首页 > 论文发表知识库 > 半导体行业研究报告论文

半导体行业研究报告论文

发布时间:

半导体行业研究报告论文

AIoT = AI(人工智能)+IoT(物联网),即将智能赋予终端设备。将人工智能算法转移到物联网终端设备运行,减少对云计算的依赖,消除数据通信过程的延迟。人工智能使物联网获取感知与识别能力、物联网为人工智能提供训练算法的数据。

AIoT发展的四大核”芯”:泛智能—SoC、泛控制—MCU、泛通信—WiFi/蓝牙芯片、泛感知—传感器。1、SoC:数据运算处理中心,实现智能化的关键。2、MCU:数据收集与控制执行的中心,辅助SoC实现智能化。3、WiFi/蓝牙芯片:数据传输的中心,远程交互的关键。4、传感器:数据获取的中心,感知外界信号的关键。

来源 | 方正证券

以上是资料的部分内容,

近期分享: 2021年移动 游戏 报告

2021年中国财商教育行业发展研究报告

2021年中国二手电商行业洞察

2021年中国企业直播行业研究及服务商品牌测评报告

2021年中国互联网家政服务行业报告

返回英国房价高

我今年近7O岁了,可以说半导体陪伴着我们长大,从小就爱听,听少儿节目,听老电影,听新闻,听小说,印象最深的是(欧阳海之歌)等等许多许多,收获很大,获得了知识,享受了快乐,直到现在我还是爱听半导体,现在主要听小品,相声,养生知识等等,因为半导体听起来方便,也不费眼晴,挺好的!

半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器,60年代早期,很多小组竞相进行这方面的研究。在理论分析方面,以莫斯科列别捷夫物理研究所的尼古拉·巴索夫的工作最为杰出。在1962年7月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,这引起通用电气研究实验室工程师哈尔(Hall)的极大兴趣,在会后回家的火车上他写下了有关数据。回到家后,哈尔立即制定了研制半导体激光器的计划,并与其他研究人员一道,经数周奋斗,他们的计划获得成功。像晶体二极管一样,半导体激光器也以材料的p-n结特性为敞弗搬煌植号邦铜鲍扩基础,且外观亦与前者类似,因此,半导体激光器常被称为二极管激光器或激光二极管。早期的激光二极管有很多实际限制,例如,只能在77K低温下以微秒脉冲工作,过了8年多时间,才由贝尔实验室和列宁格勒(现在的圣彼得堡)约飞(Ioffe)物理研究所制造出能在室温下工作的连续器件。而足够可靠的半导体激光器则直到70年代中期才出现。半导体激光器体积非常小,最小的只有米粒那样大。工作波长依赖于激光材料,一般为~微米,由于多种应用的需要,更短波长的器件在发展中。据报导,以Ⅱ~Ⅳ价元素的化合物,如ZnSe为工作物质的激光器,低温下已得到微米的输出,而波长~微米的室温连续器件输出功率已达10毫瓦以上。但迄今尚未实现商品化。光纤通信是半导体激光可预见的最重要的应用领域,一方面是世界范围的远距离海底光纤通信,另一方面则是各种地区网。后者包括高速计算机网、航空电子系统、卫生通讯网、高清晰度闭路电视网等。但就目前而言,激光唱机是这类器件的最大市场。其他应用包括高速打印、自由空间光通信、固体激光泵浦源、激光指示,及各种医疗应用等。晶体管利用一种称为半导体的材料的特殊性能。电流由运动的电子承载。普通的金属,如铜是电的好导体,因为它们的电子没有紧密的和原子核相连,很容易被一个正电荷吸引。其它的物体,例如橡胶,是绝缘体 --电的不良导体--因为它们的电子不能自由运动。半导体,正如它们的名字暗示的那样,处于两者之间,它们通常情况下象绝缘体,但是在某种条件下会导电。

半导体学报2021

为大家整理的招聘主题相关的10篇毕业论文文献,包括5篇期刊论文和5篇学位论文,为招聘选题相关人员撰写毕业论文提供参考。1.[期刊论文]企业人力资源招聘风险管理研究期刊:《区域治理》 | 2021 年第 012 期摘要:人力资源是企业赢得市场竞争的主要资源,人力资源招聘工作是企业获得合适人才的主要途径.但是实际企业人力资源招聘环节存在很大的招聘风险,这会造成企业成本的增加,而且还会对企业发展战略的实施产生影响.因此,企业在进行人力资源招聘时要注重进行风险管理,有效防止人力资源招聘给企业带来损失.基于此,本文主要对企业人力资源招聘风险管理进行了研究,分析了企业人力资源招聘过程中存在的风险,并提出了管理措施,希望能够为企业人力资源招聘工作者提供一定的借鉴.关键词:企业人力资源;招聘风险;风险管理链接:.[期刊论文]劳动力市场歧视理论下招聘过程中的典型歧视现象研究期刊:《现代营销》 | 2021 年第 007 期摘要:随着国家发展和经济体制改革的不断深入,我国的劳动力市场运转态势良好.但在招聘过程中,仍存在多种歧视现象:同等条件下,男性的机会多于女性,相貌较好的机会多于长相一般的,年纪较小的机会多于年龄偏大的,学历高的机会多于学历低的,本地户籍的多于外来务工的.这些现象分别可以概括为——性别歧视、相貌歧视、年龄歧视、学历歧视、户籍歧视.结合劳动力市场歧视理论,本文通过分析招聘过程中的典型歧视现象,并结合相关问题产生的原因,提出针对性的对策和建议.关键词:劳动力市场;招聘;歧视链接:.[期刊论文]2021年招聘市场偏谨慎 健康医疗等产业用人需求大期刊:《中国对外贸易》 | 2021 年第 003 期摘要:日前,据前程无忧统计显示,由于新冠肺炎疫情的不确定,由此带来市场多变,可持续经营和人力资源管理能力不足,2021年上半年民营企业在人才招聘上偏于谨慎。2020年下半年所有行业的招聘量都超过了上半年,在招聘量最大的前二十行业,房地产3年来首次超过互联网/电子商务行业,占据首位。预计2021年,健康医疗、农林牧渔、专业服务和检测认证等行业将有较大的用人增长,软件开发、半导体和教育培训等会面临较多的并购整合。关键词:检测认证;前程无忧;人才招聘;并购整合;民营企业;用人需求;健康医疗;软件开发链接:.[期刊论文]物流与供应链金融职位特征和人才需求研究——基于三大招聘网站招聘信息的分析期刊:《物流工程与管理》 | 2021 年第 002 期摘要:随着物流与供应链金融领域的迅速发展,我国物流业与金融业已成为人们共同关注的新兴领域,有着广阔的发展空间。文中根据目前三大互联网招聘网站上关于物流与供应链金融人才的招聘信息,采用文本处理和统计分析方法对其内容进行研究分析。通过组织和职位两个维度研究发现,物流与供应链金融有着人才需求市场比较集中、任职基本条件要求各有特点、职业素养要求基本相同、不同类型的岗位人才类型专业技能要求不同等特征,然后从专业开设、人才培养模式、实践能力培养和职业素质提升等方面对高校培养物流与供应链金融人才提出了针对性的建议。关键词:物流与供应链金融;职位特征;人才培养;互联网招聘;人才需求链接:.[期刊论文]招聘信息期刊:《丝网印刷》 | 2021 年第 003 期摘要:杭州恒基油墨涂料有限公司诚聘杭州恒基油墨公司高薪招聘UV-LED丝印油墨资深研发工程师。要求具备UVLED丝印油墨研发经验5年以上,大学本科学历以上,身体健康,工作敬业,男女不限。录用后年薪50万起。联系人:闻华明(总经理)联系电话:。关键词:大学本科学历;研发经验;招聘信息;研发工程师链接:.[学位论文]面向智能招聘的数据挖掘方法及其应用目录著录项学科:计算机应用技术授予学位:博士年度:2021正文语种:中文语种链接:

1979年,李树深进入河北师范大学物理系学习 。

1983年,本科毕业后留校工作,在河北师范大学物理系任教,先后担任助教(1983年7月-1986年8月)、讲师(1989年5月-1993年8月) 。

1986年,考取西南交通大学固体物理专业硕士研究生。1989年,获得硕士学位。

1994年,考取中国科学院半导体研究所博士研究生。1996年,获得博士学位。曾先后在日本NEC电器株式会社筑波研究所、义大利国际理论物理中心和香港科技大学物理系进行光电子器件相关性能预测研究。

2003年,获得国家杰出青年科学基金资助 。

2006年,担任中国科学院半导体研究所副所长、党委副书记(至2011年) 。同年担任国家创新研究群体"半导体低维结构中的量子调控"学术带头人。

2009年,担任国家重大科学研究计画项目(973项目)首席科学家。入选国家级"新世纪百千万人才工程"。

2011年,当选为中国科学院院士(科学院信息技术科学部) ,11月获得何梁何利基金科学与技术进步奖 ,12月出任中国科学院半导体研究所所长(至2018年4月)、党委书记(2014年6月) 。

2015年11月21日,开发中国家科学院第26届院士大会上,李树深正式成为开发中国家科学院士,任期为2016至2018年 。

2017年12月,中国科学院官网"院领导集体"页面更新显示,中国科学院党组成员李树深同时担任副院长一职 。

2018年5月7日,中国科学院大学领导班子个别调整宣布会议在玉泉路校区礼堂报告厅召开,会议由中科院人事局局长孙晓明主持,会上孙晓明宣读了院党组的决定:李树深同志任中国科学院大学校长(兼,法定代表人)。

李树深主要从事半导体低维量子结构中的器件物理基础研究。提出了研究半导体耦合量子点(环)电子态结构的一种物理模型,理论上确定了半导体量子点可以吸收垂直入射光,发现了半导体量子点电荷量子比特真空消相干机制,发展了电子通过半导体量子点的量子输运数值计算方法 。

李树深先后参加和主持国家八五、九五攀登计画、国家重大基础研究计画项目(973项目)及国家自然科学基金委和中国科学院重大、重点项目多项 ,2004年、2009年和2017年三次获国家自然科学二等奖 。

承担项目

成果奖励

截至2017年,李树深在包括《美国科学院院刊》、《美国物理评论快报》在内的中国国内外重要学术期刊发表论文200余篇 。

代表性论著(10篇)

[1]. Shu-Shen Li and Jian-Bai Xia, Effective-mass theory for GaAs/GaAlAs quantum wires and corrugated superlattices grown on (311) oriented substrates. Phys. Rev. B50, 8602 (1994).

