首页 > 论文发表知识库 > 锂离子电池毕业论文答辩ppt

锂离子电池毕业论文答辩ppt

发布时间:

锂离子电池毕业论文答辩ppt

【5】50套毕业论文答辩ppt模板.rar免费下载

链接:

幻灯片模板即已定义的幻灯片格式。PowerPoint和Word、Excel等应用软件一样,都是Microsoft公司推出的Office系列产品之一,主要用于设计制作广告宣传、产品演示的电子版幻灯片,制作的演示文稿可以通过计算机屏幕或者投影机播放;利用PowerPoint,不但可以创建演示文稿,还可以在互联网上召开面对面会议、远程会议或在Web上给观众展示演示文稿。随着办公自动化的普及,PowerPoint的应用越来越广。

答辩ppt要包含的内容如下:

一、首页的内容要求具体如下:

1、论文题目一定要有,不能遗漏或者写错字、漏字等问题。

2、学校系院、论文指导老师、答辩人姓名也要一一填写呈现,此外答辩时间根据需要决定是否写上,若写上答辩时间一定要精准。

3、首页布局上一定要记得插入学校的logo。

二、中页是整个答辩PPT的核心,其主要内容从目录页开始呈现,主要如下:

1、选题背景:撰写自己论文写作背景,语言简洁明了,条理清晰。

2、选题原因;建议可以分为两个方面进行分点阐述:

个人方面:个人专业相关和兴趣喜好。

社会方面:主要从理论研究方面对社会痛点进行阐述,2-3句话即可。

3、选题意义:论文的选题意义可从以下两个方面进行阐述:

理论意义:本文从XX角度出发,研究XX,是对XX理论的补白和细化。

实际意义:通过针对XX的研究,能够解决掉当下XX方面的难题,且为后续的进一步研究和发展奠定了更为丰富的理论基础,进而能够为未来的发展提供更加具有价值的可参考研究。

论文答辩ppt需要注意

PPT的顺序应该跟论文保持一致。首先论文答辩,论文答辩,是对论文进行答辩。你在答辩之前会打印几本毕业论文,尤其是本科生,你在上面讲,老师在下面翻着你的毕业论文,相同的逻辑顺序,有利于加深老师们的印象。

每一页PPT要设置页数,方便老师记录,针对你PPT的内容,评委老师,可以具体到某一页某个问题,进行提问,PPT最好是4:3的形式,这样大多数投影仪可以最大化显示你的幻灯片。而且做PPT,两侧上下一定要留一点点的白,既好看,又能保证投影仪歪了等问题不影响你内容的完整体现。

论文答辩PPT全攻略

马上就要毕业了,作为毕业最后一站,你的答辩 PPT 准备好了吗?

关于 PPT ,你的内容,你的图片,是精心设计,还是烂大街的「模板」?杏林苦瓜与你分享经验。

内容篇

1. 一般概括性内容:课题标题、答辩人、课题执行时间、课题指导教师、课题的归属、致谢等;

2. 课题研究内容:研究目的、方案设计(流程图)、运行过程、研究结果、创新性、应用价值、有关课题延续的新看法等;

3. PPT 要图文并茂,突出重点,让答辩老师明白哪些是自己独立完成的,页数不要太多, 30 页左右足够,不要出现太多文字,老师对文字和公式都不怎么感兴趣;

4. 凡是贴在 PPT 上的图和公式,要能够自圆其说,没有把握的坚决不要往上面贴;

5. 每页下面记得标页码,这样比较方便评委老师提问的时候 review 。

模板篇

1. 不要用太华丽的企业商务模板,学术 PPT 最好低调、简洁一些;

2. 推荐底色白底(黑字、红字和蓝字)、蓝底(白字或黄字)、黑底(白字和黄字),这三种配色方式可保证幻灯质量,个人觉得学术 PPT 还是白底好;

3. 动手能力强的大牛可以自己做符合课题主题的模板,其实很简单,就是把喜欢的图在 「 幻灯片母版 」 模式下插入就行了。

文字篇

1. 首先就是:不要太多!图优于表,表优于文字,答辩的时候照着 PPT 念的人最逊了;

2. 字体大小最好选 PPT 默认的,标题用 44 号或 40 号,正文用 32 号,一般不要小于 20 号。标题推荐黑体,正文推荐宋体,英文用 Time New Romans ,如果一定要用少见字体,记得答辩的时候一起 copy 到答辩电脑上,不然会显示不出来;

3. PPT 中的字体颜色不要超过 3 种(字体颜色要与背景颜色反差大)建议新手配色:(1)白底,黑、红、篮字(2)蓝底,白、黄字(浅黄或橘黄也可)

4. 正文内的文字排列,一般一行字数在 20 ~ 25 个左右,不要超过 6 ~ 7 行。更不要超过 10 行。行与行之间、段与段之间要有一定的.间距,标题之间的距离(段间距)要大于行间距。

图片篇

1. 图片在 PPT 里的位置最好统一,整个 PPT 里的版式安排不要超过 3 种。图片最好统一格式,一方面很精制,另一方面也显示出做学问的严谨态度。图片的外周,有时候加上阴影或外框,会有意想不到的效果;

2. 关于图片格式, TIF 格式主要用于印刷,它的高质量在 PPT 上体现不出来,照片选用 JPG 就可以了,示意图我推荐 BMP 格式,直接在 windows 画笔里按照需要的大小画,不要缩放,出来的都是矢量效果,比较 PRO ,相关的箭头元素可以直接从 word 里 copy 过来。

3. 流程图,用 viso 画就可以了,这个地球人都知道;

4. PPT 里出现图片的动画方式最好简洁到 2 种以下,还是那句话,低调朴素为主;

5. 动手能力允许的话,学习一下 photoshop 里的基本操作,一些照片类的图片,在 ps 里做一下曲线和对比度的基本调整,质量会好很多。 windows 画笔 + ps ,基本可以搞定一切学术图片。

PPT 总体效果:图片比表格好,表格比文字好;动的比静的好,无声比有声好。

注意:用一个流畅的逻辑打动评委,同时最后记得感谢母校、系和老师,弄得煽情点。

锂离子电池论文范文

电池产品对环境的危害主要是酸、碱等电解质溶液和重金属的污染。不同类型的电池污染物也不同。 一般来说,电池中的有害物质主要有Zn、Hg、CNi、Pb等重金属;铅蓄电池中的H2S04;各种碱性电池中的KOH和锂电池中的IiPP6电解液等。Hg及其化合物,特别是有机汞化物,具有极强的生物毒性、较快的生物富集速率和较长的脑器官生物半衰期。Cd易在动植物体内富集,影响动植物的生长,具有很强的毒性。Pb对人的胸、肾脏、生殖、心血管等器官和系统产生不良影响,表现为智力下降、肾损伤、不育及高血压等。Zn,Ni的毒性相对较小,但超过一定浓度范围时,会对人体产生不良影响和危害。废旧电池中的酸、碱解质溶液会影响土壤利水系的pH值,使土壤和水系酸性化或碱性化。电池电解质构成污染的主要组份是其中的可溶重金属,特别是铅蓄电池电解液中大量的硫酸铅和镍镉电池中的氢氧化镉。电池中的重金属离子在土壤或水体中溶解并被植物的根系吸收,当牲畜以植物为食料时,体内就积累了重金属。人类食人含重金属的粮食、蔬菜和肉类、水,顺着这条食物链,重金属就会在人体里富集。由于重金属离子在人体里难以排泄,最终会损害人的神经系统及肝脏功能。 废电池的回收利用研究 1 废电池再生利用现状 国内使用最多的工业电池为铅蓄电池,铅占蓄电池总成本50%以上,主要采用火法、湿法冶金工艺以及固相电解还原技术。外壳为塑料,可以再生,基本实现无二次污染。 小型二次电池目前使用较多的有镍镉、镍氢和锂离子电池,镍镉电池中的镉是环保严格控制的重金属元素之一,锂离子电池中的有机电解质,镍镉、镍氢电池中的碱和制造电池的辅助材料铜等重金属,都构成对环境的污染。小型二次电池目前国内的使用总量只有几亿只,且大多数体积较小,废电池利用价值较低,加上使用分散,绝大部分作生活垃圾处理,其回收存在着成本和管理方面的问题,再生利用也存在一定的技术问题。 民用干电池是目前使用量最大、也是最分散的电池产品,国内年消费80亿只。主要有锌锰和碱性锌锰两大系列,还有少量的锌银、锂电池等品种。锌锰电池、碱性锌锰电池、锌银电池一般都使用汞或汞的化合物作缓蚀剂,汞和汞的化合物是剧毒物质。废电池作为生活垃圾进行焚烧处理时,废电池中的Hg、Cd、Pb、Zn等重金属一部分在高温下排人大气,一部分成为灰渣,产生二次污染。 2 废旧干电池再生利用技术 a.人工分选回收利用技术 一般是将干电池分类后,进行简单的机械剖开,人工分离出锌皮、塑料盖、炭棒等,残存的Mn02、水锰石等混合物送人回砖窑煅烧,制成脱水的Mn02,此法简单易行,但占用劳动力较多,经济效益不大。 b. 火法回收利用技术 一般是将干电池分类、破碎后,送入回转窑,在1100~1300摄氏度的的高温下,锌及氯化锌被氧化为氧化锌随烟气排出,用旋风除尘器回收氧化锌,残存的二氧化锰及水锰石进入残渣,再进一步回收锰等物质,此法简便易行,一般的冶炼厂勿需增加设备即可回收锌。 c. 湿法回收利用技术 根据锌、二氧化锰可溶于酸的原理,将废旧干电池分类、破碎后,置于浸出槽中,加入稀硫酸(100~120g/L)进行浸出,得到硫酸锌溶液,可用电解法制得金属锌,滤渣经洗涤分离出铜帽、炭棒后,剩余物Mn02、水锰石经煅烧后制得Mn02。所用方法有焙烧一浸出法和直接浸出法。 湿法与火法相比较,具有投资少,成本低,建厂速度快,利润高、工艺灵活等优势,但不能保障有害成份完全回收。 3 废电池回收利用过程中二次污染的防治 以上的三种回收方法皆简单易行,但各有不足,存在着二次污染的问题,通过大量实验测定,我们得到了防治二次污染的可行方法。 首先将废旧干电池分类,以机械进行剖开后,分离出铜帽、锌皮,可分别回收利用。剩余的炭包物质经磁选除铁后,按1:4的固液比用水浸制1小时,取上层清液进行蒸发、结晶,沉淀物的主要成份是Mn02、MnO(OH)、乙炔黑、碳棒等物质,加入回转窑炼到600摄氏度,产生的烟气经冷凝后可得凝缩液,定期清洗即可得纯汞。同时也防止汞蒸气污染环境。在煅烧的过程中,混合物中大量的乙炔黑与碳,将Mn02还原为MnO。其反应过程如下: 2Mn0 2 +C--->2MnO+C0 2 把此煅烧物按固液比1:4加入浓度小于2mol/L硫酸溶液中,在温度80℃下浸制1小时,发生如下反应: MnO+H 2 S0 4 --->MnS0 4 +H 2 0 得到硫酸锰盐溶液,同时,也将引人其他可溶性重金属硫酸盐。 所得的锌皮及铜等金属可直接重熔利用,氯化铵可以制肥料或提纯作为化工试剂,硫酸锰是动、植物生长的激素成份,可用于油漆油墨的吹干剂和一些有机合成反应的催化剂,此外也用于造纸、陶瓷、印染和电解锰的生产试剂。表1为锌锰干电池可回收物质的成份。 这种回收方法投资较少,采用的设备简单,易于在中小城市得以实现,从而免除了废旧电池的运输问题。 废电池回收之后的溶液,浓缩并与EDTA反应生成金属络合物,可以彻底消除二次污染。经测定,回收废电池后的溶液中所含重金属量符合国家环保标准。若要将这些金属进行分离,利用其稳定性不同可分级处理。表2为金属离子与EDTA络合稳定常数。 4 废旧电池回收过程中存在的问题及建议 ①电池回收后无法处置,一般都采用堆放。堆放过程中电池有可能泄漏或有毒物质扩散。 ②由于电池的种类繁多,假冒产品多,也给电池回收带来了困难,有的电池是含汞电池,有的是含镉电池,有的以氯化铵为电解液,而有的则以氯化锌为电解液,因此建议生产厂家用统一的标准标识电池的种类及内含的主要成份,以便回收利用。 ③加强高性能环保型电池的开发,实现普通民用电池的无汞化。 ④回收处理废电池,国家应从政策上给予扶持。

