首页 > 论文发表知识库 > 关于萃取论文范文写作

关于萃取论文范文写作

发布时间:

关于萃取论文范文写作

高等中医药本科 教育 中药学专业设置标准是规范中药教育的重要文件,编制该标准是中医药教育的一件大事,它的制订为保证本科中药学专业教学质量和中药教育的评估提供了依据,对规范中药专业的办学标准,促进本科中药学专业的健康和持续发展具有积极的意义。下面是我为大家推荐的本科中药学论文,供大家参考。

本科中药学论文 范文 一:不同厂家卡马西平片溶出度考察

摘 要 :一种快速的,有选择性的,灵敏度高的反向高效液相色谱法同时测定血浆样品中奥卡西平,其主要代谢产物(单羟基和双羟基卡马西平),拉莫三嗪,卡马西平和卡马西平-环氧丙烷的 方法 已实现。

在固相色谱柱(SPE)上提取得到被分析组分,在Zorbax SB-CN 柱上实现色谱分离。 在紫外吸收波长为214nm下,该色谱峰面积比用于定量分析。这高效液相色谱法已成功的用于对我们研究所中癫痫患者得血药浓度监测的日常评价,以及用于关于病人由于药物诱导或抑制OXC代谢产生治疗效果的药代动力学研究。

关键词:奥卡西平;代谢物;HPLC;监测

1. 前言

奥卡西平(OXC),10酮基卡马西平(CBZ)衍生物,是一个比较新的抗癫痫药物,其作用机制与适应症与卡马西平相似。口服给药后,OXC被胃肠道完全吸收,迅速且几乎完全(96%-98%)得降解为药理活性代谢物单羟基衍生物(MHD)。MHD主要通过与葡萄醛酸结合而代谢,另外一小部分MHD被氧化成二羟基衍生物(DHD)。DHD是一个无药理活性得代谢物,同时也参与了卡马西平的代谢途径。(图1.)

OXC可以作为单一疗法以及与其他AEDs(抗癫痫药物)联合的多疗法,如拉莫三嗪 (LTG),丙戊酸(VAL),托吡酯(TPM)的和非班酯(FBM)。我们研究所的癫痫患者通常用CBZ或OXC与LTG等其他抗癫痫药物联用进行治疗。虽然目前没有数据显示,OXC血药浓度监测对癫痫患者的药物治疗有用,药物诱导或抑制的相互作用清楚得表明,对照LTG[2,3]可被视为一个理由,对可能会由于OCX相互作用而进行仔细的监测。另一个原因是实施一分析程序的同时测定LTG,CBZ,CBZ 10,11-环氧化物(CBZ- epox),OXC和其主要代谢物而不受其他目前

相关的药物(如苯妥英,乙琥胺,非班酯 , 苯巴比妥和丙戊酸)干扰,可以不需要改变分析程序时,药物在不同的样本中测试会改变。这样可以节省双方的时间和金钱。

HPLC-UV方法目前用于OXC治疗药物监测(TDM)的做法也只是分析这种药物和它的代谢产物[4,5][1];有些是反向选择[6,7],并要求昂贵的手性柱和长度的分析倍。

由于OXC与CBZ有一个化学结构和性质很相似,Lensmeyer[8]提出的操作程序是目前HPLC法发展的出发点。不过,我们决定要修改方法,因为lensmeyer的分析程序不允许量化LTG和DHD ,因为这两个组分是一起洗脱出的。

2. 材料与方法

标准

OXC,MHD和DHD由Novartis Pharma (Basel, Switzerland)友好提供;LTG由

GlaxoSmithKline

(Verona, Italy)提供;CBZ, CBZ-epox, and cyeptamide (CYE)购自Sigma-Aldrich (Steinheim, Germany). CYE,CBZ储存溶液(1μgμl),在-80℃下储存,CBZ-epox and LTG 制成甲醇溶液,MHD和DHD溶于去离子水中,OXC溶于丙酮中,丙酮醇流动相包含CBZ, CBZ-epox, OXC, MHD, DHD 和

LTG,内标物溶液(100ngμg-1), 水/乙腈(3/1)制成。

试剂与萃取剂

所有溶剂为HPLC等级:乙腈和醋酸购自Merck (Darmstadt,Germany); 甲醇来自Carlo Erba (Milano,Italy); 醋酸铵和三乙胺来自Sigma-Aldrich (Steinheim, Germany).固相萃取柱(SPE)Isolute C8柱(EC)含有200毫克的稳定相,并以3ml容积规格购自StepBio(Bologna, Italia).在Milli-Q Plus 的试剂级别的给水系统中的水是去离子的,过滤且净化的,来自Millipore (St. Quentin, France).

色谱条件

HPLC系统包括一个126溶剂传递装臵模型(Beckman Instruments, Berkerley, CA),一个LC 295 UV-VIS 模型(Perkin Elmer, USA),设在214nm,与一个406接口单元模型(Beckman Instruments, Berkerley,CA)连接,用于一个GOLD色谱工作仪(version 6) (Beckman Instruments).

色谱分离分别采用一个Zorbax SB-CN柱Hewlett Packard (USA), 250mm× .,粒子大小5m,一个保护柱LichroCART 4-4 RP-8, 5 m (Merck, Darmstadt, Germany)被连接到保护分析柱上。柱子和前臵柱分别被设在50℃的恒温箱中(Jones Chromatographic,USA)。流动相由水/乙腈/甲醇/乙酸/三乙胺(体积比为725/150/125/1/)混合,超声脱气Branson (USA)。流动相PH用乙酸调整为以获得LTG与DHD峰的完全分离(图2)。流速设为12mlmin。 制备标准品和对照品

标准品和对照品包括CBZ,CBZepox,OXC, MHD, DHD, 和LTG添加已知含量的分析物于空白血浆中。他们包括每批患者的样本。

样品制备

我们结合含30μl CYE(.)(100ngμl-1)的500μl 血清和500μl饱和的醋酸铵溶液。混合后,样品被转移至含3ml甲醇的萃取柱,然后3ml水洗。在用3ml水洗萃取柱后,样品将在3ml甲醇中被洗脱出来。然后在40℃的氮气流通下蒸发有机相,残留物用200μl水/乙腈(3/1)溶解,然后取50μl注入到HPLC系统中。 -1

3. 结果

选择性

用上述的色谱条件我们可靠地将六个组分与内标物分离。色谱性能良好,使所有物质峰形与合适的保留时间有效。在一个干扰研究中,提取空白血浆与抗癫痫药物或内标物共同洗脱得到了一个游离的峰。(图.3.)在对病人的多药疗法中,非班酯,加巴喷丁,托吡酯,乙拉西坦和乙琥胺在这过程中不被提取,因为它们不断地离解。丙戊酸酸和苯妥英分别提取,而不是共同与有趣的组分被洗脱出来。苯巴比妥( Pb )和MHD是共同洗脱出来的。因此,在有PB和OXC9(和MHD)存在时,样品用盐酸(1N)和乙醚预处理。在SPE程序允许PB通过并进入有机相并在此后从水相中柱提取其他组分前进行样品酸化。

线性

我们的线性方法检查是通过三份标准品分析的,在范围为μgml的CBZ,μgml的CBZ-epox,μgml的OXC,μgml的MHD,μgmlDHD 和μgml-1的LTG是优良的。(图.4.)

回收率

提取回收率(在五种不同浓度下评价以及在相同浓度下对血浆样本提取物和未提取标准物的 4 -1-1-1-1-1

峰面积比较评价)很好。OXC为,MHD为,DHD为为,CBZ-epox为,LTG为。

限量

在信噪比3:1下,限量为OXC(μgml-1),MHD(μgml-1),DHD、LTG、CBZ和CBZ-epox(μgml)。

日内和日间精密度与准确度

在三个不同浓度下,范围为OXC(μgml-1),MHD和CBZ(1-20μgml-1),DHD,CBZ-epox和LTG(1-10μgml-1),制备五组质量控制样品。相同的提取样本跑了三次后计算日内准确度,在连续四天分析后计算日间准确度。(表 1)对于所有组分,由变异系数(CV)确定的日内和日间精密度低于6%。

4. 讨论

这项研究的目的是如何用HPLC-UV法同时测量联合用CBZ或OXC与LTG和其他抗癫痫药物进行治疗的癫痫患者的血浆中CBZ,OXC和它们的主药代谢产物及LTG。该法适用于用这些药进行单一或多疗法的病人。我们选择SPE样品前处理,因为这种技术比起液液萃取能获得回收率高且更洁净的样本。

该法非常灵敏且其重现性非常好,用高效液相色谱技术,再加上紫外检测允许同时测定人血浆中三种抗癫痫药物(OXC,CBZ和LTG)和它们的主药代谢物(MHD,DHD和CBZ-epox)。在我国实验室经过数月的例行评价这种方法,我们结论是,它对这些药物的TDM有用处。通过使用这一程序,提取不需要超过30分钟,色谱分离只需时17分钟,且色谱系统呈现长期的稳定性;在进行1200次分析后,色谱分离才变差(宽峰和低分辨率)。

参考文献:

[1] Flesh G. Overview of the clinical pharmacokinetics of Drug Invest 2004;24(4):185–203.

[2] Benetello P, Furlanut Jr M, Baraldo M, Tonon A, Furlanut M. Therapeutic drug monitoring of lamotrigine in patients suffering from resistant partial seizures. Eur Neurol 2002;48:200–3.

[3] Morris RG, Black AB, Harris AL, Batty AB, Sallustio BC. Lamotrigine and therapeutic drug monitoring: retrospective survey followin the introduction of a routine service. Br J Clin Pharmacol 1998;46:547–51.

[4] Mandrioli R, et al. Liquid chromatographic determination of oxcarbazepine and its

本科中药学论文范文二:裕丹参不同播期育苗比较研究

摘 要 目的:本研究以河南方城裕丹参为材料,探讨裕丹参育苗的最佳播种时期,以期为当地裕丹参的规范化生产提供一定的理论依据。方法:采用大田试验的方法,通过对不同播期间的株高、根长、折干率等方面进行比较研究,探讨不同播期对丹参育苗生长发育的影响。结果:发现播期2(即6月28日播)的丹参发育最好。结论:6月28日左右为该地区丹参育苗播种的最佳时期。(注意黑体内容的变换)

关键词: 丹参 ;播期;育苗

1 文献综述

丹参概述

植物形态

丹参(Salvia miltiorrhiza Bunge.)为多年生草本植物,茎高达80cm,叶柄及叶轴均被长柔毛,羽状复叶对生,小叶3~5(7)卵形或椭圆状卵形,长,

两面疏被柔毛。轮伞花序为假总状,花序轴和花萼密被腺毛和长柔毛;花萼钟形,长约11mm;花冠紫蓝色,长20~27mm,冠桶内具斜向毛环,下唇中裂片宽偏心形,药隔下臂先端连合,药室不育。子房4深裂,花柱着生于子房底,小坚果椭圆状倒卵形,花期4~6月,果期7~8月。

生境与习性

野生丹参生于山坡林下、草丛或溪谷旁,海拔120m~1300m。产于河北、山西、陕西、山东、河南、江苏、浙江、安徽、江西、湖南、及四川。适应性强,喜气候温暖湿润、阳光充足的环境。春季地温10℃时开始返青,在气温低的地区,植株生长发育不良,幼苗出土亦慢,温度20℃~26℃相对湿度80%时生长旺盛,秋季气温降至10℃以下时,地上部分开始枯萎。丹参耐寒,在北方能露土越冬,根在-15℃的情况下可安全越冬。为深根植物对土壤要求不严,但以疏松肥沃的沙质壤土生长良好。中性、微碱性的土壤最适宜 种植 ,粘土排水不良易烂根。

丹参的应用历史和药用价值

我国应用丹参历史悠久。始载于东汉的《神农本草经》“主心腹邪气,肠鸣幽幽如走水,寒热积聚;止烦渴,益气。”被列为上品。北魏《吴普本草》载:“治心腹痛。”表明丹参自古用于热证和肠鸣,泻肠内积聚物和腹中之邪气。列为上品表明它无毒副作用并作清补之用。以后随着中医实践的发展,人们逐渐转向丹参可养血、调经、安神并可治风邪热证。

明代《本草纲目》载“活血、通心包络、治疝痛”按《妇人明理论》云:“四物汤治妇女病,不问产前产后经水多少,皆可多用,唯一味丹参散主治与之相同,盖丹参散能宿血,补新血,安生胎,罗斯泰,止崩中带下,调经脉,其功大类当归、地黄、芍药之故也。”清代《本草逢源》记有:“丹参本经治心腹邪气,肠鸣幽幽如走水等疾,皆积血内滞而化为水之候,止烦漫益气者,淤积去而烦漫愈,正气复也。”即在《神农本草经》对丹参描述的基础上,进一步强调了丹参在活血化瘀、养血、安神、调妇人经血、止崩带下及治疗肿瘤的功效,并记述一味丹参散即可用于治疗妇科疾病。