[2]. Shu-Shen Li , Jian-Bai Xia, Z. L. Yuan, Z. Y. Xu, Weikun Ge, Y. Wang, J. Wang, and L. L. Chang, Effective-mass theory for InAs/GaAs strained coupled quantum dots. Phys. Rev. B54, 11575 (1996).

[3]. Shu-Shen Li and Jian-Bai Xia, Intraband optical absorption in semiconductor coupled quantum dots. Phys. Rev. B55, 15 434 (1997).

[4]. Shu-Shen Li and Jian-Bai Xia, Electronic structures of InAs self-assembled quantum dot in an axial magic field. Phys. Rev. B58, 3561 (1998).

[5]. Shu-Shen Li and Jian-Bai Xia, Electronic states of InAs/GaAs quantum ring. J. Appl. Phys. 89, 3434 (2001).

[6]. Shu-Shen Li , Gui-Lu Long, Feng-Shan Bai, Song-Lin Feng, and Hou-Zhi Zheng, Quantum puting. Pro. Natl. Acad. Sci. USA, 98(21), 11847 (2001).

[7]. Shu-Shen Li , Kai Chang, Jian-Bai Xia, and Kenji Hirose, Spin-dependent transport through Cd1-xMnxTe diluted magic semiconductor quantum dots, Phys. Rev. B68, 245 306 (2003).

[8]. Shu-Shen Li , Kai Chang, and Jian-Bai Xia, Effective-mass theory for hierarchical self-assembly of GaAs/AlxGa1-xAs quantum dots, Phys. Rev. B71, 155 301 (2005).

[9]. Shu-Shen Li and Jian-Bai Xia, Asymmetric quantum-confined Stark effects of hierarchical self-assembly of GaAs / AlxGa1-xAs quantum dots, Appl. Phys. Lett. 87, 043 102 (2005).

[10]. Shu-Shen Li and Jian-Bai Xia, Electronic structures of N quantum dot molecule, Appl. Phys. Lett. 91, 092119 (2007).

2012年12月22日,中国科学院大学材料科学与光电技术学院第一次院务会上,作为学术委员会主任的李树深针对博士资格考试的议题谈到,国科大的博士生培养应该是精英教育,博士生的质量体现了国科大和中科院的教育水平,应当推行博士生资格考试,这对于树立学校的教育品牌非常重要 。

李树深长期担任中国科学院大学材料科学与光电技术学院院长和首届本科生1412班班主任,在他的带领下,中国科学院大学的材料学科进入ESI排名前万分之一,并入选首批国家一流学科建设名单。他丰富的科教融合工作阅历和经验,对国科大深入推进以人才队伍为核心的"科教融合"、推动学校综合改革,整体提升创新能力起到重要作用 。

截至2016年,李树深一共培养了50多名博士和多名硕士,6名博士后出站。2009年指导的博士生李彦超获得朱李月华优秀博士生奖 。根据中国科学技术信息研究所、国家工程技术数字研究馆信息、全国图书馆参考咨询联盟,李树深培养学生情况如下 :

艾合买提

.阿不力孜

李树深从事低维半导体物理及器件、光电子器件性能预测、固态量子信息等物理基础研究,他的研究工作被国际同行广泛引用,其中包括国际著名半导体物理专家的综述性论文,并被写入专著 。(兰州大学评)

现今社会,人才是第一生产力。对于企业来说,人才选拔和培养已经成为最迫切的任务。因此,招聘到适合公司岗位的人才,已成为现今企业人力资源管理的新命题、新挑战。文中详细论述了国外对员工甄选方法的基本内容及研究现状和及国内企业甄选现状及不足,因此提出一个行之有效的甄选流程是我们值得研究的问题。1 企业员工甄选方法国内外研究现状、基本内容。甄选的涵义。甄选是根据所招募工作职位的特点,选用恰当的甄选方法和程序,以最低的成本,确保岗位和人员的最佳匹配。甄选的内容(1)保证甄选工作的科学性标准;(2)根据组织的性质特点及工作职位的要求,选用恰当的这些技术;(3)做出甄选的决策,确保拟聘职位与最终的被录用者之间达到最佳匹配。国内外甄选过程中的一般方法。心理测试法(1)心理测试法的含义。心理测验法是根据已标准化的实验工具如量表,引发和刺激被测试者的反应,所引发的反应结果由被测试者自己或他人记录,然后通过一定的方法进行处理,予以量化,描绘行为的轨迹,并对其结果进行分析。对被测试者心理现象或心理品质进行的定量分析。随着计算机技术的发展和广泛应用,心理测验领域已出现了明显的计算机化的趋势(2)测试方式。智力测验:认知功能的测量;知觉、空间意识、语言能力、数字能力、记忆力等。个性测验:情绪、性格、态度、工作动机、品德、价值观等。心理健康测验:测定应聘者的人生观、价值观等。职业能力测验:针对企业管理工作的需要测定应聘者的职业能力。职业兴趣测验:测试应聘者对该职业的兴趣。创造力测验:流畅力、变通力、精致力、敏觉力和独创力。评价中心法(1)评价中心法的含义:评价中心法,是创设一个模拟的管理系统或工作场景,将被测试者纳入该系统中,采用多种评价技术和手段,观察和分析被测试者在模拟的工作情境压力下的心理和行为,以测量其管理能力和潜能的测评方法。(2)常用方法常用的方法:公文筐处理;无领导小组讨论;角色扮演法;管理游戏。观察判断法(1)含义观察判断法是以观察被测试者行为反应作为基本手段,判断其内在素质能力的一种方法。它是以测评人员素质为目的,借助一定的量表,在观察的基础上进行测评活动(2)方法事件记录与关键事件法;检核性描述量表;观察测评量表;人物推定表;背景考察。纸笔测评法纸笔测评法是考评应聘者学识水平的重要工具,通过设计相关试题考查应聘者的基本知识、专业知识、管理知识、综合分析能力、逻辑推理能力、文字表达能力。面试法(1)含义。面试是最常见的甄选方法之一。面试可以通过与应聘者对话、提问等方式,了解应聘者的性格和智力,并能评价应聘者的主观方面。可以对应聘者的综合素质进行较为全面的测评。(2)面试的常用方法。情景面试:面试题目主要由一系列假设的情景构成,通过评价求职者在这些情景下的反应情况,对面试者进行评价。a.能力面试法:考查求职者如何去实现所追求的目标。b.系列面试法:有几位主考官对求职者进行面试,每位主考官依据标准评价表做出评定,然后对每位主考官评定结果进行综合比较分析,最后做出录用决策。c.小组面试法:有几位主考官组成面试小组,从不同侧面提出不重复的问题,要求求职者回答。d.压力面试:主考官通过有意制造紧张气氛,考查求职者对工作上承受的压力作何反应。国内企业甄选现状缺乏计划性首先要确定企业发展战略目标,制定人力资源规划中应明确指出,才能确定企业每个岗位需要什么样的员工。目前国内的许多企业人员的配置缺乏计划性表现在没有与企业的短、长期目标相结合,只关注眼前的人员需求,对企业可能存在的变化与发展没有预见,造成招募人才上的失误,形成企业资源和成本上的浪费。任职资格没有针对性目前国内许多企业都缺乏人力资源规划,没有制定一个招聘的标准,在用人部门提出招聘申请时,也不明确表示需要什么样的人才,人事部更没有明确这个标准,人事部便以一般的公共标准草拟了招聘启事。也没有研究讨论并定义该职务的任职资格,于是引来了各类求职者,各层次的人才一应俱全,增加了简历筛选的工作量,减少了合适人选的面试几率,招聘工作既没有效率,又没有质量,并且辜负了不少求职者的企盼。面试过程不合理对于目前国内一些企业的面试而言,一般经过初试和复试两道程序,人力资源部负责初次面试,然后用人部门进行复试,一般通过初试与复试的应聘者将会被录用。并且,通常在面试问题的设置上,主考官基本没有仔细考量过,一般都是随机发问,至于问题的目的和考察求职者哪一方面素质,考官们自己也不是很清楚;在面试过程中,最重要的是,面试考官往往根据“第一印象”的偏好做出判断,印象好的多问些,相反则草草结束面试。这样给录用真正符合企业、符合该职务的人才造成了极大的偏差。测评体系缺乏科学性往往用人单位根主考官的感觉即决定是否录用一个人,而不是系统的评估一个人是否有能力成为公司的有效的一份子。单纯用某些技能来衡量人的价值,而没有从态度、行为方式、价值观等方面进行测评,录用后觉得失望也是在所难免的。毕竟,技能是可以通过相关培训来培养的,而人的性格、价值观等是很难轻易改变的。所以就人才测评体系的建设方面,目前的中国本土企业很少有几个公司的测评体系做到专业且成熟的程度,包括目前所谓的中国前500强企业。录用决策过于草率和主观目前中国企业一般招聘的人员都是基层员工,,人员录用决策是比较简单的,因为用人方面有极强的岗位对应性,比如一线的操作工,招聘的目的很明确。但当招聘管理岗位,尤其是较高的管理职务时,由于测评系统的不完善或是评价意见的不统一,每个招聘岗位可能存在多个合适人选,或求职者适合多个岗位,且招聘人选相互之间差异不明显,此时人员录用决策就比较复杂,不能简单的做出录用决策。企业一般采取“谁的职位高谁说了算”来解决这一困扰,只要是领导喜欢,领导说用谁就用谁,其他部门倒也轻松了。决策正确还好,如果决策失误,则可能使整个招聘过程功亏一篑,不仅使企业蒙受重大的经济损失,还会因此阻碍企业的发展。对基于胜任力模型的甄选方法的误解麦克利首先提出“胜任力”这个概念,经过长期的研究提出了胜任力模型及其分析和评价方法。随着我国企业在人力资源管理和实践能力的不断提高,也引进了这个概念,并且大部分企业在招聘工作中都采用基于胜任力模型的甄选办法。但在引进这一办法的同时也对这一概念的理解产生了偏差。目前国内对胜任力的定义所存在的误区主要有两个:(1)把岗位胜任力等同于岗位任职资格,认为必须具备岗位胜任力才能上岗。例如,我们经常在招聘信息上看到某岗位要求“本科、某某专业、英语6级、计算机二级、一年以上相关工作经验”等等这样的字眼。这些都是岗位的任职资格,也就是说如果不具备这些条件,你的工作能力再强,也没有机会入选。这是一个很普遍的现象,但这就完全违背了胜任力的内涵。因为任职资格要求不能保证人员在岗位上一定会有出色的表现,它是把差与一般区别开来,而不是区别一般与优秀人才。现在有很多企业都这样做,因此还需要在好好理解“胜任力”这一涵义的基础上做出改进。(2)把绩优人员具备的一切特征都归入岗位胜任力的范畴。事实上,把绩优者的一切特征都归入岗位胜任力范畴后,企业很难招到人才,因为企业把门槛设得太高了。反过来说,知识技能出色、背景优秀的人才不一定能获得成功。2 总结以上问题,反映了国内企业招聘在确定甄选标准和进行素质测评方面缺乏一定的专业水平,影响了企业人力资源管理的进步,制约了企业的发展壮大。通过对国内外提出的各种甄选办法的研究可以发现,每种方法都有其优点与不足,那么如何组合使用这些方法,并提出一个行之有效的甄选流程是我们值得研究的问题。参考文献[1] 马冬冰 基于胜任力模型的招聘甄选管理体系的构建 重庆科技学院学报 2007年第6期[2] 张文斌,陈晓光,胡眉玲 建立系统的人力资源预测与甄选体系提高专业化人力资源管理水平 电力勘测设计 2008年4月 第2期[3] 孙武 企业如何甄选可用之才 中国人力资源开发 2009年1月 第233期[4] 何锦华 企业招聘面试存在的问题及对策 中国水运 2007年9月 第9期 第7卷[5] 许广永,丁玉玺 浅谈胜任力在甄选中的应用 黑龙江对外经贸 2007年 第1期[6] 林敬伟 人才甄选面试中应聘者印象管理策略的采用及其影响因素 林业机械与木工设备2009年10月 第10期 第37卷[7] 刘宇璟 人力资源管理专业实训课程的教学体系设计探讨 教研教改 2009年10月(下旬刊)[8] 张相林 微软公司人才甄选策略及启示 中国人才 2009年8月[9] 吴旭峰,杨玥 现代服务业人力资源甄选及管理研究 学习与探索 2008年 第6期[10] 郑立明,李贝贝 招聘甄选的本质和误区 管理批判 2010年1月[11] 王庆娟,张义明 中国文化下的甄选程序公平原则 中国人力资源开发 2008年5月 第215期[12] 黄光圣,魏书堂 组织甄选偏差的来源及其风险应对策略 广东财经职业学院报 2009年2月 第1期