其实这里面有几个都可以,具体自己点开链接看

[论文关键词] 锂离子筛 前驱体 制备 检测

[论文摘要] 锂离子筛可以直接从盐湖卤水和海水中提取锂,是极具发展前景的锂吸附剂,介绍锰氧化物锂离子筛前驱体的制备和检测方法,并简要叙述离子筛分材料的发展过程。

锂是自然界中最轻的金属,锂及其化合物有着广泛而特殊的用途,在能源、航空航天工业、金属冶炼及制造业、制冷、玻璃、陶瓷、医药等行业都有着重要的用途:在原子能领域,锂被誉为新“能源元素”,锂-6是氢弹、热核反应堆原料。锂离子电池因其能量高、循环性能好、无毒而广泛用于便携式通讯设备。二十一世纪,用于锂电池的碳酸锂将超过2万吨。锂基润滑脂已成为润滑脂的主导产品。另外,碳酸锂作为情感矫正剂可有效治疗狂躁精神病。目前,世界对锂的需求量越来越大,其消耗量也从侧面反映了一个国家高新技术的发展水平。

全球锂资源约1276万吨,主要分布于花岗岩伟晶型矿床及盐湖中,其中,锂矿石中锂的储量仅为40万吨,约占全球总储量的,而盐湖卤水中,锂资源的占有率为77%以上。锂矿石中锂的储量远远不能满足市场的需求,固体矿源又不断枯竭,因此锂矿资源的开发利用正面临重大转折,探讨从盐湖卤水、低浓度海水、地下水中提取锂成为目前化学、化工、材料等学科的重要研究课题。盐湖卤水提锂工艺简便、成本约为矿石提锂的一半,目前国外从盐湖卤水中提锂的年产能力近2万吨,约占锂盐总产能力的40%。采用卤水或其他含锂液体矿资源取代矿石生产锂盐是世界锂工业的发展趋势。

一、离子筛分材料的发展过程

1850年,Thompon等,最早系统地研究了土壤中Ca2+、Na2+与水中NH+、K+的离子交换现象。其中具有交换性能的物质后来被鉴定为粘土、海绿石沸石分子筛和腐植酸。一般认为,这是离子筛分材料的最初发现。20世纪初,Harms等合成了硅酸铝凝胶作为离子交换材料应用于水的软化。但其选择性筛分性能较差,耐酸性也不好,性能易变。上世纪60年代,Clearfield A等,发现磷酸锆可以结晶,这为离子筛分材料的.发展指明了一个全新的方向。结晶使得这些磷酸锆的多晶结构得以测定,宏观的离子筛分和交换行为能够从微观结构的角度加以解释。到80年代以后,Kenta ,Qi Feng等合成出了结晶石结构的锂锰氧化物LiMn2O4,该物质对锂离子具有特殊的选择吸附性能。

二、我国盐湖卤水的提锂前景

我国盐湖资源相当丰富,集中分布于青海、西藏、新疆和内蒙古四个省区。锂资源储量大,含量高的盐湖卤水多集中在青海省的柴达木盆地,如:台吉乃尔盐湖、一里坪盐湖、察尔汗盐湖和大柴旦盐湖等,都具有极高的开采价值。西藏的扎布耶湖是世界上锂含量超过百万吨级的三大盐湖之一。因此,建立和发展我国的盐湖锂工业不仅可以将资源优势转化为经济优势,而且可以促进和发展我国西部的经济,并为二十一世纪高科技的发展提供理想的材料。

三、从盐湖卤水提取锂的方法

目前,锂资源的开发及利用主要集中在盐湖卤水提锂的方法上。盐湖卤水提锂的方法有蒸发结晶分离法,沉淀法、浮选法、溶剂萃取法和离子交换法等。蒸发结晶分离法大量使用烧碱和纯碱,致使锂盐产品成本较高;沉淀法和溶剂萃取法费时费力;浮选法工艺流程复杂;而离子交换法成本低,工艺简单,应用广泛。因此,研究开发高效、高选择性的新型无机离子吸附剂成为当今分离技术的发展方向。尖晶石结构的锰氧化物,不仅对Li+具有很高的选择性和较大的交换吸附容量,且具有经济、环保的特点,从而成为国内外学者研究的热点。

四、锂离子筛的制备方法

现阶段制备锂离子筛前驱体LiMn2O4的方法主要分为两大类:固相法和液相法。固相合成法主要分为:高温固相法、微波烧结法和固相配位法等。固相法一般操作较为简单,步骤短,便于大规模生产,易于实现工业化,但耗能大,产率低;液相合成法主要包括:溶胶凝胶法、共沉淀和水热法等。液相法一般操作要求高,反应步骤较长,产物粒度均匀、形态规整,晶相较纯。下面选取几种常见的方法分别介绍:

1、高温固相反应法:高温固相反应法是合成锂离子筛前驱体最常用且易操作的一种方法,是将锂和锰的易熔或易分解化合物先按一定的比例混合均匀,再于高温下焙烧一定时间而合成所需化合物。其中,锂源主要有Li2CO3、LiOH·H2O、LiNO3和LiI等;锰源主要包括MnO、Mn2O3、MnO2、MnCO3和Mn(CH3COO)2·4H2O等。高温固相反应法具有操作简便、易于工业化的优点。同时,也存在几点不足:能耗大,生产率低;锂盐的部分挥发,造成原配比不易把握;产物的均匀性差。

2、微波烧结法:微波烧结法是近些年发展起来普遍用于制备陶瓷材料的方法。其主要依据微波直接作用于材料内部后而转化为热能,从材料内部进行加热,进而缩短了反应的时间。微波烧结法可通过调节微波的功率来控制粉末的物相结构,易于工业化,值得关注。但其毕竟属于固相反应,所得粉末的粒度通常只能控制在微米级以上,粉末的形貌稍差。

3、固相配位反应法:此方法也是近些年发展起来的,尤其适于合成金属簇合物和固相配合物的一种方法。首先,在室温或低温下制备固相金属配合物,然后,在一定温度下热分解制得氧化物超细粉末。固相配位反应法保留了传统高温固相反应法操作简便的特点,同时在合成温度、焙烧时间和产物粒度大小及分布等方面又优于它。

4、溶胶凝胶法(Sol-Gel):也称Pechini合成法,属于液相合成法,是基于某些弱酸能与某些阳离子形成螯合物,而螯合物又可与多羟基醇聚合物形成固体聚合物树脂的原理。由于金属离子可与有机酸发生化学反应而均匀分散在聚合物树脂中,达到原子水平的混合,从而在较低温度下可制得超细氧化物粉末。传统的溶胶凝胶法是采用金属醇盐水解制得溶胶,然后干燥得凝胶。