现代科学研究和临床表明:丹参可治疗迁延性和慢性肝炎,血栓闭塞性脉管炎,迁延性肺炎,慢性肾功能不全等。目前丹参更是中医活血化瘀、调经、安神、止崩带下与抗菌消炎的一味常用良药。《中华人民共和国药典》2005版归纳丹参的功效为祛瘀止痛,活血通经,清心除烦,主治“月经不调,经闭痛经,症瘕积聚,胸腹刺痛,热痹疼痛,疮疡肿痛,心烦不眠,肝脾肿大”。复方丹参滴丸,复方丹参注射液等就是利用复方治疗,主要用于心绞痛等冠心病。其中复方丹参滴丸(天津产)作为中成药于1997年12月被美国食品与药品管理局准许在美国进行临床研究,为丹参进入国际市场奠定了基础。

中药材GAP 与丹参的规范化种植

中药材GAP

中药材GAP是《中药材生产质量管理规范(试行)》(Good Agricultural Practice for Chinese Crude Drugs)的简称。其中GAP是Good Agricultural Practice的缩写,是由我国国家食品药品监督管理局组织制定,并负责组织实施的行业管理法规。该规范从保证药材质量出发,规范了中药材生产的全过程。其内容包括中药材的产前(产地生态环境:对大气、水质、土壤环境生态因子的要求:种质和繁殖材料;正确鉴定物种,种质资源的优化)、产中(优良的栽培技术 措施 ,要点是田间管理和病虫害防治),产后(采收与产地加工:确定适宜采收期及产地加工技术)包装、储藏、质量管理等全过程的系统原理,是一套完整的管理体系。

GAP针对植物药材、动物药材和矿物药材,以控制产品质量为核心以制定出科学的符合中药材社会化生产的标准操作规程(SOP)为手段,以实现中药材生产的优质高效为目标,以达到药材“真实、优质、稳定、可控”为最终目的。

中药材GAP 的实施及基地建设的意义

建立中药材的生产、采收、加工的规范标准,对于保证中药材产品以至中成药产品质量具有特别重要的意义。在中药现代化国际化进程中首先必须从中药材的质量抓起。中药材标准化是中药现代化和国际化的基础和先决条件。而中药材的标准化有赖于中药材生产的规范化。因为中药材是通过一定的生产过程形成的,药用植物的不同种植、不同生态环境、不同栽培和研制技术及采收、加工等方法都会影响药材的产量和质量,所以中药材生产是中药药品研制、生产、开发和应用整个过程的源头,只有首先抓住源头,才能从根本上解决中药的质量问题及中药标准化和现代化的问题 。

制定及实施GAP是促进农业产业化的重要措施。产业化不仅仅是制药企业和医疗保健事业的需要,也是农业结构调整的一条道路。中药是我国医药 传统 文化 的组成部分,但是许多传统道地药材往往生长于经济不发达的偏远地区,长期以来约80%的常用药材主要依靠采挖野生资源来满足社会需求。长期采挖的结果导致资源枯竭,生态环境破坏。建设中药材生产基地是中药资源保护扩大再生和生态环境保护最有效的手段,也是持续供应中药材产品的根本途径。因此,通过对道地中药材品种、种质、产地土壤、气候、栽培、加工等的系统研究,开展规模化规范化人工栽培,可在保证药材质量的同时保护野生资源和生态环境,实现药材资源的持续利用。

中药材GAP实施的进展

2002年2月国家食品药品监督管理局(CFDA)发布了《中药材生产质量管理规范(试行)》(即GAP的认证)。2003年11月1日起,SFDA开始正式受理

中药企业GAP认证申请。继国内第一批中药材规范化种植基地通过GAP认证试点工作,GAP认证将开始在我国中药材种植行业作为自愿认证逐渐推广。2005年6月止,已有26家中药材生产企业种植的26个中药材品种通过了中药材GAP认证。如河南西峡山茱萸生产基地、山西商洛丹参生产基地、四川雅安鱼腥草生产基地、安徽阜阳板蓝根生产基地等。

丹参的规范化生产

1)种质资源(四级标题一律去掉)

张国兴等[1]从生态型出发,研究国产著名道地药材川丹参大叶型、小叶型和野生型品种资源特性。首次确立了川丹参的品种资源类型建立了丹参品种资源分型研究的性状和生产力特性指标体系。小叶型丹参为川丹参的优质高产新品种。郭保林等[2]通过不同产区的丹参样品进行RAPD分析将扩增条带用NTSY-pc和AMDVA软件进行数据处理。研究表明,丹参居群内遗传多样性十分丰富;山东和河南产的栽培居群栽培种源来自当地野生居群,尚没有进行人工选择,丹参酮A等成分减少的原因主要是栽培条件不理想;地区间居群的遗传分化不均衡,四川中江和河北承德居群与 其它 居群较远;丹参道地性的确定应当依据现代的优质药材评价系统,山东和河南产的丹参也可认为是丹参的道地药材。

2) 产地生态环境

伍均等[3]对四川中江县丹参产区生态环境和土壤条件进行了调查研究,结果表明:丹参主要栽培在该县西北部地山区海拔600m~900m坡地气候温暖湿润,主产土壤为中壤质的石灰性和中性紫色土。一般土壤有机质和氮钾属于中低水平,速效磷丰富;在微量营养元素中,有效铁、锰、铜充足,有效锌、硼普遍缺乏。黄志勇等[4]用GAP质控下栽培的中药丹参作为重金属内控标准物,经过不同实验室测试和不同市区稳定性测试的试验结果表明,丹参内控标准金属含量的数据准确可靠,稳定性好可作为丹参中药材重金属质量控制的参考标准,也可作为其它中药GAP规范管理中有毒元素的内部质量控制的参考标准。蒋传中等[5]报道:山西商洛是丹参的道地产区,其独特的地理气候条件特别适宜丹参生长;其大气、灌溉水质、土壤环境无污染,特别适宜建立丹参GAP基地。张国兴等[6]根据主产区高产丹参和低产丹参药材质量的差异性,研究了非地带紫色土区丹参土壤发生学特征值分子比率的特性。试验结果表明,紫色土发生学特征值是丹参生药产量及规格品质的中药土壤因素之一,土壤风化程度深浅与丹参产量密切相关。

3) 栽培技术措施

朱小强等[7]为解决丹参春栽出苗慢,出苗不齐,缺苗多,影响产量的问题。采用分根法春栽,地膜覆盖,对土壤温度、土壤养分、出苗时间与出苗率等因素进行了对比试验,结果表明地膜覆盖后的丹参生态效应十分明显,产量也明显高于

露地对照组。韩建萍等[8-11]利用盆栽和大田实验研究了施肥对丹参植株生长及有效成分的影响。实验结果表明:丹参移栽时作基肥的氮肥不能施用太多,否则会影响成活,苗期也会出现烧苗症状;生长中期可施用适量氮肥,以利于茎叶的生长,为后期的生长发育提供光合产物。氮:磷=1:1时,产量比对照提高了;氮:磷:钾=1:时,丹参素和丹参酮的总含量比对照提高和18%;总丹参酮的含量与丹参根的直径呈负相关,细根影响产量和外观品质,建议生产上应适当密植。刘文婷等[11]报道丹参的产量和其有效成分的含量均以20cm ×25cm的栽培密度为最佳,根产量以鲜重记可达163kg/亩。丹参素含量可达,丹参酮的含量可达。建议在进行丹参规范化栽培时可选择株行距为20cm×25cm的栽培密度。

影响药材质量的因素

商品药材的质量常有很大差异,为保证临床用药的安全、有效,必须要保证所用药材的质量。但是,影响药材质量的因素错综复杂,如物种的遗传基因、产地环境条件、栽培技术措施、采收、加工和贮藏等。其中物种的遗传因素、产地生态环境、栽培技术措施是影响药材质量的主要因素。研究影响药材质量的各种因素,找出它们对药材质量的影响的一般规律和特殊规律,进而实现对药材质量从生产、采收、加工、贮藏到应用全过程的动态调控,确保药材的安全、有效和质量的稳定均一。

裕丹参简介

方城古称裕州,盛产丹参,因品质优良、疗效显著,为别与其它产地丹参而冠以地名 “裕丹参”,裕丹参始于金、元,鼎盛在明、清。清《方城志》(康熙三十六年刊)载:方城疆域之广轮,盖同古裕州,星夜分之桐柏山淮水之上游 峰峦联络,溪涧环绕,野多陂陀膏腴,物产桔梗、丹参极佳,乃地道之帮,医崇之上。《名医别录》曰:“诸药所生,皆有境界, ……丹参生桐柏山川谷及太山,桐柏山乃淮水发源之山,非江东之桐柏也。”孔志云:“动植形生,因地舛生;春秋节变,感气殊功。离其本土,则质同而效异;乘于采取,则物是而时非,名实既虚,寒温多谬,施于君父,逆莫大焉。”为别丹参之良莠,好恶真伪,医者用之有据,故金代谓之“裕丹参”。

参考文献(文献标号用方括号)

[1] 张国兴,王义明.丹参品种资源特性的研究[J].中草药,2002,33(8):247.

[2] 郭宝林,林生.丹参主要居群的遗传关系及药材道地性的初步研究[J].中草药,2002,33(12):3111.

[3] 武均,陈远学.中江县丹参产区的生态环境与土壤条件[J].四川农业大学学报,2005,27(3):284~288.

[4] 黄志勇,庄峙夏.GAP质控下栽培丹参重金属内控标准物的制备和表征[J].中国中药杂志,2003,28(9):808-811.

5 蒋传中,卫新荣.丹参种植地点的选择依据及标准研究[J].现代中药研究与实践,2004,18(1):51~52.

6 张兴国,程方叙.中江丹参土壤发生学的[J].中国中药杂志,2004,29(7):636~638.

7 朱小强,王新军.丹参地膜覆盖栽培技术实验[J].商洛师范高等专科学校校报,2001,15(4):22~24.

(4)8 韩建萍,梁宗锁,孙群等.施肥对丹参植株生长及有效成分的影响[J].西北农业学报,2002,11:67~71.

磷对丹参根系生长及总丹参酮积累的影响[J].西北植物学报,(3)9 韩建萍,梁宗锁.氮、2003,24:603~607.

10 韩建萍,梁宗锁.丹参根系氮、磷营养的吸收及丹参酮累积规律研究[J].中国中药杂志,2004,29(3):208~211.

11 刘文婷,梁宗锁,付亮亮等.栽植密度对丹参产量和有效成分含量的影响[J],现代中药研究与实践,2003,17(4):14~17.

12 王新军,朱小强,吴珍等.丹参播种育苗技术的试验研究[J],商洛师范专科学校学报,2004,18(1):87~89.