应该是1000-3231 感光科学与光化学,是EI的。EI《Ei Compendex》收录的中国期刊ISSN 期刊刊名0567-7718 Acta Mechanica Sinica/Lixue Xuebao1006-7191 Acta Metallurgica Sinica (English Letters)0253-4827 Applied Mathematics and Mechanics (English Edition)1004-5341 China Welding (English Edition)1004-9541 Chinese Journal of Chemical Engineering1022-4653 Chinese Journal of Electronics1000-9345 Chinese Journal of Mechanical Engineering (English Edition)1671-7694 Chinese Optics Letters1006-6748 High Technology Letters1004-0579 Journal of Beijing Institute of Technology (English Edition)1005-9784 Journal of Central South University of Technology (English Edition)1553-9105 Journal of Computational Information Systems1000-1484 Journal of Dong Hua University (English Edition)1005-9113 Journal of Harbin Institute of Technology (New Series)1001-6058 Journal of Hydrodynamics1548-7741 Journal of Information and Computational Science1005-0302 Journal of Materials Science and Technology1002-0721 Journal of Rare Earths1003-7985 Journal of Southeast University (English Edition)1004-4132 Journal of Systems Engineering and Electronics1003-2169 Journal of Thermal Science1005-8850 Journal of University of Science and Technology Beijing: MineralMetallurgy Materials (Eng Ed)1009-3095 Journal of Zhejiang University: Science1001-0521 Rare Metals1006-9291 Science in China, Series B: Chemistry1003-6326 Transactions of Nonferrous Metals Society of China (English Edition)1006-4982 Transactions of Tianjin University1007-0214 Tsinghua Science and Technology0253-4177 半导体学报1001-1455 爆炸与冲击1001-5965 北京航空航天大学学报1001-053X 北京科技大学学报1001-0645 北京理工大学学报1000-1522 北京林业大学学报1007-5321 北京邮电大学学报1005-0299 材料科学与工艺1009-6264 材料热处理学报1005-3093 材料研究学报1007-7294 船舶力学1000-8608 大连理工大学学报1000-2383 地球科学 — 中国地质大学学报1005-0388 电波科学学报1000-1026 电力系统自动化0372-2112 电子学报1005-3026 东北大学学报(自然科学版)1001-0505 东南大学学报 (自然科学版)1000-3851 复合材料学报1003-9015 高校化学工程学报1000-5773 高压物理学报1000-4750 工程力学1001-9731 功能材料1000-3819 固体电子学研究与进展1006-2793 固体火箭技术1005-0086 光电子.激光1004-924X 光学精密工程0253-2239 光学学报0454-5648 硅酸盐学报1006-7043 哈尔滨工程大学学报0367-6234 哈尔滨工业大学学报0253-360X 焊接学报1005-5053 航空材料学报1000-8055 航空动力学报1000-6893 航空学报0258-0926 核动力工程1001-9014 红外与毫米波学报1000-2472 湖南大学学报 (自然科学版)1000-565X 华南理工大学学报(自然科学版)1671-4512 华中科技大学学报(自然科学版)0438-1157 化工学报0577-6686 机械工程学报1671-5497 吉林大学学报(工学版)1006-5911 计算机集成制造系统0254-4164 计算机学报1007-4708 计算力学学报1001-246X 计算物理0258-1825 空气动力学学报1000-8152 控制理论与应用1001-0920 控制与决策1004-0595 摩擦学学报1000-0925 内燃机工程1000-0909 内燃机学报1005-2615 南京航空航天大学学报1005-9830 南京理工大学学报 (自然科学版)1001-4322 强激光与粒子束1000-0054 清华大学学报 (自然科学版)1006-8740 燃烧科学与技术1000-9825 软件学报0254-0150 润滑与密封1006-2467 上海交通大学学报1671-2021 沈阳建筑大学学报(自然科学版)0371-0025 声学学报1001-8719 石油学报:石油加工1009-3087 四川大学学报(工程科学版)0254-0096 太阳能学报0493-2137 天津大学学报0253-374X 同济大学学报 (自然科学版)1001-4055 推进技术1000-324X 无机材料学报1001-2400 西安电子科技大学学报0253-987X 西安交通大学学报1000-2758 西北工业大学学报1007-8827 新型 炭材料1000-6915 岩石力学与工程学报1000-7598 岩土力学1005-0930 应用基础与工程科学学报1000-6931 原子能科学技术1008-973X 浙江大学学报 (工学版)0253-9748 真空科学与技术学报1004-4523 振动工程学报1000-3835 振动与冲击0258-8013 中国电机工程学报1022-0666 中国航空太空学会 学刊0258-7025 中国激光1000-1964 中国矿业大学学报1001-4632 中国铁道科学0254-508X 中国造纸0529-6579 中山大学学报(自然科学版)0254-4156 自动化学报=========================================EI非核心版(《EiPageOne》)收录的中国期刊ISSN 期刊刊名1000-9116 Acta Seismologica Sinica English Edition1561-8625 Asian Journal of Control1005-9040 Chemical Research in Chinese Universities0890-5487 China Ocean Engineering1001-6279 International Journal of Sediment Research0254-9409 Journal of Computational Mathematics1007-6417 Journal of Shanghai University0257-9731 Journal of the Chinese Society of Mechanical Engineers, Transactionsof the Chinese Institute of Engineers1000-2413 Journal of Wuhan University of Technology -Materials Science Edition1001-8042 Nuclear Science and Techniques/Hewuli1002-0071 Progress in Natural Science1006-9283 Science in China (Series A: Mathematics)1007-1202 Wuhan University Journal of Natural Sciences1001-5868 半导体光电1000-1506 北方交通大学学报0479-8023 北京大学学报 (自然科学版)1007-2640 北京化工大学学报 (自然科学版)1000-1093 兵工学报1001-4381 材料工程1007-4112 长安大学学报1004-499X 弹道学报1000-6753 电工技术学报1001-0548 电子科技大学学报1005-9490 电子器件1009-5896 电子与信息学报1000-6761 动力工程1001-3784 粉末冶金技术1000-3436 辐射研究与辐射工艺学报1000-3231 感光科学与光化学0449-749X 钢铁0251-0790 高等学校化学学报1003-6520 高电压技术1000-7555 高分子材料科学与工程1002-0470 高技术通讯0254-3052 高能物理与核物理1001-1609 高压电器0253-231X 工程热物理学报1007-4252 功能材料与器件学报1003-501X 光电工程1000-0593 光谱学与光谱分析1002-1582 光学技术1004-4213 光子学报1001-2486 国防科技大学学报1009-606X 过程工程学报1006-9941 含能材料1002-0837 航天医学与医学工程1002-1396 合成树脂及塑料0258-0934 核电子学与探测技术0253-9950 核化学与放射化学0253-3219 核技术0254-6086 核聚变与等离子体物理1672-9102 湖南科技大学学报1006-5431 华北工学院学报1006-3080 华东理工大学学报 (自然科学版)1000-3932 化工自动化及仪表1001-7631 化学反应工程与工艺1005-9954 化学工程0250-3301 环境科学1002-0446 机器人1001-9669 机械强度1000-1158 计量学报1003-9775 计算机辅助设计与图形学学报1000-3428 计算机工程1000-1239 计算机研究与发展1007-9629 建筑材料学报1000-6869 建筑结构学报1006-852X 金刚石与磨料磨具工程0254-6051 金属热处理0412-1961 金属学报1001-5493 离子交换与吸附1008-0562 辽宁工程技术大学学报 (自然科学版)0253-2417 林产化学与工业1007-3124 流体力学实验与测量0253-9993 煤炭学报1003-6059 模式识别与人工智能1001-1935 耐火材料1000-1972 南京邮电学院学报1002-6819 农业工程学报1000-1298 农业机械学报0253-2409 燃料化学学报1001-2060 热能动力工程1000-985X 人工晶体学报1007-6735 上海理工大学学报1000-5870 石油大学学报 (自然科学版)1000-7210 石油地球物理勘探1000-8144 石油化工1006-396X 石油化工高等学校学报1000-0747 石油勘探与开发0253-2697 石油学报1004-9037 数据采集与处理1001-6791 水科学进展1003-1243 水力发电学报0559-9350 水利学报1007-2012 塑性工程学报1001-2249 特种铸造及有色合金1001-8360 铁道学报1003-8213 微细加工技术1000-050X 武汉大学学报 (信息科学版)1671-4431 武汉理工大学学报1006-2823 武汉理工大学学报 (交通科学与工程版)1000-3290 物理学报1006-7930 西安建筑科技大学学报1001-5361 西安石油 大学学报(自然科学版)0258-2724 西南交通大学学报1000-2634 西南石油学院学报 (自然科学版)1002-185X 稀有金属材料与工程1004-731X 系统仿真学报1000-6788 系统工程理论与实践1001-506X 系统工程与电子技术0253-4320 现代化工1004-2474 压电与声光1000-4548 岩土工程学报1000-7571 冶金分析0254-3087 仪器仪表学报1000-4939 应用力学学报1000-1328 宇航学报1008-9209 浙江大学学报 (农业与生命科学版)1004-6801 振动测试与诊断1001-7372 中国公路学报1000-6923 中国环境科学1004-132X 中国机械工程1004-0609 中国有色金属学报1000-6842 中国造纸学报1005-9792 中南工业大学学报 (自然科学版)1006-7329 重庆建筑大学学报1001-4977 铸造1000-8365 铸造技术Ei Compendex Web(EI网络版)是《Ei Compendex》和《Ei PageOne》合并而成的Internet版本。Ei来源期刊分三个档次 :(1)核心期刊, Compendex 数据库收录重点是下列主要工程学科:化学工程,土木工程;电子/电气工程,机械工程,冶金、矿业、石油工程,计算机工程和软件。美国工程信息公司副总裁Katz认为:“这些是Compendex数据库的‘核心’领域。”目前,核心期刊约有1000种;每期所有论文均被录入Compendex。国内《金属学报》、《清华大学学报》等为核心期刊。(2)选择期刊,一些学科领域的期刊是有选择地收录,包括:农业工程、工业工程、纺织工程、应用化学、应用数学、应用力学、大气科学、造纸化学和技术,高等学校工程类学报等。Compendex 只选择与其主题范围有关的文章,并不是所以文章均被收录。目前,选择期刊约1600种,国内以上学科的期刊大多数为选择期刊。(3)扩充期刊,它只收录题录(Ei Page One)。在Ei的扩充版中,约2800种期刊。国内期刊比较多。

