场发射扫描电镜(SEM)分析样品的形貌;样品经与KBr混合压片后,用Nicolet 5700傅立叶红外光谱仪进行红外分析;用德国Siemens公司Xray衍射仪进行XRD分析;电化学性能测试使用上海辰华CHI660c电化学工作站.

电极制备和电化学性能测试:将活性物质(PANIF或PANIF/rGO)、乙炔黑以及PTFE按照质量比85∶10∶5混合形成乳液,将其均匀地涂在不锈钢集流体上,在10 MPa压力下压片,之后烘干得工作电极.在电化学性能测试过程中,使用饱和甘汞电极(SCE)作为参比电极,铂片(Pt)作为对电极,在三电极测试体系中使用1 M H2SO4作为电解液进行电化学测试,电势窗为~.

比电容计算依据充放电曲线,按式(1)[15]计算:

Cs=iΔtΔVm.(1)

式中:i代表电流,A;Δt代表放电时间,s;ΔV代表电势窗,V;m代表活性物质质量,g.

2结果与讨论

形貌表征

图1为PANIF和PAGO10形貌的SEM图.低倍的SEM(图1(a))显示所制备PANIF为大面积的纳米纤维网络;高倍的图1(b)清晰地显现该3D纳米纤维网络结构含许多交联点.PANIF和PAGO10混合液经过水热反应后,从低倍的SEM(图1(c))可以看出,PAGO10复合物具有交联孔状结构;提高观察倍数(图1(d)和图1(e))后可以发现样品中rGO 与PANIF共存;而高倍的图1(d)清晰地显示出了rGO与PANIF紧密结合,且合成的褶皱rGO因层数较少而能观察到其遮盖的PANIF.从图1可知:成功合成了大面积的PANIF以及互相均匀分散的PANIF/rGO复合材料.

分析

图2为PANIF,GO以及PAGO10 3种样品的FTIR图.图2中a曲线在1 581 cm-1,1 500 cm-1,1 305 cm-1,1 144 cm-1,829 cm-1等波数处展现的尖锐峰为PANI的特征峰,它们分别对应醌式结构中C=C双键伸缩振动、苯环中C=C双键伸缩振动、C-N伸缩振动峰、共轭芳环C=N伸缩振动、对位二取代苯的C-H面外弯曲振动.图2中b曲线为GO的红外谱图,在3 390 cm-1, 1 700 cm-1的峰分别对应-COOH中的O-H,C=O键振动,1 550~1 050 cm-1范围内的吸收峰代表COH/ COC中的C-O振动[16],可以看出,GO中存在大量的含氧官能团.图2中c曲线为PAGO10复合物红外吸收谱图,与GO,PANIF谱图比较, 可以发现PAGO10中的GO特征峰不太明显而PANI的特征峰全部出现,这个结果归结于GO含量少以及GO经水热反应后形成了rGO,另外也表明水热反应对PANI品质无大的影响.

电化学性能分析

图4为样品的CV曲线,其中图4(a)为不同样品在1 mV/s扫描速率下的CV图,可以看出,4个样品均出现明显的氧化还原峰,这归因于PANI掺杂/脱掺杂转变,表明PANIF以及复合物显示出优良的法拉第赝电容特性.图4(b)为PAGO10在不同扫描速率下的CV曲线,由图可知PAGO10电极的比电容随着扫描速率减小而稳步增加,在扫描速率为1 mV/s时,PAGO10电极的比电容为 F/g.

图5为PANI,PAGO5,PAGO10和PAGO15的充放电曲线以及交流阻抗图.图5(a)为电流密度为1 A/g时样品的放电曲线图,由图可知:4种样品均有明显的氧化还原平台,这与前述CV分析中的结果相吻合.根据充放电曲线,借助式(1),计算了4种样品在不同电流密度下的比电容,结果如图5(b)所示,很明显,相同电流密度下PAGO10比电容最大,当电流密度为1 A/g时,其比电容为517 F/g,这个结果表明PAGO10的电化学性能明显优于PANI/石墨烯微球和3D PANI/石墨烯有序纳米材料(电流密度为 A/g时,比电容分别为 261和495 F/g)[18-19], 而PANIF比电容最小,仅为378 F/g;且在10 A/g电流密度下PAGO10的比电容仍保持在356 F/g 左右,这表明PAGO10电极具有优异的倍率性能.该复合材料比电容以及倍率性能得到极大提高源于rGO与PANIF两组分间的协同效应.在充放电过程中连接在PANIF间的rGO为电子转移提供了高导电路径;同时,紧密连接在rGO上的PANIF有效阻止水热还原过程中石墨烯的团聚,增加了电极/电解质接触面积,从而提高了PANIF的利用率而使得容量增加. 为了更清晰地了解所制备材料的电子转移特点以及离子扩散路径,对样品进行了交流阻抗测试,图5(c)为4个样品的Nyquist图.从图5(c)可知:在高频区、低频区均分别具有阻抗弧半圆、频响直线.在高频区,电荷转移电阻Rct大小顺序为RPAGO5

值说明rGO的加入提高了电极材料的导电性.在低频区,直线形状反映了样品电化学过程均受扩散控制,并且PAGO5所展现的直线斜率最大,说明其电容行为最接近理想电容,即频响特性最好,这也是源于rGO的加入提高了材料导电性以及复合物的独特微观结构.