摘要:研究了运用固相微萃取/GC/ECD直接萃取溅定水中的三种氯酚的方法,得到了分析三种氯酚的SHE最佳萃取条件;选取聚丙烯酸酯(PA)萃取头,水溶液调pH=2,并用NaCl饱和,室温下在持续磁力搅拌下直接萃取40min,纤维萃取头在260℃脱附5min。所建立的方法适于快速、方便地测定水中三种氯酚,无须浓缩和预处理。 1 引言 固相微萃取是九十年代发展起来的一种快速、省时、高效、操作简便的样品前处理技术。它克服了以往预处理方祛的诸多不足,集采集、浓缩于一体,简单、方便、无溶剂,不会造成二次污染,是一种有利于环保的很有应用前景的预处理方法。萃取装置使用涂有色谱固定相或吸附剂的熔融石英纤维管(简称为萃取头),和外套不锈钢管加以保护,形状像一支色谱进样针,可方便地与气相色谱、液相色谱、色谱/质谱等仪器联用。它携带方便,可以直接从液体和气体中取样然后分析,已广泛用于环境样品的分析中[4][5][6][7]。氯酚类化合物是环境(水和土壤)中重要的污染物,其中2,4-氯苯酚(以下简称DCP)、2,4,6三氯苯酚(以下简称TCP)和五氯苯酚(以下简称PCP)已被我国列为水体中优先控制污染物。目前,对酚类化合物的分析主要是采用液-液萃取法,如美国EPA方法中的604[8]和[9],以及后来发展起来的固相萃取法(SPE)。液-液萃取的主要缺点是多步、费时,而且需要大量价格较高并对健康有害的高纯有机溶剂。SPE方法尽管同液-液萃取相比有了很大的改进,但仍是多步过程,且对半挥发性化合物的萃取受到方法本身的限制。本研究利用固相微萃/GC/ECD方法对水中这三种氯酚进行了分析,并讨论了各种实验条件对分析结果的影响,结果表明该方法快速、简单、准确,适合水中上述三种氯酚的分析。 2 实验部分 仪器与试剂惠普5890型气相色谱仪(配电子捕获检测器);固相微萃取装置(加拿大Supelco公司,萃取头为85μm膜厚的聚丙烯酸酯固相涂层针头)2,4-二氯苯酚、2,4,6-三氯苯酚、五氯苯酚色谱纯晶(购于PureChemical Analysis .);:氯化钠(分析纯);甲醇(色谱纯);无酚水(500ml蒸馏水加入5ml10%的NaOH和少量KMn04加热蒸馏,取馏出液。) 色谱条件色谱柱:HP公司HP-5MS 31m××μm石英毛细管柱;进样口温度:260℃;柱温:60℃(4min)—260℃(3min),升温速率8℃/min;ECD检测器温度:280℃;载气流速:高纯氮,/min;无分流进样。 固相微萃取条件与过程在100ml容量瓶中预先加入的HCl,再加入定量的氯酚标准溶液,并用无酚水稀释至刻度。取10ml(总容积约为12ml)洁净顶空瓶(带铝封盖和内衬聚四氟乙烯膜的密封垫),加入过量固体NaCl(约4g)和磁力棒,再加入配制好的标准待测样品,立即加盖密封压紧,将顶空瓶置于磁力搅拌仪上,启动搅拌,然后在常温下从瓶盖上方直接插入针管(注意针管套不要接触瓶内液面),推下手柄活塞杆,使萃取头完全浸入溶液中,保持40min。 萃取时间到达后,取出针管,立即插入气相色谱进样口进行热解析5min。 3 结果与讨论 测定结果 萃取涂层的选择 目前应用较多的三种多聚物涂层百非极性的聚二甲基硅氧烷(PDMS)和极性的聚丙烯酸酯(PA)或聚乙二醇(PEG)[4]。PDMS涂层通常用于非极性化合物的分析,PA涂层通常用于中极性化合物的分析,我们比较了同一氯酚混标样在PDMS和PA两种不同萃取头作用下的测定结果(见图3),结果表明PA萃—取头对酚类的萃取效果更好[9]。 萃取平衡时间对萃取量的影响由于待测物分子从溶液中向固相涂层的传质速度比较慢[3],所以直接萃取要求的时间要相对长一些。表1所示为三种氯酚在不同萃取时间下萃取量的影响。实验表明,平衡时间越长,SPME萃取量越大,40min以后萃取量基本上不随时间的延长而增大,表明萃取过程达到了平衡,故本实验取平衡时间为40min。 酸度对萃取量的影响三种氯酚均属于弱酸,其离解常数pka如下:2,4-DCP(pka =),2,4,6-TCP(pka=),PCP(pka=),在pH为中性的溶液中,氯酚都有离解,能形成离子状态,不利于萃取。降低pH值,能使它们的电离受到抑制,以保持氯酚的分子状态,使其在固相涂层上有更大的亲和力,从而增加萃取量,同时也提高了回收率。文献[10]中反映,当pH低于2时,萃取平衡时间将大大延长,pH=1时,PCP甚至在4h后才能达到平衡,考虑到实际应用,实验中我们测定了同一氯酚混标样在pH=2至pH=6值时的萃取效果(见图4),结果表明,pH值取2时,三种氯酚的萃取效果最佳。 盐加入量对萃取量的影响向待测样品中加入一定量的盐类,能产生所谓的“盐析”效应,可以降低氯酚在水中的溶解度,迫使氯酚进入SPME固相涂层中[11]。实验中,加入饱和的NaCl能明显提高氯酚的萃取量(见表2)。然而,PCP属于例外,因为它的离解常数(pka=)相对较高,中性溶液中其分子状态较少,以离子状态为主[2],当加入N幻后,由于溶液的离子强度增加,加速了PCP的高解反而使萃取量降低。当加NaCl的同时调节溶液的酸度(pH=2)时,PCP的离解降低,又能使PCP的萃取量恢复至未加NaCI的水平。实验表明,投加饱和NaCl应与调节溶液pH值同时采用方能保证三种氯酚的萃取量的提高。 方法的精密度、准确度及检出限表3 方法的线性范围、精密度、回收率情况 Table 3 Linear range,Precision and Recovery of the method 线性范围() RSD(%)(n=10) 平均回收率%(n=10) 2,4-DCP ~10 93 2,4,6-TCP ~20 90 PCP ~5 92 随着苯酚上的取代氯的增加,方法的最低检出限逐步提升,2,4-DCP为 ,2,4,6-TCP为·Lt-1,PCP为·L-1。表3结果表明,三种氯酚采用SPME方法线性范围宽,适用范围广。 4 结论 本研究表明同时测定三种氯酚的SPME最佳化条件是:采用PA萃取头,调节pH=2,以NaCl饱和,常温磁力搅拌下直接萃取40min,260℃下脱附5min。 SPME是一种快速、简便和非常有应用前景的样品预处理手段,用来分析水体中的三种氯酚化合物具有简便、快捷、高效的特点。

您能说详细一点吗?

萃取及萃取设备的研究进展论文

摘要:研究了运用固相微萃取/GC/ECD直接萃取溅定水中的三种氯酚的方法,得到了分析三种氯酚的SHE最佳萃取条件;选取聚丙烯酸酯(PA)萃取头,水溶液调pH=2,并用NaCl饱和,室温下在持续磁力搅拌下直接萃取40min,纤维萃取头在260℃脱附5min。所建立的方法适于快速、方便地测定水中三种氯酚,无须浓缩和预处理。 1 引言 固相微萃取是九十年代发展起来的一种快速、省时、高效、操作简便的样品前处理技术。它克服了以往预处理方祛的诸多不足,集采集、浓缩于一体,简单、方便、无溶剂,不会造成二次污染,是一种有利于环保的很有应用前景的预处理方法。萃取装置使用涂有色谱固定相或吸附剂的熔融石英纤维管(简称为萃取头),和外套不锈钢管加以保护,形状像一支色谱进样针,可方便地与气相色谱、液相色谱、色谱/质谱等仪器联用。它携带方便,可以直接从液体和气体中取样然后分析,已广泛用于环境样品的分析中[4][5][6][7]。氯酚类化合物是环境(水和土壤)中重要的污染物,其中2,4-氯苯酚(以下简称DCP)、2,4,6三氯苯酚(以下简称TCP)和五氯苯酚(以下简称PCP)已被我国列为水体中优先控制污染物。目前,对酚类化合物的分析主要是采用液-液萃取法,如美国EPA方法中的604[8]和[9],以及后来发展起来的固相萃取法(SPE)。液-液萃取的主要缺点是多步、费时,而且需要大量价格较高并对健康有害的高纯有机溶剂。SPE方法尽管同液-液萃取相比有了很大的改进,但仍是多步过程,且对半挥发性化合物的萃取受到方法本身的限制。本研究利用固相微萃/GC/ECD方法对水中这三种氯酚进行了分析,并讨论了各种实验条件对分析结果的影响,结果表明该方法快速、简单、准确,适合水中上述三种氯酚的分析。 2 实验部分 仪器与试剂惠普5890型气相色谱仪(配电子捕获检测器);固相微萃取装置(加拿大Supelco公司,萃取头为85μm膜厚的聚丙烯酸酯固相涂层针头)2,4-二氯苯酚、2,4,6-三氯苯酚、五氯苯酚色谱纯晶(购于PureChemical Analysis .);:氯化钠(分析纯);甲醇(色谱纯);无酚水(500ml蒸馏水加入5ml10%的NaOH和少量KMn04加热蒸馏,取馏出液。) 色谱条件色谱柱:HP公司HP-5MS 31m××μm石英毛细管柱;进样口温度:260℃;柱温:60℃(4min)—260℃(3min),升温速率8℃/min;ECD检测器温度:280℃;载气流速:高纯氮,/min;无分流进样。 固相微萃取条件与过程在100ml容量瓶中预先加入的HCl,再加入定量的氯酚标准溶液,并用无酚水稀释至刻度。取10ml(总容积约为12ml)洁净顶空瓶(带铝封盖和内衬聚四氟乙烯膜的密封垫),加入过量固体NaCl(约4g)和磁力棒,再加入配制好的标准待测样品,立即加盖密封压紧,将顶空瓶置于磁力搅拌仪上,启动搅拌,然后在常温下从瓶盖上方直接插入针管(注意针管套不要接触瓶内液面),推下手柄活塞杆,使萃取头完全浸入溶液中,保持40min。 萃取时间到达后,取出针管,立即插入气相色谱进样口进行热解析5min。 3 结果与讨论 测定结果 萃取涂层的选择 目前应用较多的三种多聚物涂层百非极性的聚二甲基硅氧烷(PDMS)和极性的聚丙烯酸酯(PA)或聚乙二醇(PEG)[4]。PDMS涂层通常用于非极性化合物的分析,PA涂层通常用于中极性化合物的分析,我们比较了同一氯酚混标样在PDMS和PA两种不同萃取头作用下的测定结果(见图3),结果表明PA萃—取头对酚类的萃取效果更好[9]。 萃取平衡时间对萃取量的影响由于待测物分子从溶液中向固相涂层的传质速度比较慢[3],所以直接萃取要求的时间要相对长一些。表1所示为三种氯酚在不同萃取时间下萃取量的影响。实验表明,平衡时间越长,SPME萃取量越大,40min以后萃取量基本上不随时间的延长而增大,表明萃取过程达到了平衡,故本实验取平衡时间为40min。 酸度对萃取量的影响三种氯酚均属于弱酸,其离解常数pka如下:2,4-DCP(pka =),2,4,6-TCP(pka=),PCP(pka=),在pH为中性的溶液中,氯酚都有离解,能形成离子状态,不利于萃取。降低pH值,能使它们的电离受到抑制,以保持氯酚的分子状态,使其在固相涂层上有更大的亲和力,从而增加萃取量,同时也提高了回收率。文献[10]中反映,当pH低于2时,萃取平衡时间将大大延长,pH=1时,PCP甚至在4h后才能达到平衡,考虑到实际应用,实验中我们测定了同一氯酚混标样在pH=2至pH=6值时的萃取效果(见图4),结果表明,pH值取2时,三种氯酚的萃取效果最佳。 盐加入量对萃取量的影响向待测样品中加入一定量的盐类,能产生所谓的“盐析”效应,可以降低氯酚在水中的溶解度,迫使氯酚进入SPME固相涂层中[11]。实验中,加入饱和的NaCl能明显提高氯酚的萃取量(见表2)。然而,PCP属于例外,因为它的离解常数(pka=)相对较高,中性溶液中其分子状态较少,以离子状态为主[2],当加入N幻后,由于溶液的离子强度增加,加速了PCP的高解反而使萃取量降低。当加NaCl的同时调节溶液的酸度(pH=2)时,PCP的离解降低,又能使PCP的萃取量恢复至未加NaCI的水平。实验表明,投加饱和NaCl应与调节溶液pH值同时采用方能保证三种氯酚的萃取量的提高。 方法的精密度、准确度及检出限表3 方法的线性范围、精密度、回收率情况 Table 3 Linear range,Precision and Recovery of the method 线性范围() RSD(%)(n=10) 平均回收率%(n=10) 2,4-DCP ~10 93 2,4,6-TCP ~20 90 PCP ~5 92 随着苯酚上的取代氯的增加,方法的最低检出限逐步提升,2,4-DCP为 ,2,4,6-TCP为·Lt-1,PCP为·L-1。表3结果表明,三种氯酚采用SPME方法线性范围宽,适用范围广。 4 结论 本研究表明同时测定三种氯酚的SPME最佳化条件是:采用PA萃取头,调节pH=2,以NaCl饱和,常温磁力搅拌下直接萃取40min,260℃下脱附5min。 SPME是一种快速、简便和非常有应用前景的样品预处理手段,用来分析水体中的三种氯酚化合物具有简便、快捷、高效的特点。