半导体晶圆研究论文

在芯片的生产过程中,光刻机是关键设备,而光刻则是必不可少的核心环节。光刻技术的精度水平决定了芯片的性能强弱,也代表了半导体产业的完善程度。我们国内一直希望在这方面取得领先的地位,但是结果却不尽人意。 其实光刻机之所以这么难造,就是因为光刻技术实在是太复杂了,不仅需要顶尖的光源条件,还对精度有着近乎苛刻的要求。目前,全球光刻技术市场基本上被美日两国垄断了,而我们国内正在努力攻克其中的技术难点。 那么光刻到底是一项怎样的工作呢?为什么能难倒这么多国家?大家都知道,芯片的衬底是半导体晶圆,而光刻就是在晶圆上制备芯片的第一步。在光刻过程中,有一项非常重要的材料,名为光掩膜,没有它也就无法将集成电路刻画在晶圆上。 而且光掩膜也有高中低端的层次之分,通过高端光掩膜生产出的芯片更加先进,而低端的就只能用于生产普通芯片了。显然,高端光掩膜也是各个国家青睐的对象,但是这种材料的制备难度非常高,如果精度达不到要求,那么想要突破绝非易事! 就目前的情况来看,国内在光掩膜市场还对国外进口存在一定的依赖,但是随着中科院的突破,这种依赖正在慢慢减轻,以后将会彻底消失。那么如今国内的光刻技术到底达到了何种水平呢? 在讨论这个问题之前,我们先来看看中科院传出的消息,它被很多人过分甚至是错误解读了。今年7月份,中科院发表了一篇论文,研究内容是5nm光刻制备技术,而大部分人都以为这标志着中科院突破到了最先进的5nm极紫外光刻技术。 但是事实却并非如此,据后来该论文的通讯作者刘前在接受媒体采访时表示,中科院研究的5nm光刻制备技术针对的是光掩膜的生产,而不是光刻机用到的极紫外光。也就是说,中科院发表论文不等同于国产光刻机技术达到了5nm水平。 对此,很多国人都在想,难道国产5nm光刻技术不存在?从某种意义上来说,现在这个问题的答案是肯定的,国产5nm确实还遥遥无期。此外,中科院紧急辟谣:5nm光刻技术根本不现实,国产水平只有180nm! 从5nm一下子掉到180nm,这个落差让很多人都接受不了。但需要知道的是,180nm才是国产光刻机技术的真实水平,就算不愿意承认,也必须得面对。如果连自身的不足之处都无法面对,那么何谈攻克技术难题?何谈突破? 毫无疑问,180nm还处于比较落后的状态,这也是国产芯片迟迟无法崛起的主要原因。光刻技术作为光刻机的核心动力,我们国内肯定不会轻易放弃,现在是180nm不代表以后也是180nm,现在无法突破到5nm也不代表以后突破不了! 所以说,我们应该对国产技术和半导体芯片充满信心,只有相信自己,才能不断地自我突破。而且最近一段时间,国内传来了很多好消息,光刻技术也不急于一时。 举个简单的例子,华为旗下的海思半导体正在转型为IDM模式的企业,不仅要掌握芯片设计技术,还准备进军芯片制造市场,成为像三星那样的巨头。此外,华为也宣布了全面布局光刻机的决定,有了它的加入,国产光刻技术将迎来更大的希望! 一项技术就算再难也有一定的限度,但是科研人员的智慧是无限的,所以在国内这么多科研工作者的共同努力下,再难的技术都会被攻克,光刻和光刻机也不例外。相信以后国内一定能实现技术崛起的目标,取得领先的地位! 对此,你们怎么看呢?欢迎留言和分享。

台积电开启晶圆代工时代,成为集成电路中最为重要的一个环节。 1987 年,台积电的成立开启了 晶圆代工时代,尤其在得到了英特尔的认证以后,晶圆代工被更多的半导体厂商所接受。晶圆代工 打破了 IDM 单一模式,成就了晶圆代工+IC 设计模式。目前,半导体行业垂直分工成为了主流, 新进入者大多数拥抱 fabless 模式,部分 IDM 厂商也在逐渐走向 fabless 或者 fablite 模式。

全球晶圆代工市场一直呈现快速增长,未来有望持续 。晶圆代工+IC 设计成为行业趋势以后,受益 互联网、移动互联网时代产品的强劲需求,整个行业一直保持快速增长,以台积电为例,其营业收 入从 1991 年的 亿美元增长到 2019 年的 346 亿美元,1991-2019 年,CAGR 为 21%。2019 年全球晶圆代工市场达到了 627 亿美元,占全球半导体市场约 15%。未来进入物联网时代,在 5G、 人工智能、大数据强劲需求下,晶圆代工行业有望保持持续快速增长。

晶圆代工行业现状:行业呈现寡头集中。 晶圆代工是制造业的颠覆,呈现资金壁垒高、技术难度大、 技术迭代快等特点,也因此导致了行业呈现寡头集中,其中台积电是晶圆代工行业绝对的领导者, 营收占比超过 50%,CR5 约为 90%。

晶圆代工行业资金壁垒高。 晶圆代工厂的资本性支出巨大,并且随着制程的提升,代工厂的资本支 出中枢不断提升。台积电资本支出从 11 年的 443 亿元增长到 19 年的 1094 亿元,CAGR 为 12%。 中芯国际资本性支出从 11 年的 30 亿元增长到了 19 年的 131 亿元,CAGR 为 20%,并且随着 14 nm 及 N+1 制程的推进,公司将显著增加 2020 年资本性支出,计划为 455 亿元。巨额投资将众多 追赶者挡在门外,新进入者难度极大。

随着制程提升,晶圆代工难度显著提升。 随着代工制程的提升,晶体管工艺、光刻、沉积、刻蚀、 检测、封装等技术需要全面创新,以此来支撑芯片性能天花板获得突破。

晶体管工艺持续创新。 传统的晶体管工艺为 bulk Si,也称为体硅平面结构(Planar FET)。 随着 MOS 管的尺寸不断的变小,即沟道的不断变小,会出现各种问题,如栅极漏电、泄漏功 率大等诸多问题,原先的结构开始力不从心,因此改进型的 SOI MOS 出现,与传统 MOS 结 构主要区别在于:SOI 器件具有掩埋氧化层,通常为 SiO2,其将基体与衬底隔离。由于氧化 层的存在,消除了远离栅极的泄漏路径,这可以降低功耗。随着制程持续提升,常规的二氧 化硅氧化层厚度变得极薄,例如在 65nm 工艺的晶体管中的二氧化硅层已经缩小仅有 5 个氧 原子的厚度了。二氧化硅层很难再进一步缩小了,否则产生的漏电流会让晶体管无法正常工 作。因此在 28nm 工艺中,高介电常数(K)的介电材料被引入代替了二氧化硅氧化层(又称 HKMG 技术)。随着设备尺寸的缩小,在较低的技术节点,例如 22nm 的,短沟道效应开始 变得更明显,降低了器件的性能。为了克服这个问题,FinFET 就此横空出世。FinFET 结构 结构提供了改进的电气控制的通道传导,能降低漏电流并克服一些短沟道效应。目前先进制 程都是采用 FinFET 结构。