氧化还原反应的发生,导致PANIF具有十分高的赝电容,但由于在大电流充放电过程中高分子链重复膨胀和收缩,导致其循环稳定性差而限制了其实际应用.为此,对ANIF和PAGO10进行循环稳定性分析.图6显示,PAGO10在5 A/g电流密度下经过1 000次充放电后,电容保持率为77%,而不含rGO的PANIF电极在2 A/g电流密度下充放电1 000次电容保持率仅为,这个结果表明PANIF循环稳定性较差;另外,rGO的加入形成的PANIF/rGO紧密的连接,降低了PANI链在充放电过程中的膨胀与收缩,使得链段不容易脱落或者断裂,从而PAGO10具有出色的循环稳定性.

3结论

采用自组装的方法,经水热反应,制备了PANIF/rGO复合电极材料.研究发现,rGO与PANIF紧密连接;而且,当PANIF与GO质量比为10∶1时,复合材料展现了最佳的电化学性能,当电流密度为1和10 A/g时,其比电容分别为517, 356 F/g.从上可知:合成的PAGO10具有高的比电容、较好的倍率性能和稳定性能,从而有望作为超级电容器电极材料在实践中应用.

浅谈水泥窑用新型环保耐火材料的研制及应用

1 概述

随着新型干法水泥生产技术在我国的迅速普及,我国水泥工业得到飞速发展,2012年,水泥总产量达亿吨,占世界总产量55%左右。在20世纪六、七十年代,镁铬质耐火材料因具有良好的挂窑皮和抗水泥熟料的化学侵蚀性能,而被广泛应用于新型干法水泥窑的烧成带[1],并取得了良好的使用效果,但由于镁铬砖在使用过程中砖内的Cr2O3组分与窑气、窑料中的碱、硫等相结合,形成有毒的Cr6+化合物[2]。再加上原燃料中所带入的硫,碱与硫共存时形成另一种水溶性Cr6+有毒性致癌物质:R2(Cr,S)O4。水泥窑在正常运转中,其窑衬中镁铬砖内的一部分Cr6+化合物随着窑气和粉尘外逸,飘落在厂区及周边环境中,造成厂区大气的污染; 另一部分则残留在拆下的废砖中,废弃的残砖一遇到水就会造成地下水的污染;更直接的危害是在水泥窑折砖和检修作业时,窑气和碎砖粉尘中的Cr+6会给现场人员造成毒害,据有关专家论证,Cr6+腐蚀皮肤,使人易患上大骨病,进而致癌。因此,镁铬质耐火材料作为水泥窑内衬会对环境和人类造成长期污染和公害。

发达工业国家在水源、环境和卫生方面有着一系列配套的规范,其中德国对水泥厂预防“铬公害”的规定最普遍,执行也是最严格的,具体内容如表1所示:

我国于1988年4月颁布国家标准GB3838-88,对地面水中Cr6+含量进行明确规定,如表2所示:

这就使得水泥企业在使用镁铬砖做水泥窑内衬投入的环保费用加大,特别是用过镁铬残砖处理费用非常昂贵,因此,水泥窑用耐火材料无铬化是必然的发展趋势。

2 水泥窑烧成带新型环保耐火材料的研制

研制思路

目前,用于水泥回转窑烧成带的无铬环保耐火材料主要有镁白云石砖和镁铝尖晶石砖。镁白云石砖对水泥熟料具有良好的化学相容性和优良的挂窑皮性,但是抗热震性差,抗水化性差;镁铝尖晶石砖具有良好的抗热震性和抗侵蚀性,但是挂窑皮性差[3,4]。镁砖中引入铁铝尖晶石制成的第二代新型环保耐火材料―新型环保耐火材料,结构韧性好,抗碱盐及水泥熟料侵蚀能力强,具有良好的挂窑皮性能,在烧成带能有效延长使用寿命,是目前适合我国国情的新一代水泥窑烧成带用无铬耐火材料。但该产品的关键是铁铝尖晶石原料的合成、加入量、加入方式及有关工艺条件对制品性能的影响。