给个邮箱,可以发很多给你

呵呵,这个可是知识产权啊,这样要不会有人给你的啊,你去淘宝上买份吧?别人自己写的太贵,不太可能给你,我倒是有,但是快要发表了,不太可能给你

是指夹带剂占加料量的质量分数。往往夹带剂和萃取剂不是一种状态的物质,所以一般不用物质的量之比、体积比等表示夹带剂多少,而采用比较方便的质量分数表示。下面是有关超临界流体萃取及夹带剂的一些介绍和一篇论文,仅供参考。超临界流体萃取(Superitical Fluid Extraction,以下简称SFE)是一项发展很快、应用很广的实用性新技术。传统的提取物质中有效成份的方法,如水蒸汽蒸馏法、减压蒸馏法、溶剂萃取法等,其工艺复杂、产品纯度不高,而且易残留有害物质。超临界流体萃取是利用流体在超临界状态时具有密度大、粘度小、扩散系数大等优良的传质特性而成功开发的。它具有提取率高、产品纯度好、流程简单、能耗低等优点。 什么是超临界:任何一种物质都存在三种相态----气相、液相、固相。三相呈平衡态共存的点叫三相点。液、气两相呈平衡状态的点叫临界点。在临界点时的温度和压力称为临界温度和临界压力。不同的物质其临界点所要求的压力和温度各不相同。超临界流体(SCF)是指在临界温度(Tc)和临界压力(Pv)以上的流体。高于临界温度和临界压力而接近临界点的状态称为超临界状态。超临界萃取的原理:超临界流体萃取分离过程的原理是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,超临界流体具有很好的流动性和渗透性,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以在超临界流体萃取过程是由萃取和分离组合而成的。超临界流体(SCF)的选取:溶质在某溶剂中的溶解度与溶剂的密度呈正相关,SCF也与此类似。因此,通过改变压力和温度,改变SCF的密度,便能溶解许多不同类型的物质,达到选择性地提取各种类型化合物的目的。可作为SCF的物质很多,如二氧化碳、一氧化亚氮、六氟化硫、乙烷、甲醇、氨和水等。其中二氧化碳因其临界温度低(Tc=℃),接近室温;临界压力小(Pv=),扩散系数为液体的100倍,因而具有惊人的溶解能力。且无色、无味、无毒、不易燃、化学惰性、低膨胀性、价廉、易制得高纯气体等特点,现在应用最为广泛。� 二氧化碳超临界萃取的溶解作用:在超临界状态下,CO2对不同溶质的溶解能力差别很大,这与溶质的极性、沸点和分子量密切相关,一般来说有以下规律:亲脂性、低沸点成分可在104KPa以下萃取,如挥发油、烃、酯、内酯、醚、 环氧化合物等,像天然植物和果实中的香气成分,如桉树脑、麝香草酚、酒花中的低沸点酯类等;化合物的极性基团( 如-OH、-COOH等)愈多,则愈难萃取。强极性物质如糖、氨基酸的萃取压力则要在4×104KPa以上;化合物的分子量愈大, 愈难萃取。分子量在200~400范围内的组分容易萃取,有些低分子量、易挥发成分甚至可直接用CO2液体提取;高分子量 物质(如蛋白质、树胶和蜡等)则很难萃取。超临界CO2萃取的特点 :1、可以在接近室温(35-40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散,完整保留生物活性,而且能把高沸点,低挥发渡、 易热解的物质在其沸点温度以下萃取出来。%B2、由于全过程不用有机溶剂,因此萃取物绝无残留溶媒,同时也防止了提取过程对人体的毒害和对环境的污染,100%的纯天然,符合当今“绿色环保”、“回归自然”的高品位追求。%B3、控制工艺参数可以分离得到不同的产物,可用来萃取多种产品,而且原料中的重金属、无机物、尘土等都不会被CO2溶解带出。4、蒸馏和萃取合二为一,可以同时完成蒸馏和萃取两个过程,尤其适用于分离难分离的物质,如有机混合物、同系物的分离精制等 。 5、能耗少;热水、冷水全都是闭路循环,无 废水、废渣排放。CO2也是闭路循环,仅在排料时带出少许,不会污染环境。由于能耗少、用人少、物料消耗少,所以运行费用非常低。因此,CO2特别适合天然产物有效成分的提取。对于天然物料的萃取,其产品真正称得上是100%纯天然的“绿色产品”。影响超临界萃取的主要因素: 1.密度:溶剂强度与SCF的密度有关。温度一定时,密度(压力)增加,可使溶剂强度增加, 溶质的溶解度增加。2.夹带剂:适用于SFE的大多数溶剂是极性小的溶剂,这有利于选择性的提取,但限制了其对极性较大溶质的应用。因此可在这些SCF中加入少量夹带剂(如乙醇等)以改变溶剂的极性。加一定夹带剂的SFE-CO2可以创造一般溶剂达不到的萃取条件,大幅度提高收率。 3. 粒度:溶质从样品颗粒中的扩散,可用Fick第二定律加以描述。粒子的大小可影响萃取的收率。一般来说,粒度小有利于 SFE-CO2萃取。 4. 流体体积:提取物的分子结构与所需的SCF的体积有关。 增大流体的体积能提高回收率。 超临界流体萃取技术研究与应用进展赵东胜,刘桂敏,吴兆亮(河北工业大学化工学院,天津300130)摘要:综述了超临界流体萃取的基本原理,以及提高超临界流体萃取效率的方法,包括加入夹带剂,利用高压电场和超声波等.并对超临界流体萃取技术在生物化工,食品,医药和环保行业的最新应用情况作了介绍.关键词:超临界流体萃取;萃取效率;夹带剂;应用中图分类号:文献标识码:A文章编号:1008-1267(2007)03-0010-03超临界流体萃取技术(SFE)是利用超临界流体作为萃取剂,从液体或固体中萃取了特定成分,以达到分离目的产物的一种新型分离技术.超临界流体萃取具有其它分离方法无可比拟的优点:易于和产物分离,安全无毒,不造成环境污染,操作条件温和不易破坏有效成分等.因此,超临界流体萃取技术在生化,医药,日化,环保,石化及其它领域具有广阔的应用前景.1超临界流体萃取超临界流体超临界流体(SCF)是指超过临界温度(TC)和临界压力(PC)的非凝缩性的高密度流体[1].超临界流体兼有气体和液体两者的特点,密度接近于液体,而粘度和扩散系数却接近于气体,因此不仅具有与液体溶剂相当的溶解能力,而且具有优良的传质性能.超临界流体的溶解能力除了与超临界流体和待分离溶质二者性质相似性有关外,还与操作温度和压力等条件有关.操作温度与超临界流体的临界温度越接近,其溶解能力越强;无论操作压力多高,超临界流体都不能液化,但流体的密度随压力的增大而增大,其溶解能力也随之增强.超临界流体萃取的原理超临界流体萃取技术就是利用上述超临界流体的特殊性质,将其在萃取塔的高压下与待分离的固体或液体混合物接触,调节系统的操作温度和压力,萃取出所需组分;进入分离塔后,通过等压升温,等温降压或吸附等方法,降低超临界流体的密度,使该组分在超临界流体中的溶解度减小而从中分离出来.提高萃取效率的方法提高萃取效率的方法除了适当提高萃取压力,选取合适萃取温度和增大超临界流体流量之外,还可以采用加入适量的夹带剂,利用高压电场和超声波等措施.加入夹带剂加入适量合适的夹带剂可明显提高超临界流体对被萃取组分的选择性和溶解度.张昆等[2]对夹带剂甲醇的加入对超临界流体的溶解能力和萃取选择性进行了研究,结果表明甲醇的加入可以显著增加流体的溶解能力,且其增加的程度随甲醇的添加量的增加而增加,这在一定程度上有利于极性物质的提取,但是加入甲醇后会使流体的选择性降低.因此在添加夹带剂时,应选择最优添加量.表面活性剂也可以作为夹带剂提高超临界流体萃取效率,提高的程度与其分子结构有关,分子的脂溶性部分越大,其对超临界流体的萃取效率提高越多[3].关于夹带剂的作用原理,8zlemCü>lü-stündag等[4]研究认为是夹带剂的加入改变了溶剂密度或内部分子间的相互作用所致.在选择萃取剂时应注意以下几点:(1)在萃取阶段,夹带剂与溶质的相互作用是首要的,即夹带剂的加入能使溶质的溶解度较大幅度提高;(2)在溶质再生(分离)阶段,夹带剂应易于与溶质分离;(3)在分离涉及人体健康的产品时,如药品,食品和收稿日期:2006-10-10第21卷第3期2007年5月天津化工TianjinChemicalIndustry化妆品等,还需注意夹带剂的毒性问题.利用高压电场高压脉冲电场可显著改善萃取溶质与膜脂等成分的互溶速率及通过细胞壁物质的传质能力,从而提高萃取效率.宁正祥等[5]用高压脉冲电场强化超临界CO2萃取荔枝种仁精油,在300MPa以下时,高压脉冲处理可明显改善超临界萃取效率;尤其是在萃取率低于80%时,高压脉冲电场效果显著.利用超声波在超临界流体萃取天然生物资源活性有效成分的过程中,采用强化措施减少萃取的外扩散阻力往往能取得很好的萃取效果.陈钧等[6]研制了带有超声换能器的萃取器,利用超声强化超临界萃取中的传质过程.方瑞斌等[7]用超声波强化超临界CO2萃取紫杉醇.研究表明,如要完全萃取紫杉醇,未强化超声超临界CO2的萃取时间是强化超声超临界CO2的3倍.在对紫杉醇浸膏的萃取实验中,强化超声的超临界CO2很快达到100%萃取,而未强化超声的超临界萃取在3倍时间及用量相同条件下只达到41%的萃取率,这充分显示了超临界萃取与超声技术并用的优越性.Ai-junHu等[8]对超声强化超临界流体萃取薏苡种子中的薏苡油和薏苡仁酯的研究也表明,超声强化技术可以很大程度地提高萃取效率.此外,还有一些强化措施包括搅拌,增加流量或采用移动床等,这些措施都是为了达到减少萃取中外扩散阻力的目的.2超临界流体萃取技术在工业上的应用在生物化工中的应用由超临界流体的特性可知,它特别适合用于热敏性生物物质的分离和提取.目前超临界流体萃取技术已应用于提取和精制混合油脂,如用EPA(二十碳五烯酸)和DHA(二十二碳六烯酸)总含量为60%的鱼油为原料,可得到纯度高达90%的EPA和DHA[9].MarionLétisse等[10]对超临界流体萃取法富集沙丁鱼中EPA和DHA的操作条件进行了优化.袁成凌等[11]对超临界流体萃取微生物发酵法生产的真菌油脂进行了研究,结果表明采用超临界CO2富集微生物菌丝体中多不饱和脂肪酸的方法在工艺上是可行的,但富集效果还有待进一步提高.等[12]对超临界流体萃取牛脑中的胆固醇进行了研究.在食品工业中的应用超临界流体萃取技术在食品工业的应用已有相当长的历史.用超临界流体萃取技术脱除咖啡豆和茶叶中的咖啡因早已实现工业化生产.德国SKW公司生产脱咖啡因茶,采用超临界流体萃取技术生产能力达6000t/a.此外,SKW公司还将超临界流体萃取技术应用于啤酒的生产,该公司超临界流体萃取加工酒花的设备的生产能力为104t/a[13].SeiedMahdiPourmortazavi等[14]研究了利用超临界流体萃取植物中的精油,结果表明,与蒸馏法相比此法具有明显优势:萃取时间短,成本低,产品更纯净.等[15]对超临界流体萃取玉米中白僵菌毒素进行了研究.将超临界流体技术应用于食品领域,可使食品的外观,风味和口感更好,因此超临界流体萃取技术在食品工业具有广阔的应用前景.在医药行业中的应用超临界流体萃取在医药行业的应用是非常广泛的,尤其值得一提的是在中药有效成分的提取方面,我国做了大量工作.目前,超临界流体萃取中药有效成分已实现工业化生产,浙江康莱特公司将其用于萃取抗癌中药,云南森菊公司拥有两套1000L的萃取除虫菊成分的超临界流体萃取装置[16].杜玉枝等[17]研究表明,CO2超临界萃取比石油醚抽提优越,具有收率高,提取时间短及无溶剂残留等优点,适合于藏成药安神丸的制备.Benliu等[18]研究了利用超临界流体萃取黄连根中的黄连成分.很多学者对超临界流体萃取中药有效成分进行了研究,如川芎,白芷,当归和黄连等.在环境保护中的应用超临界流体萃取技术在环境保护领域尤其是处理被污染的固体物料和水体等方面具有广阔的应用前景.于恩平[19]利用超临界流体萃取方法处理多氯联苯污染物的研究表明,用超临界流体萃取技术可以清除固体物料中的有机毒性物质.高连存等[20]对炼钢厂炼焦车间土壤进行了SFE研究,比较了温度和压力对超临界流体萃取PAH(苯丙胺酸羟化酵素)类化合物的影响,并且用GC-MS(气-质联用法)分析结果和索式提取法做了对比,结果其回收率远远第21卷第3期赵东胜等:超临界流体萃取技术研究与应用进展11高于索式提取法的回收率.游静等[21]研究了用固相吸附与超临界流体萃取相结合富集水中有机污染物的方法,表明超临界流体萃取对水中极性较大的有机化合物的处理是可行的.等[22]对超临界流体萃取海洋沉积物和土壤样本中的多环芳烃污染物进行了研究,多环芳烃回收率达到90%以上.Kong-HwaChiu等[23]也将超临界流体萃取技术应用于治理环境中的有机污染物.除了上面提到的几个方面的应用,超临界流体萃取技术还在日化,陶瓷和仪器分析等领域有着重要的应用.3展望超临界流体与气体和液体相比,可以说兼具后两者的优点而又克服了它们的不足,而且超临界流体萃取操作条件温和,所以超临界流体萃取技术相比其它分离方法优势非常明显.目前,超临界流体萃取技术在各领域应用过程中还有很多问题有待解决,相信通过国内外专家的共同努力,该技术在各领域的应用必将深入,而且会不断拓宽,其在工业生产上的作用也将随之日益凸显