由于该法成本偏高,工艺复杂,材料工作者相继对其进行了改进,派生出一些新方法,如柠檬酸配合法、甘氨酸配合法、高分子聚合物配合法、多羟基酸配合法等。锂离子筛的制备主要是在不破坏前驱体尖晶石构型的前提下,用合适的脱出剂脱出其中的锂离子,以保证所得锂离子筛对锂离子的记忆性。目前,使用的脱出剂主要是酸性化合物,如盐酸、硝酸以及硫酸等。评价脱出效果的指标主要是锂的脱出率及锰的溶损率。人们希望通过采用优良的脱出剂,使锂的脱出率最大、锰的溶损率最小。因为相对于盐酸,硝酸和硫酸都具有较强的氧化性,某种程度上会加大锰的溶损,所以用合适浓度的盐酸作为脱出剂的居多。然而,同种洗脱剂,浓度不同,洗脱时间不同,洗脱效果也不一样。因此,在制备离子筛的时,需要选择出最佳酸洗转型条件。

五、锂离子筛的检测

制备好的离子筛需对其表面形貌检测即对前驱体酸洗脱锂后产物进行SEM检测,得出扫描结果图像。通过与前驱体结构的扫描图像对比可以检测出,在酸洗脱锂过程中前驱体的结构有没有被破坏,再通过与文献中图片对比,可以检测出产物是否为尖晶石晶体结构, 晶型是否完整。然后再对产物(前驱体)进行XRD检测,得出扫描结果图, 根据扫描结果图,判断产物是否为尖晶石型LiMn2O4,是否有杂质。通过与文献中图谱对比,可以检测出产物是否有缺陷,是否为尖晶石型LiMn2O4,是否有杂质等。

六、结语

目前,对离子筛的研究还停留在试验阶段,如果要实现其工业化,就必须先解决其造粒及锰的溶损问题。同时,必须通过改进合成方法、优化实验条件等手段来提高离子筛的实际吸附量。锰氧化物锂离子筛是一种新型的、高效的、绿色的吸附剂,有着良好的应用前景。所以,锰氧化物锂离子筛吸附法已经成为国际上从盐湖卤水和海水中提锂的重要研究方向。

近两年,废电池对环境的影响成为国内媒体热门话题之一。有的报道称电池对环境污染很严重,一节电池可以污染数十万立方米的水。有的甚至说废电池随生活垃圾处理可以引起诸如日本水俣病之类的危害,这些报道在社会上引起了很大反响,有很多热爱环保的人士和团体开展或参加了回收废电池的活动。 然而,国家环保总局有关人士却认为,废电池不用集中回收,以前有关废电池危害环境的报道缺乏科学依据,在某种程度上对群众造成了误导。那么,废电池怎样处理才科学呢?本文拟就此问题作以简要介绍,以期帮助大家更科学地认识废电池处理问题,更好的保护我们的环境。 废电池里面到底有哪些污染物 清华大学环境科学与工程系的博士生导师聂永丰教授,带领课题组专门对废电池的危害和处理做过研究。他介绍说,近年来关于废旧电池给环境带来危害的报道的确很多,但是遗憾的是,这些报道未向读者或观众说明支持其结论的科研内容,没有向读者介绍其分析推理过程,也没有列举因干电池造成污染的实际案例,只有“污染严重”的结论。 废电池中含有哪些有害物质,这些物质通过什么样的机理释放到环境中,会对环境造成多大程度的损害,国内外有无废干电池引起严重污染的案例,发达国家是怎样解决这个问题的?带着疑问,课题组作了全面深入的调查,得出的结论与一些新闻报道相去甚远,这些报道确有不切合实际和偏激之处。 聂教授介绍说,电池产品可分一次干电池(普通干电池)、二次干电池(可充电电池,主要用于移动电话、计算机)、铅酸蓄电池(主要用于汽车)三大类。用量最大、群众最关心,报道最多的是普通干电池。下面所说的电池均指普通干电池。 电池主要含铁、锌、锰等,此外还含有微量的汞,汞是有毒的。有报道笼统地说,电池含有汞、镉、铅、砷等物质,这是不准确的。事实上,群众日常使用的普通干电池生产过程中不需添加镉、铅、砷等物质。 废电池中的汞没有对环境构成威胁 汞的挥发温度低,是一种毒性较大的重金属。很多地方的土壤中也含有微量的汞,在汞矿开采、提炼、含汞产品加工过程中,如密闭措施不够完备,释放到空气中的汞(蒸气)对操作人员的健康影响很大。 电池中虽然含有汞,但由于是添加剂,其含量很少。即便是高汞电池,含汞量一般也在电池重量的千分之一以内。我国电池行业全年的用汞量,大体上与一个汞法聚氯乙烯,或汞法炼金,或高汞铅锌矿采选的企业年排放废水中的含汞量相当。由于电池消费区域大,含汞废电池进入生活垃圾处理系统以后,对环境的影响比前述一个化工企业排放含汞废水所造成的影响要小得多,况且电池使用了不锈钢或碳钢做外包皮,有效地防止了汞的外漏。因而废电池分散丢弃在生活垃圾中,其危害微乎其微,在客观上不可能造成水俣病之类的危害。日本的水俣病是化工企业几十年向一条河流排放大量含汞废水,下游水系中汞逐渐累积造成的。 含汞电池正在被无汞电池代替 当然,含汞废电池毕竟对环境有负面影响(哪怕是轻微的)。因此,在1997年底,国家经贸委、中国轻工总会等9部门联合发出《关于限制电池汞含量的规定》,借鉴发达国家的经验,要求国内电池制造企业逐步降低电池汞含量,2002年国内销售的电池要达到低汞水平,2006年达到无汞水平。 从实际进展来看,国内电池制造业基本按照《规定》要求在逐步削减电池汞含量。据中国电池工业协会提供的数据,我国电池年产量为180亿只,出口约100亿只,国内年消费量约80亿只,基本已达到低汞标准(汞含量小于电池重量的%)。其中约有20亿只达到无汞标准(汞含量低于电池重量的%)。 聂教授最后强调,截至目前国内外均无废电池造成严重污染的报道或科研资料,有关废电池污染环境的说法的确缺乏科学根据,对群众造成了误导。 废电池集中回收处理不当会造成污染 如果按某些报道呼吁的那样,在我国建造一个专业的、能够批量处理废电池的工厂,是否可行呢?国家环保总局污控司固体处彭德富工程师介绍说,建设一个废电池回收处理厂,需要投资1000多万元人民币,而且还要每年至少回收4000多吨废旧电池,工厂才能运转起来。而实际上要回收这样大数量的废电池十分困难。以首都北京为例,在大力宣传和鼓励下,3年才回收了200多吨。在环保模范城杭州市,废电池的回收率也只有10%。据了解,目前瑞士和日本已建好的两家可加工利用废旧电池的工厂,现在也因吃不饱经常处于停产状态。这不得不让我们慎重考虑投资建回收厂的问题。

车载锂电池论文答辩ppt

关于答辩PPT的制作,有很多不同的说法,有的人觉得很简单,而对于有些人来讲却很有难度,别人轻轻松松就能搞定的PPT,自己花了很多时间,却做得还不咋样,其实,不管做什么样的PPT展示内容,一定不能喧宾夺主,那么我们应该怎样才能做一个简单漂亮的PPT呢?

1、首先要对论文答辩的要求做一个了解,一般答辩PPT都会有明确要求的,知道要求自然就能很好的把握学校的标准,然后开始制作PPT。

一般答辩大会通常是由各院系论文辅导老师组成的,可以借鉴一下各老师们日常上课的PPT风格,以及他们PPT色彩的搭配是怎样的。答辩大会通常都是在院校的会议室举行,跟日常上课所用的设备相差无几,只要稍微看起来是比较舒服,一般不会有什么大问题。

2、要确定答辩PPT的主题,在通过答辩对象和环境的分析,我们可以确定PPT的主题,背景的颜色可以使用白色,这样就非常的简单,并且可以利用学校的校徽作为主色,字体就使用微软雅黑,也可以尝试下思源黑体、冬青黑体。

3、可以按学校要求制作PPT,如果学校没有要求,那可以根据自己的喜好来制作,只要倾向于学术研究一般问题不大,但是,大部分学校都是有PPT参考模板的,也就是学校的PPT封面、目录、过渡页,封面上面,除了一些常用的字体外,一般还会放一个学校的logo就去,或者是学校的一些具有标志性的图标;目录的话可以使用上下排版的方式,把下面的部分分成两排,因为你的目录如果超过五个部分的话只有一排就会显得太拥挤,为了平衡可以加上第六点,所以这种环绕型的排版适用于偶数的分块目录页;过渡页其实起了一个承上启下的作用。

4、答辩PPT要注意的东西,理清你的论文结构是否制作PPT的前提必要工作,如果使用了特殊字体的话,可以把字体嵌进PPT里面,但是这样就无法修改了,也可以把字体和PPT一起安装到答辩的设备里面去,这样就可以进行修改。答辩PPT一定要提前的去调试,导出来一份图片版的PPT会更加的保险。

想了解更多论文查重的知识请关注papertime官网~网页链接

电池的使用情况和续航能力,会影响到电动汽车的动力,不利于汽车的行驶,会出现半路没电的情况。

锂离子电池内部输送电荷依赖于锂离子的迁移,电解质的溶液以及电解质在熔融状态下都有离解的正、负离子,离子本身带有电荷,当离子定向运动时,电荷定向运动,从而产生电流,这就是离子导电性。

行业发展空间:

2020年12月,我国电动 汽车 保有量492万辆,据我国新能源 汽车 产业发展规划中2025年电动 汽车 销量占比20%,以每年2500万辆的整车销量来看,预计2025年电动车保有量将达到2000万辆,与2020年相比年复合增长率25%,平均70度电/辆,则五年内将新增储能系统装机设备1400GWh,以售价1元/Wh计算, 新能储能市场规模万亿元 。

目前市面上电池根据电解质状态不同大致可分为液态电池、半固态电池、准固态电池和全固态电池。液态电池仅含有液体电解质,半固态电池以氧化物复合电解质为主,准固态电池以聚合物复合电解质为主,而全固态电池以硫化物复合电解质为主。

正极材料主要是磷酸铁锂,三元材料,锰酸锂,钴酸锂等,负极材料主要是石墨烯等。据ICC鑫椤资讯数据显示,2020年国内四大正极材料总产量万吨/+,其中磷酸铁锂材料表现强势,产量达到万吨/+。钴酸锂与锰酸锂正极材料的产量分别为万吨及万吨,同比分别增长及;三元材料产量增速最缓,仅7%,全年总量为21万吨。负极材料产量达到46万吨/+28%。全球负极材料市场继续向中国集中,2020年中国负极材料产量已经占到全球总产量的85%左右。

政策总结:

2020年3月31日,国务院总理李克强确定将新能源 汽车 购置补贴和免征购置税政策延长2年,原计划到2020年底结束。

2020年7月,工信部、农业农村部、商务部等3部门在发布《关于开展新能源 汽车 下乡活动的通知》,活动时间为2020年7月-2020年12月。期间 汽车 企业给出让利,并在此基础上推出5000 元 的置换补贴,促进入门级电动车在三四线及以下地区替代低速车。 2021年工信部取消动力电池白名单,LG化学,SDI,SKI等外资将重新进入中国市场。

2020年10月27日,《节能与新能源 汽车 技术路线图》重点强调了总体能耗的控制。要求2025年、2030年和2035年乘用车总体百公里平均油耗分别达到、和。新能源 汽车 2025年渗透率达到20%,2030年达到40%;到2035年新能源 汽车 渗透率则要达到50%以上,其中纯电动则将占到新能源 汽车 的95%以上,纯电动 汽车 成为新销售车辆的主流,公共领域用车全面电动化。同时,2025年、2030年和2035年,混合动力节能 汽车 分别要占到50%、75%和100%。也就是说,到2035年,我国新销售的 汽车 将有一半以上是新能源 汽车 ,其余全部都是混合动力的节能 汽车 。具体规划 下 表:

动力电池主流类型:

4680电池: 松下将于2021年为特斯拉制造4680圆柱电池,该电池直径46mm,长80mm,单体电芯型号比21700更大,能量密度提升至300Wh/kg,输出功率提升6倍,搭载该电池的电动 汽车 续航里程可提高16%,新电池每千瓦时成本降低14%。此外,4680电池采用全新“无耳级”技术,使得正负极流体与盖板/壳体直接连接,电流导电面积成倍增加,电流传导电流传导面积成倍增大,传导距离缩短,从而大幅降低电池内阻,减少发热量,可大大延长电池寿命,提高充放电峰值功率。马斯克还透露2021年下半年推出的特斯拉MODEL SPlaid三电机高性能版将配备全新结构电池组就包括4680锂电池。

百万英里锂电池:

特斯拉的百万英里电池是一种锂离子电池,采用新一代“单晶”NCM532正极和一种新型先进电解质,采用单晶镍钴铝电极,镍含量达到50%,钴元素20%,并加入人造石墨,可使电动 汽车 持续行驶100万英里(约160万公里),目前特斯拉使用的电池寿命仅为50万公里,。该“超长寿命电池”实现装车后就算报废了还可以继续使用,对天气,地形等外部因素限制较小,能达到4000次充放电循环。该电池与宁德时代合作,将在中国首推。

通用 汽车 也表示正在开发使用寿命达100万英里的电动 汽车 电池,但尚未公布推出时间表。

蜂巢2020年推出两款无钴电池,其中一款产品容量为115Ah。电芯能量密度为245Wh/kg,电池使用寿命达15年或120万公里。

比亚迪量产的磷酸铁锂刀片电池体积能量密度比传统电池提升了50%,电池使用寿命超100万公里。其正极是磷酸铁锂,属于磷酸铁锂电池范畴,系统能量密度140Wh/kg,续驶里程约600公里。不含重金属,减少环境污染;体积变小,侵占小。重量减轻,自损能耗降低;安全性提升,在高温、过充、挤压、针刺等情况下,降低电芯爆炸的概率。

NCMA超高镍电池:LG能源计划2021 Q2开始量产镍含量90%的NCMA电池,并向特斯拉供应MODEL Y及下一代车型,该电池能量密度为161Wh/kg,电池包容量77KWh,续航里程594km。国内华友钴业和格林美已经进行NCMA四元材料量产准备,华友钴业1月8日启动年产12500吨NCMA四元前驱体材料项目,建设周期两年。格林美的NCMA四元前驱体材料正在进行客户认证。

固态电池

固态电池被认为是动力电池技术发展的主要方向,正极(朝高镍三元方向)、负极材料(硅碳-蔚来或掺硅-上汽智己)其生产重点在负极材料,硫化物(CATL-2030年)和氧化物进展较快,样品正通过针刺测试,但还要做车辆测试,预计2021年下半年规模量产装车。固态电池中的固态电解质代替了液态电解质和隔膜,安全性好,充电时长短,单体能量密度(>350Wh/kg)和寿命(>5000次)都得以提升,但是固态电解液接触面积比液态差,导致其活性降低,导电率低,内阻大,因此采用创新架构模式,如双机架构技术、CTP、CTC、刀片电池可改善。但全固态电池想要规模化量产还需要5—10年。目前,法国Bollor、台湾公司、国内三家公司,台湾目前量产产量较小,且主要用于消费电子和可穿戴设备。

2021年1月9日,蔚来 汽车 在NIO DAY上发布了续航里程超1000公里的固态电池,计划于2022年四季度发布半固态电池包,届时其电池单体能量密度将达到360Wh/kg,电池包带电量也将由现在的100kWh提升至150kWh,但仍需使用电解液,隔膜等,属于半固态电池。但是电池行业去隔膜和去电解液,预锂化,无钴化技术仍是行业发展大趋势。

市场格局

(一)装机量

1月13日,中国 汽车 动力电池产业创新联盟发布最新数据显示,2020年国内动力电池装车量累计,同比累计上升。其中,三元电池装车量,占总装车量,同比累计下降;磷酸铁锂电池装车量,占总装车量,同比累计增长,磷酸铁锂回暖势头明显。 从市场竞争格局看,国内市场宁德时代独占50%市场份额,比亚迪占、中航锂电、国轩高科占比超过5%。全球市场宁德时代连续4年居第一位,市占率约;韩国LG化学市占率约;松下占;比亚迪、韩国三星SDI、韩国SKI装机量占比分别为、、。

2021最新装机量排名:宁德时代>LG化学>日本松下>比亚迪>三星SDI>SKI

(二)产能

宁德时代2020年-2022年非合资产能分别为90/150/210GWh,2025年完成扩产计划后约达到450GWh;LG化学目前产能120GWh,2023年底扩建至260GWh;SKI目前产能,计划2023年动力电池产能达到85GWh 、2025年超125GWh;2020年底比亚迪电池产能达到65GWh,2021年和2022年包括“刀片电池”在内的总产能分别达到 75GWh 和 100GWh。

目前产能:LG化学>宁德时代>比亚迪>SKI

规划产能:宁德时代>LG化学>比亚迪>SKI

(三)供应分布

国外市场日本松下为特斯拉主要供用商,后引入宁德时代和LG化学。国内造成新势力的动力电池供应商为:蔚来 汽车 电池由宁德时代独供,理想 汽车 为宁德时代和比亚迪,小鹏 汽车 为宁德时代,亿纬锂能等,威马 汽车 ,合众新能源的电池供应商就相对分散了。

A股相关标的最新消息:

宁德时代: 2020年2月至今追加近1000亿动力电池投资,新增布局产能300GWh,2025年全球动力电池将迈入TWh时代,而宁德时代作为全球动力电池龙头,有望在装机量和产能上稳拿第一宝座。

1月19日宁德时代公布两项固态电池专利:“一种固态电解质的制备方法”,该方法将锂前体、中心原子配体分散于有机溶剂中,形成反应初混液;将硼酸酯分散于有机溶剂中,形成改性溶液;将反应初混液与改性溶液混合,干燥,得到初始产物;对初始产物研磨、冷压、热处理得到固态电解质。该专利制备法可以显著提高固态电解质电导率,从而有利于提高全固态电池的能量密度。“一种硫化物固态电解质片及其制备方法”,该方法将硫化物电解质材料及掺杂于硫化物电解质材料中的硼元素,且电解质片表面任意位置的硼元素质量浓度B0与距离该位置100μm处的硼元素质量浓度B100的相对偏差()/B0不超过20%,可有效降低阴离子对锂离子的束缚作用,提升锂离子的传输能力;同时提升掺杂均匀度和电导率,降低界面阻抗,改善电池的循环性能。 比亚迪: 近日国家知识产权局公布了比亚迪多款电池领域专利,其中包括“一种正极材料及其制备方法,一种固态锂电池”,该专利提供了正极材料的制备方法和固态锂电池,该正极材料可同时构建锂离子传输通道和电子传输通道,极大的提升了固态锂电池的容量发挥,首圈库伦效率,循环性能和高倍率性能。“一种锂离子电池固态电解质及其制备方法和固态锂离子电池”目的是为了解决现有固态电解质的锂离子电池能量密度低,安全性差的问题。“一种凝胶聚合物电池及其制备方法”表明比亚迪在半固态电池领域已有进展。