制程提升,需要更精细的芯片,光刻机性能持续提升。 负责“雕刻”电路图案的核心制造设备是光刻机,它是芯片制造阶段最核心的设备之一,光刻机的精度决定了制程的精度。第四 代深紫外光刻机分为步进扫描投影光刻机和浸没式步进扫描投影光刻机,其中前者能实现最 小 130-65nm 工艺节点芯片的生产,后者能实现最小 45-22nm 工艺节点芯片的生产。通过多 次曝光刻蚀,浸没式步进扫描投影光刻机能实现 22/16/14/10nm 芯片制作。到了 7/5nm 工艺, DUV 光刻机已经较难实现生产,需要更为先进的 EUV 光刻机。EUV 生产难度极大,零部件 高达 10 万多个,全球仅 ASML 一家具备生产能力。目前 EUV 光刻机产量有限而且价格昂 贵,2019 年全年,ASML EUV 销量仅为 26 台,单台 EUV 售价高达 亿美元。

晶圆代工技术迭代快,利于头部代工厂。 芯片制程进入 90nm 节点以后,技术迭代变快,新的制程 几乎每两到三年就会出现。先进制程不但需要持续的研发投入,也需要持续的巨额资本性支出,而 且新投入的设备折旧很快,以台积电为例,新设备折旧年限为 5 年,5 年以后设备折旧完成,生产 成本会大幅度下降,头部厂商完成折旧以后会迅速降低代工价格,后进入者难以盈利。

摩尔定律延续,技术难度与资本投入显著提升

追寻摩尔定律能让消费者享受更便宜的 算 力,晶圆代工是推动摩尔定律最重要的环节。 1965 年, 英特尔(Intel)创始人之一戈登·摩尔提出,当价格不变时,集成电路上可容纳的元器件的数目, 约每隔 18-24 个月便会增加一倍,性能也将提升一倍,这也是全球电子产品整体性能不断进化的核 心驱动力,以上定律就是著名的摩尔定律。换而言之,每一美元所能买到的电脑性能,将每隔 18- 24 个月翻一倍以上。推动摩尔定律的核心内容是发展更先进的制程,而晶圆代工是其中最重要的 环节。

摩尔定律仍在延续。 市场上一直有关于摩尔定律失效的顾虑,但是随着 45nm、28nm、10nm 持续 的推出,摩尔定律仍然保持着延续。台积电在 2018 年推出 7nm 先进工艺,2020 年开始量产 5nm, 并持续推进 3nm 的研究,预计 2022 年量产 3nm 工艺。IMEC 更是规划到了 1nm 的节点。此外, 美国国防高级研究计划局进一步提出了先进封装、存算一体、软件定义硬件处理器三个未来发展研 究与发展方向,以此来超越摩尔定律。在现在的时间点上来看,摩尔定律仍然在维持,但进一步提 升推动摩尔定律难度会显著提升。

先进制程资本性投入进一步飙升 。根据 IBS 的统计,先进制程资本性支出会显著提升。以 5nm 节 点为例,其投资成本高达数百亿美金,是 14nm 的两倍,是 28nm 的四倍。为了建设 5nm 产线, 2020 年,台积电计划全年资本性将达到 150-160 亿美元。先进制程不仅需要巨额的建设成本,而 且也提高了设计企业的门槛,根据 IBS 的预测,3nm 设计成本将会高达 5-15 亿美元。

3nm 及以下制程需要采用全新的晶体管工艺。 FinFET 已经历 16nm/14nm 和 10nm/7nm 两个工艺 世代,随着深宽比不断拉高,FinFET 逼近物理极限,为了制造出密度更高的芯片,环绕式栅极晶 体管(GAAFET,Gate-All-Ground FET)成为新的技术选择。不同于 FinFET,GAAFET 的沟道被 栅极四面包围,沟道电流比三面包裹的 FinFET 更加顺畅,能进一步改善对电流的控制,从而优化 栅极长度的微缩。三星、台积电、英特尔均引入 GAA 技术的研究,其中三星已经先一步将 GAA 用 于 3nm 芯片。如果制程到了 2nm 甚至 1nm 时,GAA 结构也许也会失效,需要更为先进的 2 维 、 甚至 3 维立体结构,目前微电子研究中心(Imec)正在开发面向 2nm 的 forksheet FET 结构。

3nm 及以下制程,光刻机也需要升级。 面向 3nm 及更先进的工艺,芯片制造商或将需要一种称为 高数值孔径 EUV(high-NA EUV)的光刻新技术。根据 ASML 年报,公司正在研发的下一代极紫 外光刻机将采用 high-NA 技术,有更高的数值孔径、分辨率和覆盖能力,较当前的 EUV 光刻机将 提高 70%。ASML 预测高数值孔径 EUV 将在 2022 年以后量产。

除上面提到巨额资本与技术难题以外,先进制程对沉积与刻蚀、检测、封装等环节也均有更高的要 求。正是因为面临巨大的资本和技术挑战,目前全球仅有台积电、三星、intel 在进一步追求摩尔定 律,中芯国际在持续追赶,而像联电、格罗方德等晶圆代工厂商已经放弃了 10nm 及以下制程工艺 的研发,全面转向特色工艺的研究与开发。先进制程的进一步推荐节奏将会放缓,为中芯国际追赶 创造了机会。

先进制程占比持续提升,成熟工艺市场不断增长

高性能芯片需求旺盛,先进制程占比有望持续提升。 移动终端产品、高性能计算、 汽车 电子和通信 及物联网应用对算力的要求不断提升,要求更为先进的芯片,同时随着数据处理量的增加,存储芯 片的制程也在不断升级,先进制程的芯片占比有望持续提升。根据 ASML2018 年底的预测,到 2025 年,12 寸晶圆的先进制程占比有望达到 2/3。2019 年中,台积电 16nm 以上和以下制程分别占比 50%,根据公司预计,到 2020 年,16nm 及以下制程有望达到 55%。

CPU、逻辑 IC、存储器等一般采用先进制程(12 英寸),而功率分立器件、MEMS、模拟、CIS、 射频、电源芯片等产品(从 6μm 到 40nm 不等)则更多的采用成熟工艺(8 寸片)。 汽车 、移动 终端及可穿戴设备中超过 70%的芯片是在不大于 8 英寸的晶圆上制作完成。相比 12 寸晶圆产线,8 寸晶圆制造厂具备达到成本效益生产量要求较低的优势,因此 8 寸晶圆和 12 寸晶圆能够实现优 势互补、长期共存。

受益于物联网、 汽车 电子的快速发展,MCU、电源管理 IC、MOSFET、ToF、传感器 IC、射频芯 片等需求持续快速增长。 社会 已经从移动互联网时代进入了物联网时代,移动互联网时代联网设备 主要是以手机为主,联网设备数量级在 40 亿左右,物联网时代,设备联网数量将会成倍增加,高 通预计到 2020 年联网 设备数量有望达到 250 亿以上。飙升的物联网设备需要需要大量的成熟工艺 制程的芯片。以电源管理芯片为例,根据台积电年报数据,公司高压及电源管理晶片出货量从 2014 年的 1800 万片(8 寸)增长到 2019 年的 2900 万片,CAGR 为 10%。根据 IHS 的预测,成熟晶 圆代工市场规模有望从 2020 年的 372 亿美元增长到 2025 年的 415 亿美元。

特色工艺前景依旧广阔,主要代工厂积极布局特色工艺。 巨大的物联网市场前景,吸引了众多 IC 设计公司开发新产品。晶圆代工企业也瞄准了物联网的巨大商机,频频推出新技术,配合设计公司 更快、更好地推出新一代芯片,助力物联网产业高速发展。台积电和三星不仅在先进工艺方面领先布局,在特色工艺方面也深入布局,例如台积电在图像传感器领域、三星在存储芯片领域都深入布 局。联电、格罗方德、中芯国际、华虹半导体等代工厂也全面布局各自的特色工艺,在射频、 汽车 电子、IOT 等领域,形成了各自的特色。

5G 时代终端应用数据量爆炸式提升增加了对半导体芯片的需求,晶圆代工赛道持续繁荣。 随着对 于 5G 通信网络的建设不断推进,不仅带动数据量的爆炸式提升,要求芯片对数据的采集、处理、 存 储 效率更高,而且也催生了诸多 4G 时代难以实现的终端应用,如物联网、车联网等,增加了终 端对芯片的需求范围。对于芯片需求的增长将使得下游的晶圆代工赛道收益,未来市场前景极其广 阔。根据 IHS 预测,晶圆代工市场规模有望从 2020 年的 584 亿美元,增长到 2025 年的 857 亿美 元,CAGR 为 8%。

推动手机芯片需求量上涨

5G 手机渗透率快速提升。手机已经进入存量时代,主要以换机为主。2019 年全球智能手机出货量 为 亿部,2020 年受疫情影响,IDC 等预测手机总体出货量为 亿台,后续随着疫情的恢 复以及 5G 产业链的成熟,5G 手机有望快速渗透并带动整个手机出货。根据 IDC 等机构预测,5G 手机出货量有望从 2020 年的 增长到 2024 年的 亿台,CAGR 为 59%。