科技论文范文萃取精馏

生活中物理科技是与技术产业连结在一起的,因此它又是科学、技术、生产一体化的生产体系,并且受到市场的大力推动。 下面我给大家分享一些物理科技论文500字,大家快来跟我一起欣赏吧。 物理科技论文500字篇一 生活中有很多的物理现象,许多简单的现象可以用所学知识去解答。 现象一:飞快的火车有一个安全距离,当我们在公路上步行时,不宜靠中太近,除了害怕离线的车会撞到之外。还有一个意料之外的原因,对此本文将作出解答。 现象二:取两片很薄的纸,将他们贴近,用力的吹,我们并不能将纸吹开,反而出现被“吹拢”的情况。 现象三:,对于相同流量的水而言,口径大的水龙头,水的流速很慢,但是对于口径小的水龙头,可以明显的看到流速加快了。这是什么原因呢? 总结来看,空气和水都是流体,在两者之间有着一定的共同点,都遵循流体的基本性质,在流体的学习中有两个很重要的方程叫:伯努利方程和连续性方程。用它们就可以很简单的解释上面三个现象。首先,伯努里方程的基本表达式为:P+1/2pv+pgh=恒量。P指流体周围的压强大小,p指流体本身的密度,v指流体的速度。在上述但现象中,可把水和空气近似的看作理想流体,且它们作常流动。在以上前两种情况中,都可以将pgh看作是不变的,所以我们很容易的就得到P+1/2pv=恒量。容易得出压强和速度成反相关。下面将对三个 现象作出具体的解释。 解释现象一:其中提到一个意外的原因就是很有可能身边的空气将我们“推”向汽车而发生意外。为什么这么说?当车飞快的从我们身边开过的时候,对周围的空气造成了影响:使它们的速度加快,在这样的情况下,根据上面的推倒易知:速度过快造成周围空气的压强减小,在汽车周围形成一个压强差,在车周围的事物就容易被“压”到车下。这是相当危险的,所以步行要尽量的靠边走。 解释现象二:当两片薄纸靠近,我们将它们看成和外面的空气分开,当我们吹气时,使得两纸间少量的空气流速加大,压强减小,外围的空气使得纸片贴在一起。 解释现象三:同流量即体积相同,所以易知SV=S V。这就是理想流体的连续性方程。它表示理想流体作定常流动时,流体的速率与流管截面积的乘积是一个恒量。由此可知,当我们将口径边小时,必然导致流速加快。根据个原理在科技上也有很大的运用,比如切割水枪,对于一样的出水量,这种水枪的口径很微小,使得出水的速度极快,所含动能极大, 在生产上有很大的运用。 最后,要介绍一个很实用的方法:取水。在家中,看到大人用一根管子插到水里,用嘴在管口吸气,水就会自己流出来,我也试过,但没有成功,现在我目标了原因:必须保证吸气的一端低于出水的一端,为什么呢?这是利用了大气压的原理。当吸气后管子里成为真空,水就被外界大气压压倒了出水端。 物理在我们的生活中有很大的作用,我们可以借着生活来学习物理,再利用物理来服务生活。 物理科技论文500字篇二 浮力的应用 孔明灯“孔明灯”,是以蜀汉刘备军中,足智多谋的军师诸葛亮(孔明)命名的,算起来已有一千七百多年的历史了。当年,诸葛孔明被司马懿围困於平阳,无法派兵出城求救。孔明算准风向,制成会飘浮的纸灯笼,系上求救的讯息,其后果然脱险,於是后世就称这种灯笼为孔明灯。另一种说法则是这种灯笼的外形像诸葛孔明戴的帽子,因而得名。 最早的孔明灯的作法是:用很细的竹篾做成灯笼架,四周和顶上都用薄纸糊严,只在底部留个圆口。在灯笼下面挂上松脂,点燃松脂后,灯笼就会升上空中。由于灯笼里有火光,古代战争中,曾经把它作为夜间军事行动的信号,如同现代所用的信号弹一样。 清朝年间,汉民族不满清政府的统治,纷纷起来开展“反清复明”斗争。为成义举,把放“孔明灯”作为统一行动的指挥信号。 过去,汉人们把“孔明灯”作通信联络使用,而后来人们把放“孔明灯”作为一种民间娱乐,现代人放孔明灯多作为祈福之用。男女老少亲手写下祝福的心愿,象徵丰收成功,幸福年年。 孔明灯的结构可分为主体与支架2部份,主体大都以竹篦编成,次用棉纸或纸糊成灯罩,底部的支架则以竹削成的篦组成。孔明灯可大可小,可圆形也可长方形。 一般的孔明灯是用竹片架成圆桶形,外面以薄白纸密密包围而开口朝下。欲点灯升空时,在底部的支架中间绑上一块沾有煤油或花生油的粗布或金纸,放飞前将油点燃,灯内的火燃烧一阵后产生热空气,孔明灯便膨胀,放手后,整个灯会冉冉飞升空,如果天气不错,底部的煤油烧完后孔明灯会自动下降。 孔明灯的原理与热气球的原理相同,皆是利用热空气之浮力使球体升空。然而为何热空气会飘浮呢?我们可用阿基米德原理来解释它:当物体与空气同体积,而重量(密度)比空气小时就可飞起,此与水之浮力的道理是相同的。 将球内之空气加热,球内之一部份空气会因空气受热膨胀而从球体流出,使内部空气密度比外部空气小,因此充满热空气之球体就会飞起来。 看了“物理科技论文500字”的人还看: 1. 500字物理小论文怎么写 2. 初中科学论文500字 3. 500字科技论文 4. 大学物理科技论文范文 5. 大学物理科技论文