试验与研究

铁铝尖晶石的合成。铁铝尖晶石是一种自然界少有的矿物,化学分子式为FeAl2O4,其中含和。铁铝尖晶石为立方体结构,二价阳离子占据四面体位置,三价阳离子填充在由氧离子构成的面心立方中。其理论密度为,莫氏硬度为。要形成铁铝尖晶石,必须保证氧化亚铁(FeO或FeOn)是处于其稳定存在的条件下。只有在FeO能稳定存在的区域内,才能保证与Al2O3形成的化合物是FeO? Al2O3尖晶石,而在FeO稳定存在的区域以外的条件下,铁的氧化物与Al2O3作用得到的产物很难说是FeO?Al2O3尖晶石,而可能是含有大量或主要是Fe2O3-Al2O3的固溶体[5]。FeOn- Al2O3的系相图如图1所示:

为了得到高质量的合成铁铝尖晶石,我们特聘请了欧洲知名耐材专家进行专业技术指导,经过大量试验,掌握了烧结合成铁铝尖晶石的关键技术,为生产达到国际水平的新型环保耐火材料打下了良好的基础。在生产中把FeO与Al2O3按一定比例混合均匀后压制成荒坯,在保证“FeO”稳定存在的气氛下,经高温烧成,制得FeO? Al2O3尖晶石含量为97%以上的烧结铁铝尖晶石。产品衍射如图2所示:

原料与制品的性能 ①原料的选择。根据我们的生产经验,结合水泥窑烧成带对耐火材料的要求,我们选用优质镁砂、合成尖晶石为原料,并加入特殊添加剂来强化制品的性能,研制生产出第二代无铬镁尖晶石砖―新型环保耐火材料。所用原料理化指标如表3所示。②制品的性能。将原料破碎成所需的粒度,采用四级配料,经强力混碾、高压成型、高温烧成。产品的显微结构见图3,产品理化指标与国外同类产品对比情况如表4所示。

铁铝尖晶石对制品性能的影响 ①铁铝尖晶石加入量对制品耐压强度的影响。从图4可以看出:随着铁铝尖晶石增加制品的耐压强度呈现出先升后降的趋势,这是由于铁铝尖晶石与镁砂互溶的结果,铁铝尖晶石的加入量在10%时,制品的强度达到最大值。②铁铝尖晶石加入形式对制品抗热震性能的影响。从实验结果表5可以看出:以颗粒形式加入铁铝尖晶石制品的抗热震性比以细粉形式加入铁铝尖晶石制品相对较好。

产品的性能

结构韧性好、热震稳定性优良。新型环保耐火材料在烧成及使用过程中Fe2+离子扩散进入周边的氧化镁基质中,同时部分Mg2+离子扩散进入铁铝尖晶石颗粒,与铁铝尖晶石分解残留的氧化铝反应生成镁铝尖晶石,这一活化效应使制品在烧成或使用过程中,内部形成大量的微裂纹,重要的是铁铝尖晶石的分解过程、Fe2+离子和Mg2+离子的相互扩散在高温下持续进行,使得MgO-FeAl2O4耐

火材料在整个高温使用过程中,可以形成大量的微裂纹,这些微裂纹的存在有利于缓冲热应力、提高制品的结构柔韧性和热震稳定性。

强度高。从制品显微结构可以看出:制品内部铁铝尖晶石与高纯镁砂互溶,结构非常均匀致密,晶粒发育良好,颗粒与基质间通过晶间尖晶石相连接,结合良好,明显的提高了砖的密度和高温强度。

具有良好的粘挂窑皮性能。在使用过程中,制品中的Fe2O3与Al2O3都易与水泥熟料中的CaO反应生成C2F、C4AF等低熔点矿物,该矿物具有一定的粘度,可牢固粘附在新型环保耐火材料的热面,形成稳定的窑皮。我们把新型环保耐火材料和直接结合镁铬砖分别制成40mm×40mm×60mm样块,用90%水泥生料+5%煤粉+5%K2SO4,压制成Φ30×10mm圆饼,把圆饼放在两个样块中间,放入电炉内加热,温度升到1500℃,保温3小时,冷却后测其抗折强度,二者基本相同。由此可见,新型环保耐火材料粘挂窑皮性能优良。

产品的应用

新型环保耐火材料自2012年研制成功投放市场以来,通过河北鹿泉曲寨水泥公司、宁夏瀛海天琛水泥公司、内蒙古哈达图水泥公司、陕西尧柏水泥集团、北方水泥集团、河南锦荣水泥公司、新疆天基水泥公司、安阳湖波水泥公司等二十多家大型水泥企业2500t/d、5000t/d、6500t/d水泥窑烧成带应用,寿命周期均达到12个月以上,受到用户认可。

3 结论

  • 索引序列
  • 发光材料研究前沿论文题目
  • 发光材料研究前沿技术论文
  • 材料研究前沿热点论文题目
  • 材料科技前沿研究论文
  • 环境能源材料研究前沿论文
  • 返回顶部