国轩高科: 1月8日发布新产品磷酸铁锂210Wh/kg软包单体电池和JTM电池磷酸铁锂210Wh/kg软包单体电池是全球已经亮相的磷酸铁锂体系单体能量密度最高的产品,搭配自主研发了高性能磷酸铁锂材料,高克容量硅负极材料和先进的预锂化技术,单体能量密度已经达到三元NCM5系水平,JTM中J是卷芯,M是模组,该产品电池材料大幅精简,制造过程大大简化,电池性能大幅提高,综合成本显著降低,电池包适应性大大增加。

与大众合作开发的MEB项目兼顾三元和铁锂两种化学体系的标准MEB模组设计,预计2023年实现量产供货。

欣旺达: 2019年4月收到雷诺-日产联盟的供应商定点信,未来七年内向其提供达万台 汽车 使用的混合动力电池,保守预计订单金额将超过百亿元。2020年6月,日产宣布将与欣旺达合作共同为e-POWER系统开发下一代车载电池。

亿纬锂能:1月19日,亿纬锂能宣布荆门圆柱电池产品线开始投产,达产后圆柱电池年产能从提升至5GWh,年产数量达亿颗,该系列电池将用于电动自行车。

孚能 科技 : 孚能 科技 是国内三元软包动力电池龙头企业,与吉利成立合资公司,未来合计产能达120GWh,其中2021年开工建设不少于20GWh。

锂离子电池储能建模毕业论文

太阳能充电器的设计摘要:设计了基于LP3947的太阳能充电电路,通过脉宽调制对锂电池充电进行智能控制,从而提高太阳能电池输出功率及锂电池的使用效率,达到延长电池使用寿命和时间的目的。关键词:太阳能;LP3947;锂电池1.引言 太阳能作为一种新型的资源越来越多地被人们关注,它所带来的一系列的产业也逐渐成为目前非常具有开发潜力的产业。太阳能光伏发电是太阳能应用的主要产业之一。在我国太阳能资源极其丰富,陆地每年接受的太阳辐射能相当惊人。如果将这些太阳能充分加以利用,不仅有可能节省大量常规能源,而且可以有效地减少常规能源所带来的环境污染。 目前光伏发电在小型电器电路上的运用也逐渐的成熟,随着人们生活中越来越多的离不开手机、mp3、数码相机等一系列的数码产品,它们的充电问题成为了使用者极其关心的问题之一。设计一个利用光伏充电原理的充电器来为这些数码产品进行充电可以在很多方面解决各种问题。太阳能充电器具有携带方便、外型美观时尚,甚至可以在没有电源的情况下为手机等一系列的数码产品进行充电。2.太阳能电池板种类及工作原理 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置,目前处于主流的是应用光电效应原理工作的太阳能电池,其基本原料为以半导体.当P-N 结受光照时,样品对光子的本征吸收和非本征吸收都将产生光生载流子,即引起光伏效应,产生一与P-N 结内建电场方向相反的光生电场,其方向由P 区指向N区.此电场使势垒降低,其减小量即为光生电势差,P 端正,N 端负,由此生产的结电流由P 区流向N 区,形成单向导电,发挥出与电池一样的功能。由于太阳电池板输出电压不稳定,故增加了稳压电路,通过稳压电路、充电电路为负载电池充电,同时还可以为内部蓄电池充电以备应急之用;光照条件较差时,太阳电池板输出电压较低,达不到充电电路的工作电压,因此增加了升压、稳压电路,以便为充电电路提供较稳定的工作电压.阴天、夜间等光照条件极差的情况下,可利用系统内部的蓄电池,通过升压电路为后续设备充电。另外,充电器还设计有照明灯,当夜间光线较暗时,通过蓄电池为照明灯供电,可供应急使用。3.充电器设计电池充电原理 锂离子电池在充电或放电过程中若发生过充、过放或过流时,会造成电池的损坏或降低使用寿命,图3为锂电池的充电曲线,共分三个阶段:预充状态、恒流充电和恒压充电阶段。以800 mAh 容量的电池为例,其终止充电电压为。用1/10C(约80 mA)的电池进行恒流预充,当电池端电压达到低压门限V(min)后,以800 mA(充电率为1C)恒流充电,开始时电池电压以较大的斜率升压,当电池电压接近 V 时,改成恒压充电,电流渐降,电压变化不大,到充电电流降为1/10C(约80 mA)时,认为接近充满,可以终止充电。 手机电池充电曲线充电器设计思想 太阳能手机充电控制电路的设计思想,从手机锂离子二次电池的恒流/恒压充电控制出发,同时配有锂离子蓄电池.当在户外无220V 交流电时,采用太阳能对手机锂离子直接充电,同时对锂离子蓄电池充电;当阴雨天天气或夜晚等阳光不足时,采用配置的锂离子蓄电池对手机锂离子充电,以保证任何情况下不间断.即:系统的设计以太阳能充电为主,在有足够的阳光且蓄电池又有足够供电能力的情况下,系统能够以太阳能充电为主给手机充电,蓄电池给手机补电;在无阳光或阳光弱时,以蓄电池充电为主给手机充电,太阳能为手机补电。充电控制电路设计升压电路设计由于在不同的时间、地点太阳光照强度不同,太阳电池板输出电能不稳定,需加人相应的升压、稳压等控制环节。直流升压就是将电池提供的较低的直流电压提升到需要的电压值。稳压电路设计稳压电路的设计以三端集成稳压器W7800为核心,它属于串联稳压电路,其工作原理与分立元件的串联稳压电源相同。由启动电路、取样电路、比较放大电路、基准环节、调整环节和过流保护环节等组成,此外还有过热和过压保护电路,因此,其稳压性能要优于分立元件的串联型稳压电路。而且三端集成稳压器设置的启动电路,在稳压电源启动后处于正常状态下,启动电路与稳压电源内部其他电路脱离联系,这样输入电压变化不直接影响基准电路和恒流源电路,保持输出电压的稳定。充电电路设计 锂电池以体积小、容量大、重量轻、无记忆效应、无污染、电池循环充放电次数多(寿命长)等优点,广泛地被使用在许多数码产品中。但锂电池对使用条件要求较严格,如充电控制要求精度高,对过充电的承受能力差等。因此,为了保护锂电他,该充电电路包括电池充电控制电路与电池电量检测控制电路两部分。电池充电控制电路,用来控制升压或稳压电路对锉电池进行充电,同时也是锂电池的充电电路。电池电量检测电路,用以检测充电电量的多少,当电池充满电时,充满指示灯亮,逻辑电路控制充电电路断开,停止充电。4结束语 随着现代的科技发展电子产品几乎可以普及,但电子产品的电池却一直困扰这我们。我着次的研究的目的不是让电池的容量增大,而是把太阳能充电器安装在电子产品表面上这样就可以大量增加电池的使用时间。