高速公路上护栏里的小秘密 [ 来源:中学生科技网 | 时间:2010-4-2 15:47:18 ] 前两天,我们一家人去了外地游玩,途中经过了很长的高速公路,汽车飞驰,感觉很平坦,风景也很美丽.回家时由于天已经漆黑,高速公路两旁的风景不见了,不过很惊喜的是:我发现了藏在护栏里的小秘密. 每当夜幕降临,汽车的灯光打开照向前方,前面两旁的护栏就像点亮了无数盏路灯,它们均匀地排列着,就像一串串耀眼的明珠,把整条大路照得明晃晃的.我好奇地问爸爸这是为什么.他只粗略地解释:这是由于光的反射形成的,这样可以提高安全性. 中学生科技网 为了一探究竟我回家查阅了大量资料.原来是高速路上安装有大量的反光板、反光灯、反光标志牌.它们能反光是因为反光涂层上有玻璃微珠,使光发生折射和散射.高速公路上每隔一点距离就有用反光材料制作的标志牌,正常直线路段50米1个,弯道20米1个,匝道5米/个,具有很明显的警示作用,这种标志牌表面涂了一层反光率很高的荧光漆,能把各个角度入射的光反射出相对集中的平行光.在没有光的条件下会表现得很暗,一旦有光亮射到标志牌的表面,它就会沿着来时的方向射回.此外,汽车尾灯只要照到这些反光板,就能产生如同雾灯一般的光泽,煞是显眼. 若高速路上反光板密集、新、大个,会给人豁然开朗的感觉.前面的高速路在反光板的作用下,路宽、拐弯、坡度一目了然,司机开起车来视觉良好,轻松自在,减少了不少夜间事故的发生呢. 高速公路上的科学知识还有很多很多,以后我还会继续努力,探索更多的秘密,解开更多的难题! 网分子势能之谜 [ 来源:中学生科技网 | 时间:2010-5-21 11:47:13 ] 在书上看到这样一个实验,书上说这是一个谜题,其实可以用现在的物理学已有的知识来解释. 原题是这样的,用一条透明的塑料管,在管子的一头接上一个漏斗,并将其接在1m左右的支架上,将另一头接在一个圆柱体物体上,并绕5~6圈,注意不可以折管,要保持管的畅通,更值得注意的是,漏斗一端的水平高度大于另一头出口的高度,然后从漏斗的那一头放进水.会发现,漏斗一端的水平很高时,远高另一端的水平线,水竟然不会从另一端流出来. 这个实验以谜题的形式刊登在书上,大家都认为很难解释这个实验,其实在这个实验中,首先值得注意的是螺旋管中的空气.假如没有空气,将不会出现这种现象. 解释这个实验,要从气体压缩的知识入手,我们知道气体压缩产生了内能,而内能是由分子势能和分子动能组成的.压缩气体使分子间的距离减少,水管中水的重力对气体做功,一部分表现为分子动能,以热量的形式与外界进行能量交换,另一部分以分子势能的形式存在,根据能量守恒定律,高水平的水就不能穿过带有空气的螺旋管,当然气体的分子势能也有限,当具有更高的重力势能的水可以从中通过. 中学生科技网 分子势能在自然条件下恢复需要能量,假如没有分子势能,气体将被无限压缩,而不会恢复原来的体积这并不符合实际的现象. 这在工业,生活上很有应用价值的.保证管道运输的压力足够,必须排尽管道中的气体,才能保证运输的顺利.分子势能还广泛运用在汽车上有人们熟知的安全气囊,还有气囊悬挂系统,气囊起到一个反冲的作用,从微观意义上讲,就是压缩做功与分子势能的转化.在小的时候我曾玩了一个游戏,在一个空的玻璃瓶中,放入一个点燃的鞭炮,瓶不会破,而在一个相同的玻璃瓶中,加入水,再放入一个鞭炮,瓶就会破,当然这样很危险,希望大家不要模仿.当时只是好玩,并不知道其原理,水的分子势能变化小,气体变化大,从另一个意义上说明了,分子势能起缓冲作用. 在微观世界有太多的人类未知,有待你我发现.在生活中观察现象,从现象中认识本质,从本质中思考科学,相信你一定能成功! 作者: 冷博文 广西桂林全州高中 人或动物的生存与植物的关系 [ 来源:中学生科技网 | 时间:2010-4-2 15:17:37 ] 前几年,我们家搬进了现在的新房子.刚搬完家的时候,叔叔阿姨们就给我们家送来了好几盆花和几株树.门口、客厅里、房间里和阳台上都摆上了各式各样的花草树木.我对爸爸说:“我们家都有成植物园了,摆那么多的植物干吗?”爸爸笑着说:“植物能制造气氛,净化空气,人和动物谁都离不开它们,离开了它们都有不能生存.”用处多着呢.人或动物离开植物后不能生存?为什么人或动物离开植物后不能生存?我将信将疑.决定做几个小实 验来证明这个问题,来解除我心中疑虑! 星期天,我从宠物店里买来两只老鼠.这两只可怜的小老鼠即将成为我的实验品.它们不停地挣扎着,圆溜溜的小眼睛一直瞪着我.我把第一只小巧玲珑的老鼠放在一个大鱼缸里,再把鱼缸封得严严实实的,生怕瓶里的空气与外界的空气相通.我仔细地观察着,只见小老鼠沿着鱼缸壁,绕着缸底快速地向前窜.咦,小老鼠不是活得好好的吗?难道爸爸说的不是真的?可是,没过几分钟,只见小老鼠绕圈的速度越来越慢,直到彻底没劲了,奄奄一息的样子.这时,我把包鱼缸的塑料拿开,捉出第一只小老鼠,放进第二只小老鼠,把它搬进四盆枝繁叶茂的植物中.然后再一次盖上那些塑料.我不停地拍打鱼缸,只见小老鼠惊慌地乱窜,过了好久也没有看到它要咽气的样子.这个实验真的证明了植物可以输送动物所需要的氧气. 为了进一步证明人类和动物对植物的依赖性.我来到我们老家附近一个工厂.那儿的空气里到处弥漫着一股哝哝的灰尘味,熏得我直咳嗽.我感到十分难受.然后,我又跑向我们家屋后的一片竹林里,那是一个空气新鲜的地方,我感觉极为清爽.呼吸着新鲜空气,人也舒服很多.这个实验证明植物可以净化空气,使人呼吸顺畅. 所以这两个实验足以证明,人类和动物的生存与植物有密切的关系.这其中到底有多大的科学道理呢?带着好奇我跑到图书馆去查阅了许多的有关科技的书籍,还上网查询,总结出了以下点: 1、人必须依靠植物提供氧气,只有植物才能制造氧气.如果说一个人几天不吃饭、几天不喝水且有一息尚存的话,几分钟就可能性命难保,氧气可是人生命活动的第一需要呀!一个成年人每天呼吸约2万多次,吸入氧气千克,呼出二氧化碳千克. 2、动物与植物的呼吸,物质的燃烧,也都要消耗氧气,释放二氧化碳.这样一来,空气中的氧气不就一天天增加么?不!天地间之所以没有产生过这种危机,就是因为植物既是天然氧气“制造厂”,又是二氧化碳的“广阔市场”. 3、有人做过统计,1公顷阔叶林,在生长季节每天能制造氧气750千克,吃掉二氧化碳1000千克.所以算起来,只要有10万平方米的林木,就可以供给一个人氧气的需要量,并把呼出的二氧化碳吸收掉.因为有植物源源不断地补充氧气,空气中的氧气才能保持基本恒定.相反,如果没有植物,地球上的氧气只要500年左右的时间既可以用完. 所以,人类和动物能够维持生命,活动时所需要的氧气,必须归功于绿色植物.植物与我们人类和动物的生命有着相当密切的关系.在此,我呼吁全社会的人们不要再砍伐树木,不要再糟蹋绿色植物了,让植物成为我们最好的朋友!让我们永远生活在绿色植物当中,享受它释放氧气所带给我们的新生活! 相对论的遗漏一贯性 [ 来源:中学生科技网 | 时间:2010-5-21 11:48:37 ] 在生活中,有许多物理量与时间有关,像摆球周期,比热容等,为什么需要时间,可见,时间不是一种幻觉. 人们都认为,惯性是物质的本身属性,其实不然,惯性存在于四维空间(即时空)中,时空具有一种定性(位置不轻易改变)使物体具有惯性.最简单的证明就是机械时钟,它就是利用物质惯性进行工作的,如果无惯性,时钟将达到光速.还有许多例子,像LC振荡回路,物体下落也需要时间. 惯性的表现不是在空间三维中,而是与时间维的相对关系物体的加速运动对时空维中某种物质做功,减速就是这种物质对运动物体做功,关于这种物质,还有待推证,并需要了解它的微观意义. 惯性在时空中所做的功因该满足w=mav,因此说在时间维中,改变时间距离要做功,即做加速运动,不改变不要做功,即做匀速或静止运动. 中学生科技网 没有摩擦就只受一个力,就可达到很大速度,二者是不是有直接关系,我们可以用惯性与摩擦力做比较,摩擦力可以让物体动能转化为内能而惯性使物体动能转移到时间维中,可以再次无损耗地运动,这就是惯性与摩擦力的区别. 质量大的物体达到光速是需要做很大功的,因为惯性约束物体运动,但超越光速不是不可能的.在牛奶杀菌时用到瞬间高温,这可以用瞬间高速,这并不违背能量守恒定律. 但这并不能穿越时空,光只是物质的表现形式,也是从物质中产生的,正如我们现在看到的太阳是五分钟前的太阳,因为达到光速与人相遇的只是信息即使能穿越,也不会改变历史,因为这只是以光速传输的信息罢了. 人穿越时空是很危险的,任何一个动作都将改变历史,但我们的时空从未改变,说明在人类有限时间中人类未曾穿越时空,或许穿越的时空不是我们这一维,而是我们这一维的复制品.假如可以穿越时空,我们是怎么来的,未来怎么样,我们只知道时间的一小段,就像胶卷的一小部分,就算有什么力量使时间加速运动,人也不会感到,时空中许多事都是已确定的,有一种人不知道的物质赋予了人意识,我们都有这样的感觉,在自己意识之外的都是已确定的,而自己意识可改变这些确定的事物,自己的意识在别人看来,也是已确定的,这是一种很深奥的逻辑关系,用这种关系来确定人与人的“相对论”时间的运动是人意意识感觉不到的. 当人在太空中以加速度在升降机中上升与人在地球上,效果是一样的,惯性与时间是相对的,力是一个持续量,惯性在时间维中静止表现为力,运动表现为加速度. 假如时间与光速有关,惯性是时间的一种表现,物体在时间维中运动越快,与光速比值越低,其能量越大.惯性来自时间维,当超过光速,会不会出现反惯性,惯性大小应与v/c成正比,再加上其它的量就可以推导这个公式. 为什么磁铁接近录音机会产生杂音? [ 来源:中学生科技网 | 时间:2010-4-2 15:20:05 ] 每天晚上我都会打开录音机听听英语单词.这周星期三,我书包放在桌子上,照常打开录音机听英语单词,录音机发出的不是清脆悦耳的声音,而是沙哑难听的声音!于是我让爸爸查找录音机是否有问题,奇怪的是录音并没有毛病,磁带也没有问题呀!难不成是我耳朵有问题?不,不会的.那一定是录音机的问题!但为什么录音机会有杂音?以前不是好好的吗?为什么偏偏是这一天录音机出现杂音呢?爸爸说:“你是不是在录音机旁放了磁铁?”我才恍然大悟,因为书包上分明有吸铁石呀 . 为什么 磁铁放在录音 机旁就会产生杂音 ? 中学生科技网 对于这个问题,我查找了许多资料,我发现:录音机的磁带上涂有特殊磁粉,而录音机在录制磁带的时候,就将强弱不同的声波转化成磁讯号.在我们听英语单词的时候,这种磁讯号又被还原成了声波.这样,我们就能听见录制在磁带上的声音了.磁带如果接近磁体,这时磁场的讯号就会附着在磁带上,磁带上的磁讯号就发生了改变,不同于原来的磁讯号了,这样就形成杂音. 果真是这样吗?资料上的东西还不能全信,我们还得亲手实验才能得出结论.实验的工具有:一块较大的磁铁,一台录音机,一块完好的磁带.我先把磁带放到录音机里听几分钟,然后把磁铁放在录音机旁再听几分钟,你会发现磁铁放到录音机旁的确有杂音,距离越近,杂音越大,靠近时录音机里的声音变成了怪腔怪调,太逗了!当你把磁铁拿走,录音机的声音又恢复正常了. 我发现了这个秘密! 内容转载自中学生科技网

1.选题 翻翻你物理课本选一个试验来写(水泥加水后搅拌成泥浆)2.然后写 自己通过做试验来证明1.题目(为什么要选择这个试验)2.准备工作(材料准备,时间准备)3.试验开始:拿出水泥,然后加入水4.得出结论5.做记录--我只是随便给你提出一个试验,具体写什么,你自己来定,就按照我上面的流程写,就对了。

双水相萃取研究论文

液- 液萃取技术是化学工业中普遍采用的分离技术之一,在生物化工中也有广泛的应用.然而,大部分生物物质是有生物活性的,需要在低温或室温条件下进行分离纯化,而采用传统萃取技术无法完成.双水相萃取就是考虑到这种现状,基于液- 液萃取理论并考虑保持生物活性所开发的一种新型液- 液萃取分离技术. 与传统的液- 液分离方法相比,双水相萃取技术分离纯化蛋白质具有以下优势:体系含水量高,可达80 %以上;蛋白质在其中不易变性;界面张力远远低于水- 有机溶剂两相体系的界面张力,有助于强化相际间的质量传递;分相时间短,一般只需5~15 min ;易于放大和进行连续性操作;萃取环境温和,生物相容性高;聚合物对蛋白质的结构有稳定和保护作用等.正是由于双水相萃取技术的诸多优势,现已被广泛用于蛋白质、核酸、氨基酸、多肽、细胞器等产品的分离和纯化. 1 双水相萃取原理 双水相体系是指某些高聚物之间或高聚物与无机盐之间,在水中以适当的浓度溶解后形成的互不相溶的两相或多相水相体系.高聚物- 高聚物- 水体系主要依靠高聚物之间的不容性,即高聚物分子的空间阻碍作用,促使其分相;高聚物- 盐- 水体系一般认为是盐析作用的结果. 双水相萃取与水- 有机相萃取的原理相似,都是依据物质在两相间的选择性分配,不同之处在于萃取体系的性质差异.当生物物质进入双水相体系后,由于表面性质、电荷作用和各种力(如憎水键、氢键和离子键等) 的存在和环境的影响,使其在上、下相中的浓度不同.分配系数K 等于两相中生物物质的浓度比,由于蛋白质的K 值不相同(大致在011~10 之间) ,因而双水相体系对各类蛋白质的分配具有较好的选择性.[/size]

摘要:研究了运用固相微萃取/GC/ECD直接萃取溅定水中的三种氯酚的方法,得到了分析三种氯酚的SHE最佳萃取条件;选取聚丙烯酸酯(PA)萃取头,水溶液调pH=2,并用NaCl饱和,室温下在持续磁力搅拌下直接萃取40min,纤维萃取头在260℃脱附5min。所建立的方法适于快速、方便地测定水中三种氯酚,无须浓缩和预处理。 1 引言 固相微萃取是九十年代发展起来的一种快速、省时、高效、操作简便的样品前处理技术。它克服了以往预处理方祛的诸多不足,集采集、浓缩于一体,简单、方便、无溶剂,不会造成二次污染,是一种有利于环保的很有应用前景的预处理方法。萃取装置使用涂有色谱固定相或吸附剂的熔融石英纤维管(简称为萃取头),和外套不锈钢管加以保护,形状像一支色谱进样针,可方便地与气相色谱、液相色谱、色谱/质谱等仪器联用。它携带方便,可以直接从液体和气体中取样然后分析,已广泛用于环境样品的分析中[4][5][6][7]。氯酚类化合物是环境(水和土壤)中重要的污染物,其中2,4-氯苯酚(以下简称DCP)、2,4,6三氯苯酚(以下简称TCP)和五氯苯酚(以下简称PCP)已被我国列为水体中优先控制污染物。目前,对酚类化合物的分析主要是采用液-液萃取法,如美国EPA方法中的604[8]和[9],以及后来发展起来的固相萃取法(SPE)。液-液萃取的主要缺点是多步、费时,而且需要大量价格较高并对健康有害的高纯有机溶剂。SPE方法尽管同液-液萃取相比有了很大的改进,但仍是多步过程,且对半挥发性化合物的萃取受到方法本身的限制。本研究利用固相微萃/GC/ECD方法对水中这三种氯酚进行了分析,并讨论了各种实验条件对分析结果的影响,结果表明该方法快速、简单、准确,适合水中上述三种氯酚的分析。 2 实验部分 仪器与试剂惠普5890型气相色谱仪(配电子捕获检测器);固相微萃取装置(加拿大Supelco公司,萃取头为85μm膜厚的聚丙烯酸酯固相涂层针头)2,4-二氯苯酚、2,4,6-三氯苯酚、五氯苯酚色谱纯晶(购于PureChemical Analysis .);:氯化钠(分析纯);甲醇(色谱纯);无酚水(500ml蒸馏水加入5ml10%的NaOH和少量KMn04加热蒸馏,取馏出液。) 色谱条件色谱柱:HP公司HP-5MS 31m××μm石英毛细管柱;进样口温度:260℃;柱温:60℃(4min)—260℃(3min),升温速率8℃/min;ECD检测器温度:280℃;载气流速:高纯氮,/min;无分流进样。 固相微萃取条件与过程在100ml容量瓶中预先加入的HCl,再加入定量的氯酚标准溶液,并用无酚水稀释至刻度。取10ml(总容积约为12ml)洁净顶空瓶(带铝封盖和内衬聚四氟乙烯膜的密封垫),加入过量固体NaCl(约4g)和磁力棒,再加入配制好的标准待测样品,立即加盖密封压紧,将顶空瓶置于磁力搅拌仪上,启动搅拌,然后在常温下从瓶盖上方直接插入针管(注意针管套不要接触瓶内液面),推下手柄活塞杆,使萃取头完全浸入溶液中,保持40min。 萃取时间到达后,取出针管,立即插入气相色谱进样口进行热解析5min。 3 结果与讨论 测定结果 萃取涂层的选择 目前应用较多的三种多聚物涂层百非极性的聚二甲基硅氧烷(PDMS)和极性的聚丙烯酸酯(PA)或聚乙二醇(PEG)[4]。PDMS涂层通常用于非极性化合物的分析,PA涂层通常用于中极性化合物的分析,我们比较了同一氯酚混标样在PDMS和PA两种不同萃取头作用下的测定结果(见图3),结果表明PA萃—取头对酚类的萃取效果更好[9]。 萃取平衡时间对萃取量的影响由于待测物分子从溶液中向固相涂层的传质速度比较慢[3],所以直接萃取要求的时间要相对长一些。表1所示为三种氯酚在不同萃取时间下萃取量的影响。实验表明,平衡时间越长,SPME萃取量越大,40min以后萃取量基本上不随时间的延长而增大,表明萃取过程达到了平衡,故本实验取平衡时间为40min。 酸度对萃取量的影响三种氯酚均属于弱酸,其离解常数pka如下:2,4-DCP(pka =),2,4,6-TCP(pka=),PCP(pka=),在pH为中性的溶液中,氯酚都有离解,能形成离子状态,不利于萃取。降低pH值,能使它们的电离受到抑制,以保持氯酚的分子状态,使其在固相涂层上有更大的亲和力,从而增加萃取量,同时也提高了回收率。文献[10]中反映,当pH低于2时,萃取平衡时间将大大延长,pH=1时,PCP甚至在4h后才能达到平衡,考虑到实际应用,实验中我们测定了同一氯酚混标样在pH=2至pH=6值时的萃取效果(见图4),结果表明,pH值取2时,三种氯酚的萃取效果最佳。 盐加入量对萃取量的影响向待测样品中加入一定量的盐类,能产生所谓的“盐析”效应,可以降低氯酚在水中的溶解度,迫使氯酚进入SPME固相涂层中[11]。实验中,加入饱和的NaCl能明显提高氯酚的萃取量(见表2)。然而,PCP属于例外,因为它的离解常数(pka=)相对较高,中性溶液中其分子状态较少,以离子状态为主[2],当加入N幻后,由于溶液的离子强度增加,加速了PCP的高解反而使萃取量降低。当加NaCl的同时调节溶液的酸度(pH=2)时,PCP的离解降低,又能使PCP的萃取量恢复至未加NaCI的水平。实验表明,投加饱和NaCl应与调节溶液pH值同时采用方能保证三种氯酚的萃取量的提高。 方法的精密度、准确度及检出限表3 方法的线性范围、精密度、回收率情况 Table 3 Linear range,Precision and Recovery of the method 线性范围() RSD(%)(n=10) 平均回收率%(n=10) 2,4-DCP ~10 93 2,4,6-TCP ~20 90 PCP ~5 92 随着苯酚上的取代氯的增加,方法的最低检出限逐步提升,2,4-DCP为 ,2,4,6-TCP为·Lt-1,PCP为·L-1。表3结果表明,三种氯酚采用SPME方法线性范围宽,适用范围广。 4 结论 本研究表明同时测定三种氯酚的SPME最佳化条件是:采用PA萃取头,调节pH=2,以NaCl饱和,常温磁力搅拌下直接萃取40min,260℃下脱附5min。 SPME是一种快速、简便和非常有应用前景的样品预处理手段,用来分析水体中的三种氯酚化合物具有简便、快捷、高效的特点。