5G 手机 SOC、存储和图像传感器全面升级,晶圆代工行业充分受益。 消费者对手机的要求越来越 高,需要更清晰的拍照功能、更好的 游戏 体验、多任务处理等等,因此手机 SOC 性能、存储性能、 图像传感器性能全面提升。目前旗舰机的芯片都已经达到了 7nm 制程,随着台积电下半年 5 nm 产 能的释放,手机 SOC 有望进入 5nm 时代。照片精度的提高,王者荣耀、吃鸡等大型手游和 VLOG 视频等内容的盛行,对手机闪存容量和速度也提出了更高的要求,LPDDR5 在 2020 年初已经正式 亮相小米 10 系列和三星 S20 系列,相较于上一代的 LPDDR4,新的 LPDDR5 标准将其 I/O 速 度从 3200MT/s 提升到 6400MT/s,理论上每秒可以传输 的数据。相机创新是消费者更 换新机的主要动力之一,近些年来相机创新一直在快速迭代,一方面,多摄弥补了单一相机功能不 足的缺点,另一方面,主摄像素提升带给消费者更多的高清瞬间,这两个方向的创新对晶圆及代工 的需求都显著提升。5G 时代,手机芯片晶圆代工市场将会迎来量价齐升。

5G 手机信号频段增加,射频前端芯片市场有望持续快速增长。射频前端担任信号的收发工作,包 括低噪放大器、功率放大器、滤波器、双工器、开关等。相较于 4G 频段,5G 的频段增加了中高 频的 Sub-6 频段,以及未来的更高频的毫米波频段。根据 yole 预测,射频前端市场有望从 2018 年 的 149 亿美元,增长到 2023 年的 313 亿美元,CAGR 为 16%。

云计算前景广阔,服务器有望迎来快速增长

2020 年是国内 5G 大规模落地元年,有望带来更多数据流量需求 。据中国信通院在 2019 年 12 月 份发布的报告,2020 年中国 5G 用户将从去年的 446 万增长到 1 亿人,到 2024 年我国 5G 用户 渗透率将达到 45%,人数将超过 亿人,全球将达到 12 亿人,5G 用户数的高增长带来流量的 更高增长。

5G 时代来临,云计算产业前景广阔。 进入 5G 时代,IoT 设备数量将快速增加,同时应用的在线 使用需求和访问流量将快速爆发,这将进一步推动云计算产业规模的增长。根据前瞻产业研究院的 报告,2018 年中国云计算产业规模达到了 963 亿元,到 2024 年有望增长到 4445 亿元,CAGR 为 29%,产业前景广阔。

边缘计算是云计算的重要补充,迎来新一轮发展高潮。 根据赛迪顾问的数据,2018 年全球边缘计 算市场规模达到 亿美元,同比增长率 ,预计未来年均复合增长率将超过 50%。而中国 边缘计算市场规模在 2018 年达到了 亿元,并且 2018-2021 将保持 61%的年复合增长率,到 2021 年达到 亿元。

服务器大成长周期确定性强。 服务器短期拐点已现,受益在线办公和在线教育需求旺盛,2020 年 服务器需求有望维持快速增长。长期来看,受益于 5G、云计算、边缘计算强劲需求,服务器销量 有望保持持续高增长。根据 IDC 预测,2024 年全球服务器销量有望达到 1938 万台,19-24 年, CAGR 为 13%。

服务器半导体需求持续有望迎来快速增长,晶圆代工充分受益。 随着服务器数量和性能的提升,服 务器逻辑芯片、存储芯片对晶圆的需求有望快速增长,根据 Sumco 的预测,服务器对 12 寸晶圆 需求有望从 2019 年的 80 万片/月,增长到 2024 年的 158 万片/月,19-24 年 CAGR 为 8%。晶圆 代工市场有望充分受益服务器芯片量价齐升。

三大趋势推动 汽车 半导体价值量提升

传统内燃机主要价值量主要集中在其动力系统。 而随着人们对于 汽车 出行便捷性、信息化的要求逐 渐提高, 汽车 逐步走向电动化、智能化、网联化,这将促使微处理器、存储器、功率器件、传感器、 车载摄像头、雷达等更为广泛的用于 汽车 发动机控制、底盘控制、电池控制、车身控制、导航及车 载 娱乐 系统中, 汽车 半导体产品的用量显著增加。

车用半导体有望迎来加速增长。 根据 IHS 的报告,车用半导体销售额 2019 年为 410 亿美元,13- 19 年 CAGR 为 8%。随着 汽车 加速电动化、智能化、网联化,车用芯片市场规模有望迎来加速, 根据 Gartner 的数据,全球 汽车 半导体市场 2019 年销售规模达 亿美元,预计 2022 年有望 达到 651 亿美元,占全球半导体市场规模的比例有望达到 12%,并成为半导体下游应用领域中增 速最快的部分。

自动驾驶芯片要求高,有望进一步拉动先进制程需求。 自动驾驶是通过雷达、摄像头等将采集车辆 周边的信息,然后通过自动驾驶芯片处理数据并给出反馈,以此降低交通事故的发生率、提高城市 中的运载效率并降低驾驶员的驾驶强度。自动驾驶要求多传感器之间能够及时、高效地传递信息, 并同时完成路线规划和决策,因此需要完成大量的数据运算和处理工作。随着自动驾驶级别的上升, 对于芯片算力的要求也越高,产生的半导体需求和价值量也随之水涨船高。英伟达自动驾驶芯片随 着自动驾驶级别的提升,芯片制程也显著提升,最早 Drive PX 采用的是 20nm 工艺,而最新 2019 年发布的 Drive AGX Orin 将会采用三星 8nm 工艺。根据英飞凌的预测,自动驾驶给 汽车 所需要的 半导体价值带来相当可观的增量,一辆车如果实现 Level2 自动驾驶,半导体价值增量就将达到 160 美元,若自动驾驶级别达到 level4&5,增量将会达到 970 美元。

快速增长,芯片类型多

随着行业标准完善、技术不断进步、政策的扶持,全球物联网市场有望迎来爆发性增长。GSMA 预 测,中国 IOT 设备联网数将会从 2019 年的 36 亿台, 增到 到 2025 年的 80 亿台,19-25 年 CAGR 为 。根据全球第二大市场研究机构 MarketsandMarkets 的报告,2018 年全球 IoT 市场规模 为 795 亿美元,预计到 2023 年将增长到 2196 亿美元,18-23 年 CAGR 为 。

物联网的发展需要大量芯片支撑,半导体市场规模有望迎来进一步增长 。物联网感知层的核心部件 是传感器系统,产品需要从现实世界中采集图像、温度、声音等多种信息,以实现对于所处场景的 智能分析。感知需要向设备中植入大量的 MEMS 芯片,例如麦克风、陀螺仪、加速度计等;设备 互通互联需要大量的通信芯片,包括蓝牙、WIFI、蜂窝网等;物联网时代终端数量和数据传输通道 数量大幅增加,安全性成为最重要的需求之一,为了避免产品受到恶意攻击,需要各种类型的安全 芯片作支持;同时,身份识别能够保障信息不被盗用,催生了对于虹膜识别和指纹识别芯片的需求; 作为物联网终端的总控制点,MCU 芯片更是至关重要,根据 IC Insights 的预测,2018 年 MCU 市 场规模增长 11%,预计未来四年内 CAGR 达 ,到 2022 年将超过 240 亿美元。

国内 IC 设计企业快速增长,代工需求进一步放量

国内集成电路需求旺盛,有望持续维持快速增长。 国内集成电路市场需求旺盛,从 2013 年的 820 亿美元快速增长到 2018 年的 1550 亿美元,CAGR 为 ,IC insight 预测,到 2023 年,中国 集成电路市场需求有望达到 2290 亿美元,CAGR 为 8%。但是同时,国内集成电路自给率也严重 不足,2018 年仅为 15%,IC insight 在 2019 年预测,到 2023 年,国内集成电路自给率为 20%。

需求驱动,国内 IC 设计快速成长。 在市场巨大的需求驱动下,国内 IC 设计企业数量快速增加,尤 其近几年,在国内政策的鼓励下,以及中美贸易摩擦大的背景下,IC 设计企业数量加速增加,2019 年底,国内 IC 设计企业数量已经达到了 1780 家,2010-2019 年,CAGR 为 13%。根据中芯国际 的数据,国内 IC 设计公司营收 2020 年有望达到 480 亿美元,2011-2020 年 CAGR 为 24%,远 高于同期国际 4%的复合增长率。

国内已逐步形成头部 IC 设计企业。 根据中国半导体行业协会的统计,2019 年营收前十的入围门槛 从 30 亿元大幅上升到 48 亿元,这十大企业的增速也同样十分惊人,达到 47%。国内 IC 企业逐步 做大做强,部分领域已经形成了一些头部企业:手机 SoC 芯片领域有华为海思、中兴微电子深度 布局;图像传感领域韦尔豪威大放异彩;汇顶 科技 于 2019 年引爆了光学屏下指纹市场;卓胜微、 澜起 科技 分别在射频开关和内存接口领域取得全球领先。IC 设计企业快速成长有望保持对晶圆代 工的强劲需求。

晶圆代工自给率不足。 中国是全球最大的半导体需求市场,根据中芯国际的预测,2020 年中国对 半导体产品的需求为 2130 亿美元,占全球总市场份额为 49%,但是与之相比的是晶圆代工市场份 额严重不足,根据拓墣研究的数据,2020Q2,中芯国际和华虹半导体份额加起来才 6%,晶圆代 工自给率严重不足,尤其考虑到中国 IC 设计企业数量快速增长,未来的需求有望持续增长,而且, 美国对华为等企业的禁令,更是让我们意识到了提升本土晶圆代工技术和产能的重要性。

政策与融资支持,中国晶圆代工企业迎来良机(略)

晶圆代工需求不断增长,但国内自给严重不足,受益需求与国内政策双重驱动,国内晶圆代工迎来 良机。建议关注:国内晶圆代工龙头,突破先进制程瓶颈的中芯国际-U、特色化晶 圆代工与功率半导体 IDM 双翼发展的华润微华润微、坚持特色工艺,盈利能力强的华虹半导体华虹半导体。

……

(报告观点属于原作者,仅供参考。作者:东方证券,蒯剑、马天翼)