一、成熟度 图1所示为电力储能系统的技术成熟度的总结与比较。根据成熟度不同可分为三个层次: 图1 储能技术成熟度 PHS- 抽水蓄能;CAES- 压缩空气;Lead-Acid: 铅酸电池;NiCd: 镍镉电池;NaS: 钠硫电池;ZEBRA: 镍氯电池;Li-ion: 锂电池;Fuel cell: 燃料电池;Metal-air: 金属空气电池;VRB: 液流电池;ZnbBr: 液流电池;PSB: 液流电池;Solar Fuel: 太阳能燃料电池;SMES: 超导储能;Flywheel: 飞轮; Capacitor/Supercapcitor: 电容/超级电容;AL-TES: 水/冰储热/冷系统;CES:低温储能系统;HT-TES:储热系统 (1) 成熟技术:抽水蓄能电站和铅酸电池技术已经成熟,其使用已超过100年。 (2) 基本成熟的技术:压缩空气储能、镍镉电池、钠硫电池、锂离子电池、液流电池、超导磁能、飞轮、电容、储热/冷等技术已经完成研发并开始商业化,但是还没有大规模普遍应用,它们的竞争力和可靠性仍然需要电力企业和市场来进一步检验。 (3) 正在研发的技术:燃料电池、金属-空气电池和太阳能燃料正在研发中,虽然它们在技术上并没有达到商业成熟的程度,但已经通过了多个科研机构的研究论证。另一方面,由于能源成本和环境问题的驱动,这几种技术在不久的将来将具有巨大的商业潜力。 二、功率和放电时间 表1对各种类型电力储能系统的功率和放电时间进行了比较,根据它们的应用情况,大体上分为三种类型: (1) 能源管理:抽水储能、压缩空气储能适合于规模超过100MW和能够实现每天持续输出的应用,可用于大规模的能源管理,如负载均衡、输出功率斜坡/负载跟踪。大型电池、液流电池、燃料电池、太阳能电池和储热/冷适合于10~100MW的中等规模能源管理。 (2) 电力质量:飞轮、电池、超导磁能、电容反应速度快(约毫秒),因此可用于电能质量管理包括瞬时电压降、降低波动和不间断电源等,通常这类储能设备的功率级别小于1MW。 (3) 电能桥接:电池、液流电池和金属-空气电池不仅要有较快的响应(约小于1秒),还要有较长的放电时间(1小时),因此比较适合桥接电能。通常此类型应用程序的额定功率为100kW~10MW。 表1 各种储能技术性能比较 表2 各种储能技术性能比较(续) 三、储存周期 表1还给出了各种储能技术的能量自耗散率,其中抽水储能、压缩空气储能、燃料电池、金属-空气电池、太阳燃料和液流电池等的自耗散率很小,因此均适合长时间储存。铅酸电池、镍镉电池、锂电池、储热/冷等具有中等自放电率,储存时间以不超过数十天为宜。飞轮、超导磁能、电容每天有相当高的自充电比,只能用在最多几个小时的短循环周期。 四、成本 成本是影响储能产业经济性的最重要因素之一。表1分别列出了以每千瓦时、每千瓦、每千瓦时-循环为单位的各种储能技术的成本。可见,就每千瓦时的成本而言,压缩空气、金属-空气电池、抽水储能、储热技术成本较低。与其它形式储能系统相比,在已经成熟的储能技术中压缩空气储能的建设成本最低,抽水储能次之。尽管电池的成本近年来下降很快,但同抽水储能系统相比仍然较高。超导磁能、飞轮、电容单位输出功率成本不高,但从储能容量的角度看,价格很贵,因此它们更适用于大功率和短时间应用场合。总体而言,在所有的电力储能技术中,抽水储能和压缩空气储能的每千瓦时储能和释能的成本都是最低的。尽管近年来电池和其他储能技术的周期成本已在大幅下降,但仍比抽水储能和压缩空气储能的成本高出不少。 对于表1,进行以下说明: (1)表1所有成本均按照2009年美元汇率换算成美元; (2)压缩空气储能每千瓦成本除了电站建造成本,还包括储气室建设成本,后者与储气量大小有关; (3)电池成本中不包括电池更换费用; (4)各储能系统每千瓦小时发电成本(以COST表示)计算公式如下: 对于压缩空气储能系统: 其它储能系统: 五、效率 各种电力储能系统的充放电循环效率如图2所示。可见,储能系统的循环效率大致可以分为三种: (1) 极高效率:超导磁能、飞轮、超大容量电容和锂离子电池的循环效率超过90%; (2) 较高效率:抽水蓄能、压缩空气储能、电池(锂离子电池除外)、液流电池和传统电容的循环效率为60%~90%; (3)低效率:金属-空气电池、太阳燃料、储热/冷的效率低于60%; 效率计算公式一般分两种,基于热力学第一定律的储能系统效率计算式: 上式适用于能量以机械能或电磁能形式储存的储能系统。 对于储热/冷系统,除了上式,往往还需从能量品位的角度评价储能过程。 基于热力学第二定律的储能系统效率计算式: 六、能量密度和功率密度 表2还列出了各种储能技术的能量密度和功率密度,其中能量密度等于存储能量除以装置体积(或质量),功率密度等于额定功率除以存储设备的体积(或质量)。可见,尽管金属-空气电池和太阳能燃料的循环效率很低,但是它们却有极高的能量密度(~1000Wh/kg),而电池、储热/冷和压缩空气储能具有中等水平的能量密度。抽水储能、超导磁能、电容和飞轮的能量密度最低,通常在30Wh/kg以下。然而,超导磁能、电容和飞轮的功率密度是非常高的,它们更适用于大放电电流和快速响应下的电力质量管理。钠硫电池和锂离子电池的能量密度比其它传统电池的高,液流电池的能量密度比传统电池稍低(应该注意的是,不同厂商生产的相同类型的储能系统会在能量密度数据有所不同)。 表2各储能系统能量密度计算式为: 或 ,以下是不同储能系统所储存的能量值E。 (1)抽水蓄能储存的机械能计算式为: 其中H为水位高度,g为重力加速度,V为水库容量,为水密度。 (2)压缩空气储存的能量计算式为: 其中P为绝对压力,V为储气容积,m为储存的空气质量,R为理想气体常数,T为绝对温度,V1-V2为压缩过程前后空气体积。 (3)飞轮储存的机械能计算式为: 其中J为转动惯量,为飞轮角速度。 (4)超导储能储存的电能计算式为: 其中L为线圈电感系数,I为线圈电流。 (5)电容储存的电能计算式为: 其中C为电容,V为电压,Q为总的电荷。 (6)储热系统储存的热量计算式为: 非相变储热: 其中m为储热介质质量,T1,T2为吸热前后温度,Cp为比热容。 相变储热: 其中m为相变介质质量,为相变热,Cp为比热容,m为相变点。 七、使用寿命和循环次数 表2还比较了不同电力储能系统的使用寿命和循环次数。可以看出,那些在原理上主要依靠电磁技术的电力储能系统的循环周期非常长,通常大于20000次。例如,包括超导磁能和电容器。机械能或储热系统(包括抽水蓄能、压缩空气储能、飞轮、储热/冷)也有很长的循环周期。由于随着运行时间的增加会发生化学性质的变化,因此电池和液流电池的循环寿命较其它系统低。关于微控新能源 深圳微控新能源技术有限公司(简称微控或微控新能源)是全球物理储能技术领航者。公司全球总部位于深圳,业务覆盖北美、欧洲、亚洲、拉美等地区,凭借“安全、可靠、高效”的全球领先的磁悬浮能源技术,产品与服务广泛受到华为、GE、ABB、西门子、爱默生等众多世界500强企业的信赖。 面向未来能源“更清洁、高密度、数字化”的三大趋势,公司持续致力于为战略性新兴产业提供能源运输、储存、回收、数据化管理提供系统解决方案。

锂离子电池论文参考文献

第1章锂元素的物理、化学性质参考文献第2章锂离子电池的基本概念与组装技术锂离子电池的工作原理和特点工作原理锂离子电池的主要特点锂离子电池的电化学性能锂离子电池的电动势电池开路电压锂离子电池的类型锂离子电池的设计电池设计的一般程序电池设计的要求电池性能设计型锂离子电池的结构设计电池保护电路设计锂离子电池监控器锂离子电池体系热变化与控制锂离子电池的基本组成及关键材料电极材料电池组装工艺与技术参考文献第3章正极材料正极材料的微观结构材料材料材料磷酸体系化合物正极材料的分类及电化学性能层状锂钴氧化物层状锂镍氧化物尖晶石型氧化物复合层状氧化物其他层状氧化物层状二硫族化物正极材料三硫族化物及相关材料磷酸盐体系有机导电聚合物材料正极材料的制备方法溶剂热法合成高温反应法溶胶-凝胶法低温固相反应法电化学合成法机械化学活化法参考文献第4章负极材料负极材料的发展金属锂及其合金碳材料氧化物负极材料其他负极材料复合负极材料负极材料的特点及分类负极材料的特点负极材料的分类晶体材料和非晶化合物石墨类碳材料无定形碳材料碳材料性能的改进方法锡基材料硅基材料合金材料复合物材料过渡金属氧化物其他纳米电极材料碳纳米材料纳米金属及纳米合金纳米氧化物其他类型材料锂金属氮化物锂钛复合氧化物Li4/3Ti5/膜电极材料薄膜电极材料的制备方法薄膜电极材料的分类参考文献第5章电解质第6章电极材料研究方法第7章锂离子电池的应用与展望参考文献

▲第一作者:宋丽娜、张伟、王颖;通讯作者:徐吉静教授 通讯单位:吉林大学

论文DOI:

针对锂氧气电池存在的反应动力学缓慢而导致能量转换效率低的问题,研究者通常开发高效、稳定的正极催化剂来降低电池的充电极化电压提高反应动力。该工作将Co单原子固定于掺杂N的碳球壳载体上,用于锂氧气电池的高效催化反应,实验发现Li2O2形成和分解路线与LiO2在单原子催化剂的吸附能有关。研究明确指出,在放电过程中,原子级分散的活性位点能够诱导放电产物的均匀成核和外延生长,最终形成有利的纳米花状放电产物。在充电过程中,CoN4活性中心对放电中间体LiO2弱的吸附能,诱导充电反应由两电子路径向单电子路径转变。 得益于高分散的Co-N单原子催化剂的能级结构和电子结构所发生的根本性变化,大幅提升了电池的充电效率和循环寿命。与同等含量的贵金属基催化剂相比,达到600 mV充放电极化电压的降低和218天的长寿命循环。

锂氧气电池具有锂离子电池10倍以上的理论容量密度,被誉为颠覆性和革命性电池技术 。然而该电池还处于研发的初级阶段,受限于ORR和OER电化学反应动力学缓慢,电池的实际容量、倍率性能、能量效率和循环寿命距产业化应用还有很大差距。因而开发高效稳定的催化剂,是提高电池反应动力和循环效率的迫切需要。原子级纳米晶具有最大化的原子利用效率和独特的结构特点,往往表现出不同于传统纳米催化剂的活性、选择性和稳定性,为调控电化学反应过程提供了多种可能。在锂氧电池中,电解液中可溶性LiO2中间体能够调控放电产物Li2O2的形成与分解路线。先前的研究结果表明[1],不同的生成路线与LiO2在催化剂的不同晶面上的吸附能有关。 因此,探究单原子催化剂的尺寸效应对LiO2吸附能的影响,可能是一种调整低供体数电解质中过氧化锂形成与分解路径的新思路。这一新发现将为高能量效率和长循环寿命的锂氧电池的设计提供更多的选择。

单原子催化剂(SACs)是一类非常重要的电催化剂,其独特的单分散结构集均相催化和多相催化剂的优点于一身,拥有最大的金属利用率、优异的催化活性和稳定性。同时,SACs的活性位点相对简单确定且易于调控,因而这种独特的结构和性能使得单原子催化剂成为了一个非常理想的催化机理研究和性能优化的材料平台。然而当单原子催化剂与锂空气电池相遇,会擦出怎样的火花呢?本文采用原位聚合技术,设计合成了Co单原子嵌入的氮掺杂碳空心球(N-HP-Co)用于锂氧气电池的研究,并对其充放电过程进行详细分析。其结果表明,受益于N-HP-Co最大化暴露的CoN4单原子活性位点及活性位点在碳球壳上的均匀分布,降低了对LiO2的吸附能力,有效的改变了电池的反应路径,使得电池反应动力学得到极大提高,大幅提升了电池性能。