某些亲水性高分子聚合物的水溶液超过一定浓度后可以形成两相,并且在两相中水分均占很大比例,即形成双水相系统(aqueous two-phase system,ATPS)。利用亲水性高分子聚合物的水溶液可形成双水相的性质,Albertsson于20世纪50年代后期开发了双水相萃取法(aqueous two-phase extraction),又称双水相分配法。20世纪70年代,科学家又发展了双水相萃取在生物分离过程中的应用,为蛋白质特别是胞内蛋白质的分离和纯化开辟了新的途径。双水相萃取的聚合物不相容性:根据热力学第二定律,混合是熵增过程可以自发进行,但分子间存在相互作用力,这种分子间作用力随相对分子质量增大而增大。当两种高分子聚合物之间存在相互排斥作用时,由于相对分子质量较大的分子间的排斥作用与混合熵相比占主导地位,即一种聚合物分子的周围将聚集同种分子而排斥异种分子,当达到平衡时,即形成分别富含不同聚合物的两相。这种含有聚合物分子的溶液发生分相的现象称为聚合物的不相溶性。可形成双水相的双聚合物体系很多,如聚乙二醇(PEG)/葡聚糖(Dx),聚丙二醇/聚乙二醇,甲基纤维素/葡聚糖。双水相萃取中采用的双聚合物系统是PEG/Dx,该双水相的上相富含PEG,下相富含Dx。另外,聚合物与无机盐的混合溶液也可以形成双水相,例如,PEG/磷酸钾(KPi)、PEG/磷酸铵、PEG/硫酸钠等常用于双水相萃取。PEG/无机盐系统的上相富含PEG,下相富含无机盐。生物分子的分配系数取决与溶质于双水相系统间的各种相互作用,其中主要有静电作用、疏水作用和生物亲和作用。因此,分配系数是各种相互作用的和。

双水相萃取的原理:分子间存在相互作用力,这种分子间作用力随相对分子质量增大而增大。当两种高分子聚合物之间存在相互排斥作用时,由于相对分子质量较大的分子间的排斥作用与混合熵相比占主导地位,即一种聚合物分子的周围将聚集同种分子而排斥异种分子,当达到平衡时,即形成分别富含不同聚合物的两相。

扩展资料:

可形成双水相的双聚合物体系有:聚乙二醇(PEG)/葡聚糖(Dx),聚丙二醇/聚乙二醇,甲基纤维素/葡聚糖。

双水相萃取中采用的双聚合物系统是PEG/Dx,该双水相的上相富含PEG,下相富含Dx。另外,聚合物与无机盐的混合溶液也可以形成双水相,例如,PEG/磷酸钾(KPi)、PEG/磷酸铵、PEG/硫酸钠等常用于双水相萃取。

双水相萃取的应用:蛋白质、酶的纯化、多肽的分离纯化、核酸的分离纯化等。

分批萃取精馏操作方法的研究论文

乙醇的七种制备方法如下。

一、制备方法

1、发酵法

糖质原料(如糖蜜、亚硫酸废液等)和淀粉原料(如甘薯、玉米、高梁等)发酵。

发酵法的原料可以是含淀粉的农产品,如谷类、薯类或野生植物果实等;也可用制糖厂的废糖蜜;或者用含纤维素的木屑、植物茎秆等。这些物质经一定的预处理后,经水解(用废蜜糖作原料不经这一步)、发酵,即可制得乙醇。

2、乙烯水化法

乙烯直接水化法,就是在加热、加压和有催化剂存在的条件下,是乙烯与水直接反应,生产乙醇:CH2═CH2 + H─OH→C2H5OH

此法中的原料—乙烯可大量取自石油裂解气,成本低,产量大,这样能节约大量粮食,因此发展很快。

3、煤化工

工业制乙醇还主要是通过乙烯氢化制得,而适合中国国情的技术就是利用煤化工技术,将煤转化为合成气,直接或者间接的合成乙醇。

4、联合生物加工

利用生物能源转化技术生产乙醇能缓解非再生化石能源日渐枯竭带来的能源压力。联合生物加工技术,一体化程度高,能有效降低生产成本,未来发展前景广阔。

5、合成法

以乙烯为原料生产乙醇。该法生产的乙醇中夹杂着异构高碳醇,对人有麻痹作用,不宜作食品、饮料、医药和香料等。

6、分批萃取精馏法

7、分子筛固定床吸附法(简称分子筛法)

分子筛是一种无色、无臭、无毒的新材料

二、乙醇

乙醇分子是由乙基和羟基两部分组成,可以看成是乙烷分子中的一个氢原子被羟基取代的产物,也可以看成是水分子中的一个氢原子被乙基取代的产物。乙醇分子中的碳氧键和氢氧键比较容易断裂。

无水乙醇指的是纯乙醇,里面不含有水或其他物质,一般在一些化学试验中用到。酒清一般是指含有一部分水,比如一般纯酒精指的是95%的酒精(里面有5%的水)医用酒精是75%的酒精,只有75%的洒精才有杀菌作用。浓度过高或过低都起不到杀菌作用。

应用化学开题报告

论文题目:苯-氯苯分离过程连续精馏塔的工艺设计

一 文献综述与调研报告 :(阐述课题研究的现状及发展趋势,本课题研究的意义和价值、参考文献)

1. 课题的背景

设计是工程建设的灵魂,对工程建设起着主导和决定性的作用,决定着工业现代化的水平。工程设计是科研成果转化为现实生产力的桥梁和纽带,工业科研成果只有通过设计,才能转化为现实的工业化生产力。化工设计是一项政策性很强的工作,它涉及政治、经济、技术、环保、法规等诸多方面,而且还会涉及多专业及多学科的交叉、综合和相互协调,是集体性的劳动。先进的设计思想、科学的设计方法和优秀的设计作品是工程设计人员应坚持的设计方向和追求的目标。在化工设计中,化工单元设备的设计是整个化工过程和装置设计的核心和基础,并贯穿于设计过程的始终,因此作为化工类的本科生,熟练掌握化工单元设备的设计方法是十分重要的。

精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,在化工、炼油、石油化工等工业中得到广泛应用。精馏过程在能量剂的驱动下(有时加质量剂),使气、液两相多次直接接触和分离,利用液相混合物中各组分挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离。该过程是同时进行传质、传热的过程。

本次设计任务为设计一定处理量的精馏塔,实现苯-氯苯的分离。鉴于设计任务的处理量不大,苯-氯苯体系比较易于分离,待处理料液清洁的特点,设计决定选用筛板塔。本课程设计的主要内容是过程的物料衡算、热量衡算,工艺计算,结构设计和校核。限于作者的水平,设计中难免有不足和谬误之处,恳请老师和读者批评指正。

筛板塔是生产中最常用的板式塔之一。板式塔具有结构简单,制造和维修方便,生产能力大,塔板压降小,板效率较高等优点。其早在1832年问世,长期以来,一直被误以为操作范围狭窄,筛孔容易堵塞而收到冷遇。但是筛孔板结构结构简单,造价低廉,在经济上有很大的吸引力。因此,从20世纪50年代以来,许多研究者对筛孔板塔重新进行了研究。研究结果表明,造成筛板塔操作范围狭窄的原因是设计不良(主要是设计点偏低、容易漏液),而设计良好的筛板塔是具有足够宽的操作范围的。至于筛孔容易堵塞的问题,可采用大孔径筛板一得到圆满的解决。

20世纪60年代初,美国精馏研究公司(FRI)又以工业的规模,使用不同物系,在不同操作压强下,广泛地改变了筛孔直径、开孔率、堰高等结构参数,对筛板塔进行了系统研究。这些研究成果,使筛板塔的设计更加完美善,其中关于大孔径筛板的设计方法属于专利。国内对大孔径筛板也做过某些研究。

FRI研究工作表明,设计良好的筛板是一种效率高、生产能力大的塔板,对筛板的推广应用起了很大的促进作用,目前,筛板已发展成为应用最广的通用塔板。在我国,筛板的应用也日益普通。

可以说,筛板精馏塔是一种传统的精馏塔。早期由于设计方面的原因,曾一度被工业生产所忽视。但由于计算技术的发展,设计水平的提高,筛板塔越来越受到厂家的关注和使用,其优点是设备简单,操作简便,维修方便,制造成本低。

2. 课题研究的现状及发展趋势

气-液传质设备主要分为板式塔和填料塔两大类。精馏操作既可采用板式塔,也可采用填料塔,板式塔为逐级接触型气-液传质设备,其种类繁多,根据塔板上气-液接触元件的不同,可分为泡罩塔、浮阀塔、筛板塔、穿流多孔板塔、舌形塔、浮动舌形塔和浮动喷射塔等多种。板式塔在工业上最早使用的是泡罩塔(1813年)、筛板塔(1832年),其后,特别是在本世纪五十年代以后,随着石油、化学工业生产的迅速发展,相继出现了大批新型塔板,如S型板、浮阀塔板、多降液管筛板、舌形塔板、穿流式波纹塔板、浮动喷射塔板及角钢塔板等。目前从国内外实际使用情况看,主要的塔板类型为筛板塔、浮阀塔及泡罩塔,而前者使用尤为广泛。