如需完整报告请登录【未来智库】。

2019年5月,美国商务部将华为列入实体清单,禁止美国企业向华为出口技术和零部件;2020年5月,美国进一步升级对华为贸易禁令,要求凡使用了美国技术或设计的半导体芯片出口华为时,必须得到美国政府的许可证,进一步切断华为通过第三方获取芯片或代工生产的渠道。

此前,高通、英特尔和博通等美国公司都向华为提供芯片,用于华为智能手机和其他电信设备,华为手机使用谷歌的安卓操作系统。华为自研的麒麟高端手机芯片,也依赖台积电代工。随着美国芯片禁令实施,华为手机业务遭遇重创,消费者业务收入大幅下滑,海外市场拓展也受到影响。

美国凭借芯片技术优势对中国企业“卡脖子”,使半导体产业陡然成为中美 科技 竞争的风暴眼。“缺芯”之痛,突显了中国半导体产业的技术短板。它如一记振聋发聩的警钟,惊醒国人看清国际 科技 竞争的残酷现实。

半导体产业是 科技 创新的龙头和先导,在信息 科技 和高端制造中占据核心地位。攻克半导体核心技术难题,解决高端芯片受制于人的现状,成为中国高 科技 发展和产业升级的当务之急。

全球半导体版图

半导体产业很典型地体现了供应链的全球化,各国在半导体产业链上分工协作,相互依赖。美国、韩国、日本、中国、欧洲等国家或地区发挥各自优势,共同组成了紧密协作的全球半导体产业链。

根据美国半导体行业协会发布的最新数据,美国的半导体企业销售额占据全球的47%,排名第二的是韩国,占比为19%,日本和欧盟半导体企业销售额占比均为10%,并列第三。中国台湾和中国大陆半导体企业销售额占比分别为6%和5%。

具体来看,美国牢牢控制半导体产业链的头部,包括最前端EDA/IP、芯片设计和关键设备等。具体而言,在全球产业链总增加值中,美国在EDA/IP上,占据74%份额;在逻辑芯片设计上,占据67%;在存储芯片设计上,占据29%;在半导体制造设备上,占据41%。

日本在芯片设计、半导体制造设备、半导体材料等重要环节掌握核心技术;韩国在存储芯片设计、半导体材料上发挥关键作用;欧洲在芯片设计、半导体制造设备和半导体材料上贡献突出;中国则在晶圆制造上发挥重要作用。

中国大陆在全球晶圆制造(后道封装、测试)增加值占比高达38%;中国台湾在全球半导体材料、晶圆制造(前道制造、后道封装、测试)增加值占比分别达到22%和47%。

以上国家和地区构成了全球半导体产业供应链的主体。

芯片是人类智慧的结晶,芯片制造是全球顶尖的高端制造产业之一,是典型的资本密集和技术密集行业。制造的过程之复杂、技术之尖端、对制造设备的苛刻要求,决定了芯片产业链的复杂性。半导体制造中的大部分设备,包含了数百家不同供应商提供的模块、激光、机电组件、控制芯片、光学、电源等,均需依托高度专业化的复杂供应链。每一个单一制造链条都可能汇集了成千上万的产品,凝聚着数十万人多年研发的积累。

芯片技术也涉及广泛的学科,需要长时期的基础研究和应用技术创新的成果累积。举例来说,一项半导体新技术方法从发布论文,到规模化量产,至少需要10-15年的时间。作为全球最先进的半导体光刻技术基础的极紫外线EUV应用,从早期的概念演示到如今的商业化花费了将近40年的时间,而EUV生产所需要的光刻机设备的10万个零部件来自全球5000多家供应商。

芯片制造的复杂性,创造了一个由无数细分专业方向组成的全球化产业链。在半导体市场中,专业的世界级公司通过几十年有针对性的研发,在自己擅长的领域建立了牢固的市场地位。比如,荷兰ASML垄断着世界光刻机的生产;美国高通、英特尔、韩国三星、中国台湾的台积电等也都形成了各自的技术优势。目前全世界最先进制程的高端芯片几乎都由台积电和三星生产。

中美芯片供应链各有软肋

“缺芯”,不仅困扰着中国企业。

自去年下半年以来,受新冠疫情及美国贸易禁令干扰,芯片产能及供应不足,全球信息产业和智能制造都遭遇了严重的“芯片荒”。

随着新一轮新冠疫情在东南亚蔓延, 汽车 行业芯片短缺进一步加剧,全球三家最大的 汽车 制造商装配线均出现中断。丰田称 9 月全球减产 40%。美国车企也不能幸免,福特 汽车 旗下一家工厂暂停组装 F-150 皮卡,通用 汽车 北美地区生产线停工时间也被迫延长。

蔓延全球的芯片荒,迫使各国对全球半导体供应链的安全性、可靠性进行重新审视和评估。中美两个大国在半导体供应链上各有优势,也各有软肋。

中国芯片产业起步较晚,但近年来加速追赶。根据中国半导体行业协会统计,2020年中国集成电路产业销售额为8848亿元,同比增长17%,5年增长了超过一倍。其中,设计业销售额为亿元,同比增长;制造业销售额为亿元,同比增长;封装测试业销售额亿元,同比增长。中国2020年出口集成电路2598亿块,出口金额1166亿美元,同比增长。

中国芯片核心技术与美国有较大差距,主要突破在芯片设计领域,芯片设计水平位列全球第二。在制造的封测环节也不是我们的短板。中国芯片制造的短板主要在三方面:核心原材料不能自己自足、芯片制造工艺与国际领先水平有较大差距、关键制造设备依赖进口。

由于不能独立完成先进制程芯片的生产制造,大量高端芯片依赖进口。2020年中国进口芯片5435亿块,进口金额亿美元。

美国是世界芯片头号强国,拥有世界领先的半导体公司,但其核心能力是主导芯片产业链的前端,包括设计、制造设备的关键技术等,但上游资源和制造能力也依赖国外。美国在全球半导体制造市场的市占率急速下降,从 1990 年 37% 滑落至目前 12%左右。

波士顿咨询公司和美国半导体行业协会在今年4月联合发布的《在不确定的时代加强全球半导体产业链》的报告显示,若按设备制造/组装所在地统计,2019年中国大陆半导体企业销售额占比高达35%;美国则排名第二,销售额占比为19%。

世界芯片的主要制造产能集中在亚洲, 2020 年中国台湾半导体产能全球占比为 22%,其次是韩国 21%,日本和中国大陆皆为 15%。这意味着美国在芯片的制造和生产环节,也存在很大的脆弱性。这也是伴随东南亚疫情爆发导致芯片产业链产能受限,美国同样遭遇“芯片荒”的原因。

对半导体产业链脆弱性的担忧,推动美国加大对半导体产业的投资和政策扶持。今年5月美国参议院通过一项两党一致同意的芯片投资法案,批准了520亿美元的紧急拨款,用以支持美国半导体芯片的生产和研发,以提升美国国内半导体产业链的韧性和竞争力。今年2月24日,美国总统拜登签署一项行政命令,推动美国加强与日本、韩国及中国台湾等盟国/地区合作,加速建立不依赖中国大陆的半导体供应链。

除了产能问题,美国在全球半导体竞争中的另一个软肋就是对中国市场的依赖。中国是全球最大的半导体需求市场,每年中国半导体的进口额都超过3000亿美元,大多数美国半导体龙头企业至少有25%的销售额来自中国市场。可以说,中国是美国及全球主要半导体供应商的最大金主。如果失去中国这个最富活力、最具成长性的市场,那么依赖高资本投入的美国各主要芯片供应商的研发成本将难以支撑,影响其研发投入及未来竞争力。

这从另一方面说,恰是中国的优势,中国庞大的市场需求和发展空间,足以支撑芯片产业链的高强度资本投入与技术研发,并推动技术和产品迭代。

“中国芯”提速

随着中国推进《中国制造2025》,芯片制造一直是中国 科技 发展的优先事项。如今,美国在芯片供应和制造上进行霸凌式断供,使中国构建自主可控、安全高效的半导体产业链的目标更加紧迫。

客观上,半导体产业链需要各国协作,这从成本和技术进步角度,对各国都是互利共赢。但美国的断供行为改变了传统的商业与贸易逻辑。在大国竞争的背景下,对具有战略意义的半导体和芯片产业链,安全、可靠成为主导的逻辑。

中国要成为制造强国,实现在全球产业链、价值链的跃升,摆脱关键技术受制于人的困境,芯片制造这道坎儿就必须跨过。

随着越来越多的中国高 科技 企业被列入美国实体清单,迫使半导体产业链中的许多中国企业不得不“抱团取暖”,携手合作,努力寻求供应链的“本土化”。“中国芯”突围,成为中国 科技 界、产业界不得不面对的一场“新的长征”。中国半导体产业进入攻坚期,也由此迎来发展的重大战略机遇期。

在国家“十四五”规划和2035远景目标纲要中,把 科技 自立自强作为创新驱动的战略优先目标,致力打造“自主可控、安全高效”的产业链、供应链;国家将集中资金和优势 科技 力量,打好关键核心技术攻坚战,在卡脖子领域实现更多“由零到一”的突破。国家明确提出到2025年实现芯片自给率70%的目标。

2020年8月,国务院印发《新时期促进集成电路产业和软件产业高质量发展的若干政策》,瞄准国产芯片受制于人的短板,在投融资、人才和市场落地等方面进一步加大政策支持,助力打通和拓展企业融资渠道,加快促进集成电路全产业链联动,做大做强人才培养体系等。

全国多地制定半导体产业发展规划和扶持政策,积极打造半导体产业链。长三角地区是我国半导体产业重点聚集区,深圳市则是珠三角地区集成电路产业的龙头,京津冀及中西部地区的半导体产业也正在加快布局。

作为中国创新基地,上海市政府6月21日发布《战略性新兴产业和先导产业发展“十四五”规划》,其中集成电路产业列为第一位的发展项目,提出产业规模年均增速达到20%左右,力争在制造领域有两家企业营收进入世界前列,并在芯片设计、制造设备和材料领域培育一批上市企业。