▲图一 单原子催化剂的合成过程。

单原子催化剂由于活性位点均匀性的提高以及配位环境的高度可控性,在许多催化反应中都表现出较高的催化活性。因此将单原子Co催化剂应用于锂氧气电池中,来探究对Li2O2形成与分解反应路径的影响。我们采用原位聚合的方法,以二氧化硅作为模板,盐酸多巴胺作为碳源,并在900 °C的氮气氛围内热解。

▲图二 单原子催化剂的特性表征。a, b) 样品的SEM图像(a:1微米;b:200纳米);c) 样品的TEM图像(主图:200纳米;插图:10纳米);d) 样品的EDX元素分析(50纳米);e, f) 样品的HAADF-STEM图像(e:50纳米;f:2纳米);g) 样品及对比材料的XRD图像;h) 样品的N 1s XPS光谱;i) 样品及对比材料的氮气吸附曲线。

▲图三 单原子催化剂的原子结构分析。a) 样品的XANES光谱;b) 样品的傅里叶转换的Co-K边光谱;c, d)样品在k和R空间的EXAFS拟合曲线。

N掺杂的碳球壳作为载体是锚定Co单原子的关键步骤。高角度环形暗场球差电镜(HAADF)、能量色散谱(EDX)元素映像图表和X射线吸收光谱(XAS)测试等关键性表征技术证实了单原子Co的成功制备和CoN4高活性位点的存在。

▲图四 单原子催化剂的放电机理研究。a) 样品及对比材料的放电曲线;b) 样品及对比材料的CV曲线;c) 样品及对比材料的倍率性能;d, e, f) 样品及对比材料的放电产物的SEM图像及相应的XRD谱图(500纳米);h, i) 样品及对比材料的放电机理图。

受益于N-HP-Co SACs最大化暴露的CoN4单原子活性位点在碳球壳上的均匀分布,电极氧化还原反应动力学得到极大提升,加快了放电产物Li2O2的形成速率,大幅提升了电池的放电容量和倍率性能。与同等含量的贵金属催化剂相比,在相同的电流密度和容量下,N-HP-Co SACs具有更多的反应活性位点,因而更有利于生成纳米片状的Li2O2,并通过“外延生长方式”进一步组装形成有利的纳米花状Li2O2。这种特殊的放电机制有利于打破电荷传输限制和放电产物电化学绝缘的本质。

▲图五 单原子催化剂的充电特性。a) 样品及对比材料在不同充电阶段的紫外可见光谱图;b) 样品的充电机理图;c-h) 样品及对比材料上的不同结构对LiO2的吸附能。

为了更全面地了解CoN4单位点催化剂的充电机理,通过密度泛函理论(DFT)计算表明复杂的配位环境可以显著改变中心金属原子CoN4对LiO2*的吸附能力,从而调控反应的活性和选择性。可以看出,CoN4活性中心对放电中间体LiO2弱的吸附能,有利于提高LiO2在电解质中的溶解度,诱导充电反应过程由两电子路径向单电子路径转变。因而有利于提高电池的充电效率。

▲图六 锂空气电池的循环稳定性。a) 样品及对比材料的循环性能;b-e) 样品及对比材料在不同循环过程中放电产物的SEM图像(b, d:1微米;c, e:500纳米);f, g) 样品及对比材料在不同循环过程中的放电产物的XPS光谱。

单原子催化的锂空气电池可以有效的抑制副反应的发生,并展现出优异的循环稳定性,充分验证了催化剂对放电产物的精准调控对稳定电池体系的重要作用。

▲图七 单原子催化剂在循环过程中的稳定性。a) 样品在全圈循环后的XPS光谱;b) 样品在多圈循环后的EDX光谱(200纳米);c) 样品在多圈循环后的XANES光谱;d) 样品在多圈循环后的傅里叶转换的Co-K边光谱。

N-HP-Co 在50次的循环过程中,Co的单原子结构依然被保留。Co单原子在碳载体上的固有稳定性使它们在电化学反应中具有优异的耐久性,这一显著的优势与低成本的优势相结合,为金属单原子催化剂在锂氧电池反应路线的可调性提供了新的策略。

单原子催化剂的合成受到草莓生长过程的启发,采用二氧化硅为模板,原位聚合生成氮掺杂的Co单原子催化剂。由于单原子催化的本质特征,低配位环境和单原子与碳球壳之间的协同作用能够精准的调控锂氧气电池中放电产物的生成与分解路线。与同等含量的贵金属催化剂相比,单原子催化剂不仅能够调控放电产物的形貌,同时增加了放电容量,避免了过多的副反应的发生,极大地提高了电池的电催化性能。该研究提出的单原子催化正极的概念、设计、制备及催化机制,将为锂空气电池领域新型催化剂的发展提供新的研究思路和科学依据,具有鲜明的引领性和开创性特征。

参考文献 [1] Yao, W. T. et al. Tuning Li2O2 formation routes by facet engineering of MnO2 cathode catalysts. J. Am. Chem. Soc.,2019,141,12832-12838.

徐吉静,1981年7月出生于山东省单县,现任吉林大学,化学学院,无机合成与制备化学国家重点实验室,未来科学国际合作联合实验室,教授,博士生导师。光学晶体标准化技术委员会副秘书长。主要从事多孔新能源材料与器件领域的基础研究和技术开发工作,研究方向包括锂(钠、钾、锌)离子电池关键材料及器件,锂空气(硫、二氧化碳)电池等新型化学电源,外场(光、力、磁、热)辅助能量储存与转化新体系。近5年共发表SCI学术论文50余篇,其中包括第一作者/通讯作者论文:篇、 1篇、. 2篇、篇、Energy 篇、ACS Nano 1篇、ACS 篇。迄今为止,论文被他引4000余次,单篇最高引用360次,12篇论文入选ESI高引论文,研究成果被Nature、Science等作为亮点报道。获授权发明专利和国防专利10项。曾获科睿唯安“全球高被引学者”(2019年)、吉林省拔尖创新人才(2019年)、吉林省青年 科技 奖(2018年)和吉林大学学术带头人(2018年)等奖项或荣誉。

以下是锂电池原理及结构:锂离子电池以碳材料为负极,以含锂的化合物作正极,没有金属锂存在,只有锂离子,这就是锂离子电池。锂离子电池是指以锂离子嵌入化合物为正极材料电池的总称。锂离子电池的充放电过程,就是锂离子的嵌入和脱嵌过程。在锂离子的嵌入和脱嵌过程中,同时伴随着与锂离子等当量电子的嵌入和脱嵌(习惯上正极用嵌入或脱嵌表示,而负极用插入或脱插表示)。在充放电过程中,锂离子在正、负极之间往返嵌入/脱嵌和插入/脱插,被形象地称为“摇椅电池”。

沈万慈 李新禄 邹麟 康飞宇 郑永平

(清华大学材料科学与工程系,新型炭材料研究室,北京 100084)

摘要 中国具有丰富的天然石墨资源,对天然石墨进行改性处理以应用到高能锂离子电池中是中国石墨产业升级的有效途径之一。对高纯微晶石墨进行了整形和表面包覆碳膜的处理,首次循环效率提高至,循环稳定性也得到了明显改善。试验表明,表面包覆的微晶石墨是一种优良的锂离子二次电池复合负极材料。采用H2SO4-GIC石墨层间化合物技术对鳞片石墨进行预膨胀处理,在石墨颗粒内形成亚微米-纳米空隙,提高了石墨制品的放电容量、快速充放电能力及循环寿命,特别适用于高能锂离子电池的发展要求[1~11]。

关键词 天然石墨;表面包覆;预膨胀;负极材料;锂离子电池。

第一作者简介:沈万慈,清华大学材料科学与工程系教授,长期从事石墨和新碳材料的研究和开发。E-mail:。

一、前言

中国石墨产品可分为鳞片石墨和微晶石墨两大类,鳞片石墨是指石墨晶质大于1μm,层片结构发达,但原矿品位低,一般含碳量在10%以下;微晶石墨又称为无定形石墨、隐晶石墨、土状石墨,晶质小于1μm,其特点在于由小晶粒团聚而成为聚晶体,原矿品位高,一般含碳量在50%以上,郴州鲁塘矿矿石含碳量达到80%以上。

微晶石墨用作锂离子电池的负极材料具有较高的嵌锂容量和循环稳定性,并且资源丰富、价格低廉,对天然微晶石墨进行改性处理以应用到高能锂离子电池中是中国石墨产业升级的有效途径之一。同样,鳞片石墨也可以用于锂离子电池的负极材料,但是必须要解决石墨在储电过程中的胀缩问题,否则它会直接影响电池的使用寿命。

二、微晶石墨的整形

微晶石墨颗粒内部是由许许多多取向无序的晶粒组成的,因此在微晶石墨球形化的过程中,极易产生粉碎现象,大多数颗粒被粉碎成10μm以下的细小颗粒。这些细小颗粒对石墨的负极性能是不利的。锂离子电池用天然石墨要求比表面积小、振实密度高、颗粒均匀,以提高其负极性能,这就要求颗粒粒度分布窄、表面光洁、球形度高。天然石墨必须经过粉体深加工,使其达到锂离子电池的使用要求,然而,通过普通机械粉碎方式很难达到这些要求。本文以化学法提纯后的微晶石墨为原料(其纯度C≥),对搅拌磨系统的微晶石墨整形效果进行了研究。表1是本研究中使用的微晶石墨的碳含量和粒度。