筛板塔是板式塔的一种,其设计意图是一方面使汽液两相在塔板上充分接触,以减小传质阻力,另一方面是在总体上使两相保持逆流流动,而在塔板上使两相呈均匀的错流接触,以获得更大的传质推动力。其内装若干层水平塔板,板上有许多小孔,形状如筛;并装有溢流管或没有溢流管。操作时,液体由塔顶进入,经溢流管(一部分经筛孔)逐板下降,并在板上积存液层。气体(或蒸气)由塔底进入,经筛孔上升穿过液层,鼓泡而出,因而两相可以充分接触,并相互作用。泡沫式接触气液传质过程的一种形式,性能优于泡罩塔。为克服筛板安装水平要求过高的困难,发展了环流筛板;克服筛板在低负荷下出现漏液现象,设计了板下带盘的筛板;减轻筛板上雾沫夹带缩短板间距,制造出板上带挡的的筛板和突孔式筛板和用斜的增泡台代替进口堰,塔板上开设气体导向缝的林德筛板。筛板塔普遍用作H2S-H2O双温交换过程的冷、热塔,应用于蒸馏、吸收和除尘等。

筛板塔是传质过程常用的塔设备,它的主要优点有:

(1) 结构比浮阀塔更简单,易于加工,造价约为泡罩塔的60%,为浮阀塔的80%左右。

(2)处理能力大,比同塔径的泡罩塔可增加10~15%。

(3)塔板效率高,比泡罩塔高15%左右。

(4) 压降较低,每板压力比泡罩塔约低30%左右。

筛板塔的缺点是:

(1)塔板安装的水平度要求较高,否则气液接触不匀。

(2) 操作弹性较小(约2~3)。

(3)小孔筛板容易堵塞。

目前应用比较广泛的是林德筛板,它由美国联合碳化物公司的林德子公司开发 ,最早应用于要求低压降的空分装置的精馏塔 ,1963 年后开始应用于乙苯-苯乙烯等精馏装置中。20 世纪70 年代有多家公司的120余台减压蒸馏塔采用了林德筛板,其中超过 m 塔径的就有45 台,最大的塔径为 m。林德筛板在普通筛板上有2 点重要改进:一是在降液管液体出口处将塔板向上凸起,二是在塔板上增设了百叶窗导向孔(国内称之为导向筛板)。这种改进增大了有效鼓泡面积,使塔板操作由鼓泡型变为喷射型,在降低液面梯度的同时使气体分布均匀,从而使干板压降减小、雾沫夹带减少、传质效率提高。目前,国内已有10余套装置使用了中运行林德筛板。

精馏是应用最广的传质分离操作,其广泛应用促使其技术已相当成熟,但是技术的成熟并不意味着今后不再需要发展而停滞不前。成熟技术的发展往往要花费更大的精力,但由于其应用的广泛,每一个进步,哪怕是微小的,也会带来巨大的经济效益。正因为如此,蒸馏的研究仍受到广泛的重视,不断取得进展。

提高精馏过程的热力学效率、节省能耗是一贯受到重视的研究领域,分离序列的合成,在用热集成概念和夹点分析方法开发节能的分离过程和优化换热网络,在具体分离过程中合理地应用热泵、多效精馏、中间再沸器和中间冷凝器等实现节能,一直是得到广泛重视的活跃的研究领域。

对于普通精馏难以(或不能)分离的物料,开发萃取精馏和恒沸精馏的分离工艺,将精馏与反应结合开发反应精馏也是个值得重视的研究领域,这对于拓宽精馏的应用范围,提高经济效益有较大意义。

随着精细化工的发展,间歇精馏应用也更加广泛,其研究也得到了应有的重视。开发各种新的操作模式,对于节省能耗和缩短操作时间有明显的效果。塔中持液量的间歇精馏膜模拟计算研究有一定进展,对于设计和指导操作有较大意义。

为开发更可靠的效率和压降等的模型,当前应强调实测数据,尤其是工业规模的测试数据,这是建立和验证模型的基础。六七十年代,美国精馏研究公司等进行了一系列工业规模试验,取得了十分有价值的实测数据,为各种模型的建立和现象认识的深化奠定了重要基础。

精馏的研究工作一直十分活跃,而且不断取得成果。在各种新分离方法得到不断开发和取得工业应用之际,在石油、天然气、石油化工、医药和农产品化学等工业中所起的重要作用不会改变,作为主要分离方法的地位不会动摇。正如费尔在1987年国际精馏会议上指出的:“如果混合物可以应用精馏分离,那么经济上可能有吸引力的方法是精馏。”随着科学技术和工业生产水平的提高,精馏的应用天地十分广阔,重要的通过不断努力,使其技术水平得到进一步提高,使其日趋完善。

3 课题研究的意义和价值

本设计采用连续精馏分离苯-氯苯二元混合物的方法。连续精馏塔在常压下操作,被分离的苯-氯苯二元混合物由连续精馏塔中部进入塔内,以一定得回流比由连续精馏塔的塔顶采出含量合格的苯,由塔底采出氯苯,其中氯苯纯度不低于。

高径比很大的设备称为塔器。塔设备是化工、炼油生产中最重要的设备之一。它可使气(或汽)液或液液两相之间进行紧密接触,达到相际传质及传热的目的。常见的可在塔设备中完成的单元操作有:精馏、吸收、解吸和萃取等。此外,工业气体的冷却与回收,气体的湿法净制和干燥,以及兼有气液两相传质和传热的增湿、减湿等。

在化工或炼油厂中,塔设备的性能对于整个装置的产品产量、质量、生产能力和消耗定额,以及三废处理和环境保护等各个方面都有重大的影响。据有关资料报道,塔设备的投资费用占整个工艺设备投资费用的较大比例。因此,塔设备的设计和研究,受到化工炼油等行业的`极大重视。

作为主要用于传质过程的塔设备,首先必须使气(汽)液两相充分接触,以获得较高的传质效率。此外,为了满足工业生产的需要,塔设备还得考虑下列各项传质效率。此外,为了满足工业生产的需要,塔设备还得考虑下列各项要求:

(1)生产能力大。在较大的气(汽)液流速下,仍不致发生大量的雾沫夹带、拦液或液泛等破坏正常操作的现象。

(2)操作稳定、弹性大。当塔设备的气(汽)液负荷量有较大的波动时,仍能在较高的传质效率下进行稳定的操作。并且塔设备应保证能长期连续操作。

(3)流体流动的阻力小。即流体通过塔设备的压力降小。这将大大节省生产中的动力消耗,以及降低经常操作费用。对于减压蒸馏操作,较大的压力降还使系统无法维持必要的真空度。

(4)结构简单、材料耗用量小、制造和安装容易。这可以减少基建过程中的投资费用。

(5)耐腐蚀和不易堵塞,方便操作、调节和检修。

事实上,对于现有的任何一种塔型,都不可能完全满足上述所有要求,仅是在某些方面具有独到之处。

根据设计任务书,此设计的塔型为筛板塔。筛板塔是很早出现的一种板式塔。五十年代起对筛板塔进行了大量工业规模的研究,逐步掌握了筛板塔的性能,并形成了较完善的设计方法。与泡罩塔相比,筛板塔具有下列优点:生产能力大20-40%,塔板效率高10-15%,压力降低30-50%,而且结构简单,塔盘造价减少40%左右,安装、维修都较容易。从而一反长期的冷落状况,获得了广泛应用。近年来对筛板塔盘的研究还在发展,出现了大孔径筛板(孔径可达20-25mm),导向筛板等多种形式。

筛板塔盘上分为筛孔区、无孔区、溢流堰及降液管等几部分。工业塔常用的筛孔孔径为3-8mm,按正三角形排列,空间距与孔径的比为。近年来有大孔径(10-25mm)筛板的,它具有制造容易,不易堵塞等优点,只是漏夜点低,操作弹性小。

该课题使理论教学与实际应用相结合,有助于提高处理实际问题的能力。通过对该课题的研究,可以加深对精馏过程基本原理的理解,熟练筛板精馏塔的工艺设计方法,培养设计能力。

该过程构造简单,造价低廉,具有足够操作弹性,且具有较强的工程使用价值。该过程的推广和普及,将加速我国工业生产过程节能技术的进步,带动一大批的相关技术和产业的发展。

参考文献:

[1] 蒋维钧,雷良恒,刘茂林.化工原理(下册) [M].北京:清华大学出版社,1993,264-340

[2] 陈敏恒,从德滋,方图南,齐鸣斋.化工原理(下册)[M].北京:化学工业出版社,2006,49-104

[3] 柴诚敬等。化工原理课程设计[M].天津:天津科学技术出版社,1994,75-109

[4] 吴俊生,邵惠鹤.精馏设计、操作和控制[M].北京:中国石化出版社,1997,3-4

[5] 史贤林,田恒水,张平.化工原理实验[M].上海:华东理工大学出版社,2005,121-122

[6] 刘兴高.精馏过程的建模、优化与控制[M].北京:科学出版社,2007,1-2

[7] 林爱娇,王良恩,邱挺,黄诗煌,李南芳,邓友娥. 甲醛吸收塔填料层高度的计算[M]. 福州:福州大学学报(自然科学版)1996年2月,第24卷第1期

[8]董谊仁,张剑慈.填料塔液体再分布器的设计[M].化工生产与技术,1998年第3期

[9] 张前程, 简丽.填料吸收塔中适宜液气比的确定[M]. 内蒙古工业大学学报,第20卷,第1期

[10] 李忠玉,徐松. 吸收塔填料层高度的解析计算[M].化工设计,1998 年第 5 期

[11] 董谊仁,侯章德.现代填料塔技术(三)填料塔气体再分布器和其他塔内件[M].化工生产与技术,1996年第四期

[12] Torbjgrn Pettersen, Andrew Argo,Richard D. Noble, Carl A. Koval,Design of combined membrane and distillation processes[M]. Separations Technology 6 (1996) 175-187

方法之一:

其他方法:

提纯

75%的乙醇可以用蒸馏的方法蒸馏到。此后形成恒沸物,不能提高纯度。

95%的乙醇可以用生石灰煮沸回流提纯到。

的乙醇可以用镁条煮沸回流制得的乙醇。

i、分批萃取精馏法

乙醇的生产离不开精馏、萃取等化工流程。氧化钙脱水法、共沸精馏、吸附精馏、渗透汽化、吸附法、萃取精馏法和真空脱水法等多用在乙醇的回收和提纯的方面。实际生产中较成熟的方法是共沸精馏和萃取精馏,这2 种分离方法多以连续操作的方式出现。在一些领域生产乙醇设备简单、投资小,可单塔分离多组分混合物,或同一塔可处理种类和组成频繁更换的物系。分批共沸精馏可以同时满足这些要求,但是分批共沸精馏所需的塔板数较多,产品中常含有微量的苯不能应用于医药和化学试剂领域,且生产中易发生苯中毒事故。

分批萃取精馏(BED) 则无以上缺点,且可以同时具备分批精馏与萃取精馏两者的优点。其工艺特点是连续萃取精馏至少需要3 个精馏塔的工艺来完成:乙醇稀溶液富集到共沸组成(乙醇质量分数 %) ,萃取精馏回收无水乙醇,回收溶剂以循环使用。并且连续萃取精馏法只适于原料组成固定的、规模较大的连续生产中。而且设备投资少,仅用单塔可完成原料富集、萃取精馏和溶剂回收3 项任务;且精密度高,可根据实际生产的需求,灵活地调节产品纯度;节省操作成本、无需连续操作;此设备也可用于回收其他有机溶剂。

ii、分子筛固定床吸附法(简称分子筛法)

分子筛是一种无色、无臭、无毒的新材料,在无水乙醇制备和其他共沸混合物分离过程中无需添加第三组分,生产过程几乎无毒害三废排放;共沸法牵涉到苯、环已烷等高毒性的第三组分。工艺简单可靠、产品质量优,是一种环保、节能型工艺。

优点是可以降低设备安装高度,提高固定床有效吸附量及成品质量稳定性。产生的废气、废渣、废液均有很好的处理方法。

请采纳,谢谢!

挥干提取溶剂乙醇获得药物残渣的方法是:将所得溶剂乙醇挥发,使其完全蒸发掉,然后将剩下的残渣添加洗涤液,搅拌均匀,使药物释放到洗涤液中,然后用筛子将药物残渣滤去,最后将残渣重新放入容器中,加热到乙醇完全挥发,即可获得残渣。

  • 索引序列
  • 关于萃取论文范文写作
  • 萃取及萃取设备的研究进展论文
  • 科技论文范文萃取精馏
  • 双水相萃取研究论文
  • 分批萃取精馏操作方法的研究论文
  • 返回顶部