表1 试验中使用的微晶石墨

搅拌磨为无锡市鑫达粉体机械有效公司生产的SX-8型小型搅拌球磨机。搅拌桶容积8L,标准处理量3L。

(一)天然微晶石墨的整形加工

采用湿法搅拌磨整形:球形氧化锆磨球,直径3mm;料浆浓度20%;球料比为20∶1(质量比);填充率为1/2;添加聚丙烯酸铵(或六偏磷酸钠)作为助磨剂,比例为(相对于石墨的质量)。实验采用不同的技术参数,如表2所示。

表2 天然微晶石墨球形化处理实验条件参数

表3 整形前后微晶石墨的比表面积和粒度

(二)整形实验结果

从表3中可以看到,研磨后的微晶石墨比表面积有所下降,这是经搅拌磨整形后,微晶石墨颗粒形状更接近于球形,在相同的情况下,球形颗粒的比表面积更小。同时经搅拌磨整形后的石墨颗粒粒径有所下降,这说明搅拌磨在整形过程中有一定的粉碎作用。

(三)电化学性能

将制备好的石墨分别与聚二氟乙烯(PVDF)(质量百分数10%)混合均匀后用二甲基吡咯烷酮(NMP)溶解调成糊状均匀涂覆在铜箔上,烘干轧制后得到100μm左右厚度的膜。取直径为12mm的膜作为实验电极。电极膜片经过150℃真空干燥24 h后,在氩气手套箱中组装成实验纽扣电池(型号2025)。电解液为1 mol/L—LiPF6/EC-DEC(1∶1)(Merck Co.),隔膜为Celgard#2500。以锂片为对电极,采用恒电流充放电方法测试电化学性能,采用从到1C不等的放电速度,放电截止电压为0V,充电截止电压为3V。电池测试系统为兰电 CT2001A。

搅拌磨整形后的微晶石墨首次嵌锂容量和可逆容量分别由370 mA·h/g、284 mA·h/g增加到386 mA·h/g、308 mA·h/g,首次效率提高到。由此可见,微晶石墨的可逆容量并不算高,较鳞片石墨平均320 mA·h/g略低,但是微晶石墨有各向异性的结构特征,在重复充放电过程中显示了良好的循环性能,因此微晶石墨作为锂离子二次电池将更有优势,关键是提高首次循环效率。

三、微晶石墨的表面包覆

从机理上说,表面修饰主要是减少了石墨表面的活性点,降低了SEI形成的库仑消耗,优化了SEI膜的性能,从而降低了不可逆容量损失。同时预先在石墨表面形成一层碳膜,有利于防止电解液在石墨表面的分解,提高石墨负极的稳定性。但是表面碳膜的致密程度直接影响到改性的效果,致密均匀的碳膜就能有效地阻挡溶剂化离子的共插入,同时在炭化的过程中还能生成一些纳米级的孔,为锂离子的插入提供了更多的通道。

(一)微晶石墨的表面包覆工艺

包覆石墨制备工艺采用浸渍法,即将球形鳞片石墨与酚醛树脂按一定的配比混合均匀,加入乙醇溶剂调节黏度,得到符合分散工艺要求的浆料。经搅拌、过滤、烘干等工序后在石墨颗粒表面包覆上一层酚醛树脂,包覆后仍然为分散的椭球或球形的颗粒。再经过高温炭化后,制备出树脂炭包覆鳞片石墨。

包覆用的酚醛树脂采用液态线性酚醛树脂,型号为917(北京福润达树脂厂),固含量。去除乙醇溶剂后做热失重分析(热重分析仪 STA 409C)。实验表明,在1000℃时,树脂失重为61%,得到39%的热解炭。包覆用的石墨为搅拌磨整形和PCS系统球形化后的天然微晶石墨。

表4 微晶石墨在不同包覆量下的循环性能比较

图1 微晶石墨在不同包覆量下的循环容量曲线

(二)表面包覆的实验结果与讨论

表4列出了不同包覆量的循环性能比较。可以看出,在微晶石墨表面包覆树脂并经1000℃炭化后,其首次循环效率有所提高,循环稳定性也得到了改善。

从图1可以看出,表面包覆是对微晶石墨的电化学性能的有效改性方法,不仅能够提高首次效率,同时包覆后的微晶石墨显示了更好的循环性能,说明表面包覆的微晶石墨是一种良好的锂离子二次电池复合负极材料。

图2 GICs处理后循环性能

四、鳞片石墨用于锂离子电池负极材料

项目组在研究将天然鳞片石墨用作负极材料时,发现天然石墨由于石墨化程度高,其充放电容量要比人工制造的中间相炭微球(MCMB)高。MCMB容量在300 mA·h左右,而鳞片石墨为340 mA·h左右。但考虑循环性能时,鳞片石墨负极要差,多次充放电后,容量损失大。究其原因,主要是充放电时石墨晶体有10% 左右的涨缩量,鳞片石墨集中在一个方向上的多次涨缩使得负极膜损坏,造成性能下降。针对这一问题,本研究提出用石墨层间化合物(GICs)原理处理,在石墨颗粒内形成微米-纳米空隙,预制晶格涨缩空间,以提高循环性能。此项技术的关键在于缓慢有序的脱插,使插入物气体的逸出只在石墨内造成微米-纳米级的孔隙,而不能发生明显的体积膨胀,通常采用H2SO4-GIC、MClx-GICs或其他受主型GICs,在100~300℃低温的条件下经12~72 h的缓和脱插处理,而后对脱插后的石墨微粉进行微粒表面改性,包覆处理,制成负极材料。这样制得的负极材料既有鳞片石墨的高容量,又具有良好的循环性能(图2)。目前产品在电池上已进行产品性能检测。

五、总结与展望

我国锂离子电池产业仍将保持年平均30%以上的增长速度,2005年国内小型锂离子电池全年产量超过10亿只,石墨负极材料年需求量为5000~10000 t,世界需求量在2×104t左右,而目前供应量缺口很大。随着电动汽车的迅速发展,锂电池负极材料的需求将更加旺盛。

鉴于天然石墨资源丰富、价格低廉,并且具有较高的嵌锂容量,对天然微晶石墨进行改性处理以应用到高能锂离子电池中是国内石墨产业升级的有效途径之一。综合考虑造价和性能,在锂离子电池负极材料中天然石墨最具发展潜力,但是石墨存在着一些有待解决的问题,如首次循环的不可逆容量损失、循环稳定性等问题。天然石墨改性技术的不断发展,包括球形化处理、表面包覆树脂、插层/脱插的微膨化处理等,提高了石墨制品的放电容量、快速充放电能力、循环寿命等,改性天然石墨将成为高能锂离子电池负极的首选材料。

参考文献和资料

[1]何明,盖国胜,沈万慈,等.制粉工艺对天然微晶石墨锂离子阳极材料结构与性能的影响.电池,2002,32(4):197-200

[2]何明,陈湘彪,康飞宇,等.树脂炭包覆微晶石墨的制备及其电化学性能.电池,2003,33(5):281-284

[3]陈湘彪,刘旋,沈万慈.包覆鳞片石墨嵌锂行为的研究.电池,2004,34(6):394-396

[4]张静,郑永平,沈万慈,等.GICs技术改性天然石墨作为锂离子电池负极材料的研究.电池,2006,36(4):257-259

[5]沈万慈,等.一种锂离子电池石墨阳极膜制品及其制备方法和应用.专利号:ZL 97 1

[6]沈万慈,等.炭包覆石墨微粉的制备方法.专利号:ZL

[7]Andersson A M,Abraham D P,Haasch R,et characterization of electrodes from high power lithium-ion .,2002,149(10):A1358-1369

[8]Broussely developments on lithium ion batteries at Sources,1999,81/82:140-143

[9]张万红,岳敏.锂离子动力电池及其负极材料的研究现状及发展方向.新材料产业,2006,9:54-59

[10]张世超.锂离子电池关键材料产业技术现状与发展趋势新材料产业.新材料产业,2006,3:32-36

[11]董建,周伟,刘旋,等.微晶石墨作为阳极材料对二次锂离子电池电化学性能的影响.炭素技术,1999,(1):1-6

An Investigation on Natural Graphite Used as an Anode Materials for Lithium-ion Batteries

Shen Wanci,Li Xinlu,Zou Lin,Kang Feiyu,Zheng Yongping

(The Laboratory of New Carbon Materials,Department of Material Science and Engineering,Tsinghua University,Beijing 100084,China)

Abstract:The resource of natural graphite is rich in will be an effective way to upgrade national graphite industry if natural graphite after modification may be used in lithium ion the research,microcrystalline graphite with high purity was sphericalized and coated with a carbon film on the initial cycle efficiency was improved to be and the cycle stability was remarkably experi ments proved that microcrystalline graphite with carbon coating was an excellent anode material for lithium-ion addition,H2SO4-GIC technique was used to prepare the natural flake graphite powder with was found that sub-micro and nano pores formed in the graphite samples,that improved the reversible capacity,rate capacity and cycle product meet well the requirement of lithium-ion battery.

Key word:natural graphite,surface coating,mild-exfoliation,anode material,lithium-ion battery.

  • 索引序列
  • 锂离子电池毕业论文答辩ppt
  • 锂离子电池论文范文
  • 车载锂电池论文答辩ppt
  • 锂离子电池储能建模毕业论文
  • 锂离子电池论文参考文献
  • 返回顶部