上海市的规划中,对芯片制造也制定出具体目标和实施路径:加快研制具有国际一流水平的刻蚀机、清洗机、离子注入机、量测设备等高端产品;开展核心装备关键零部件研发;提升12英寸硅片、先进光刻胶研发和产业化能力。到2025年,基本建成具有全球影响力的集成电路产业创新高地,先进制造工艺进一步提升,芯片设计能力国际领先,核心装备和关键材料国产化水平进一步提高,基本形成自主可控的产业体系。

上海联合中科院和产业龙头企业,投资5000亿元,打造世界级芯片产业基地:东方芯港。目前东方芯港项目已引进40余家行业标杆企业,初步形成了覆盖芯片设计、特色工艺制造、新型存储、第三代半导体、封装测试以及装备、材料等环节的集成电路全产业链生态体系。

在国家政策指引和强劲市场的驱动下,国家、企业、科研机构、大学、 社会 资金等集体发力,中国芯片行业正展现出空前的发展动能和势头。

在外部倒逼和内部技术提升的共同作用下,中国芯片产业第一次迎来资金、技术、人才、设备、材料、工艺、设计、软件等各发展要素和环节的整体爆发。国产芯片也在加速试错、改造、提升,正在经历从“不可用”到“基本可用”、再到“好用”的转变。

中国终将重构全球半导体格局

中国芯片制造重大技术突破接踵而至:

中微半导体公司成功研制了5纳米等离子蚀刻机。经过三年的发展,中微公司5纳米蚀刻机的制造技术更加成熟。该设备已交付台积电投入使用。

上海微电子已经成功研发出我国首款28纳米光刻机设备,预计将在2021年交付使用,实现了光刻机技术从无到有的突破。

中芯国际成功推出N+1芯片工艺技术,依托该工艺,中芯国际芯片制程不断向新的高度突破,同时成熟的28纳米制程扩大产能。

7月29日,南大光电承担的国家 科技 重大专项“极大规模集成电路制造装备及成套工艺”之光刻胶项目通过了专家组验收。

8月2日青岛芯恩公司宣布8寸晶圆投片成功,良率达90%以上,12寸晶圆厂也将于8月15日开始投片。

2017年,合肥晶合集成电路12寸晶圆制造基地建成投产,至2021年合肥集成电路企业数量已发展到近280家。

中国半导体行业集中蓄势发力,在关键技术和设备等瓶颈领域,从无到有,由易入难,积小成而大成,关键技术和工艺水平正在取得整体跃迁。

小成靠朋友,大成靠对手。某种意义上,我们应该感谢美国的遏制与封锁,逼迫我们在芯片和半导体行业加速摆脱对外部的依赖。

回望新中国 科技 发展史,凡是西方封锁和控制的领域,也是中国技术发展最快的领域:远的如两弹一星、核潜艇,近的如北斗导航系统以及登月、空间站、火星探测等航天工程。在外部压力的逼迫下,中国 科技 与研发潜能将前所未有地爆发。

实际上,中国的整体 科技 实力与美国的差距正在迅速缩小。在一些尖端领域,比如高温超导、纳米材料、超级计算机、航天技术、量子通讯、5G技术、人工智能、古生物考古、生命科学等领域已经居于世界前沿水平。

英国世界大学新闻网站8月29日刊发分析文章,梳理了中国 科技 水平的颠覆性变化:

在创新领域,中国在全球研发支出排名第二,全球创新指数在中等收入国家中排名第一,正在从创新落伍者转变为创新领导者。

人才方面,拥有庞大的高端理工人才库,中国已是知识资本的重要创造者,美中 科技 关系从高度不对称转变为在能力和实力上更加对等。

技术转让方面,中国从单纯的学习者和技术接收者,转变为技术转让的来源和跨境技术标准的塑造者。

人才回流,中国正在扭转人才流失问题,积极从世界各地招募科学和工程人才。

这些变化表明,中国 科技 整体实力已经从追赶转变为能够与国际前沿竞争,由全球 科技 中的边缘角色转变为具有重要影响力的国家之一。

中国的基础研究水平也在突飞猛进。据《日经新闻》8月10日报道,在统计2017年至2019年间全球被引用次数排名前10%的论文时,中国首次超过美国,位居榜首位置。报道还着重指出中国在人工智能领域相关论文总数占据,美国为,显示中国在人工智能领域的研究成果正在超越美国。

另有日本学者在研究2021QS世界大学排名后,发现世界排名前20的理工类大学中,中国有7所上榜,清华大学居于第一位,而美国有5所。如果进一步细分到“机械工程”、“电气与电子工程”,中国大学在排名前20中的数量更是全面碾压美国。

芯片技术反映了一个国家整体 科技 水平和综合研发实力,中国的基础研究、应用研究、人才实力具备了突破芯片核心技术的基础和能力。

正如世界光刻机龙头企业——荷兰ASML总裁温尼克今年4月接受采访时所说:美国不能无限打压中国,对中国实施出口管制,将逼迫中国寻求 科技 自主,现在不把光刻机卖给中国,估计3年后中国就会自己掌握这个技术。“一旦中国被逼急了,不出15年他们就会什么都能自己做。”

温尼克的忧虑,正在一步步变成现实。全球半导体产业正进入重大变革期,中国在芯片制造领域的发愤图强,正在改写世界半导体产业的竞争格局。

中国的市场优势加上国家政策优势、资金优势以及基础研究的深入,打破美国在芯片制造领域的技术垄断和封锁,这一天不会太遥远。

玻璃漆板半导体的应用前景是非常好的,玻璃基板半导体是一种环保材质,未来会有广泛应用的,希望这个回答可以帮助到你

半导体学报在哪

《半导体学报》是中国电子学会和中国科学院半导体研究所主办的学术刊物。它报道半导体物理学、半导体科学技术和相关科学技术领域内最新的科研成果和技术进展,内容包括半导体超晶格和微结构物理,半导体材料物理,包括量子点和量子线等材料在内的新型半导体材料的生长及性质测试,半导体器件物理,新型半导体器件,集成电路的CAD设计和研制,新工艺,半导体光电子器件和光电集成,与半导体器件相关的薄膜生长工艺,性质和应用等等。本刊与物理类期刊和电子类期刊不同,是以半导体和相关材料为中心的,从物理,材料,器件到应用的,从研究到技术开发的,跨越物理和信息两个学科的综合性学术刊物。《半导体学报》发表中、英文稿件。《半导体学报》被世界四大检索系统(美国工程索引(EI),化学文摘(CA),英国科学文摘(SA),俄罗斯文摘杂志(РЖ))收录。《半导体学报》1980年创刊。现为月刊,每期190页左右,国内外公开发行。每期均有英文目次,每篇中文论文均有英文摘要。《半导体学报》主编为王守武院士。国内定价为35元。主要读者对象是从事半导体科学研究、技术开发、生产及相关学科的科技人员、管理人员和大专院校的师生。国内读者可直接到全国各地邮局订阅。

(按英文刊名字顺和中文刊名拼音音序排序)中文刊名/ISSN/ 所属库Acta Biochimica et Biophysica Sinica 1672-9145 C Acta Mathematica Scientia 0252-9602 C Acta Mathematica Sinica. English Series 1439-8516 C Acta Mathematicae Applicatae Sinica 0168-9673 C Acta Mechanica Sinica 0567-7718 C Acta Oceanologica Sinica 0253-505X C Acta Pharmacologica Sinica 1671-4083 CAdvances in Atmospheric Sciences 0256-1530 CAlgebra Colloquium 1005-3867 C Applied Mathematics: A Journal of Chinese Universities. Series B 1005-1031 CAsian Journal of Andrology 1008-682X C Biomedical and Environmental Science 0895-3988 C Cell Research 1001-0602 C Chemical Research in Chinese Universities 1005-9040 C Chiese Journal of Chemical Physics 1003-7713 C China Particuology 1672-2515 C China Welding 1004-5341 C Chinese Annals of Mathematics. Series B 0252-9599 C Chinese Geographical Science 1002-0063 C Chinese Journal of Aeronautics 1000-9361 C Chinese Journal of Astronomy and Astrophysics 1009-9271 C Chinese Journal of Cancer Research 1000-9604 C Chinese Journal of Chemical Engineering 1004-9541 C Chinese Journal of Mechanical Engineering 1000-9345 C Chinese Journal of Oceanology and Limnology 0254-4059 C Chinese Journal of Polymer Science 0256-7679 C Chinese Journal of Structural Chemistry 0254-5861 C Chinese Optics Letters 1671-7694 C Chinese Physics 1009-1963 C Chinese Physics Letters 0256-307X C Communications in Theoretical Physics 0253-6102 C Genomics, Proteomics & Bioinformatics 1672-0229 C Insect science 1005-295X C Journal of Bionics Engineering 1672-6529 C Journal of Computational Mathematics 0254-9409 C Journal of Computer Science and Technology 1000-9000 C Journal of Environmental Sciences 1001-0742 C Journal of Forestry Research 1007-662X C Journal of Genetics and Genomics 1673-8527 C Journal of Geographical Sciences 1009-637X C Journal of Integrative Plant Biology 1672-9072 C Journal of Natural Gas Chemistry 1003-9953 C Journal of Systems Engineering and Electronics 1004-4132 C Journal of Systems Science and Complexity 1009-6124 C Neural Regeneration Research *** C Northeastern Mathematical Journal 1000-1778 C Nuclear Science and Techniques 1001-8042 C Pedosphere 1002-0160 C Plasma Science & Technology 1009-0630 C Rare Metals 1001-0521 C Semiconductor Photonics and Technology 1007-0206 C The Journal of China Universities of Posts and Telecommunications 1005-8885 C Transactions of Nonferrous Metals Society of China 1003-6326 C 癌变•畸变•突变 1004-616X E 癌症 1000-467X C 安徽农业大学学报 1672-352X E 安徽农业科学 0517-6611 E 安全与环境学报 1009-6094 C 氨基酸和生物资源 1006-8376 E 半导体光电 1001-5868 E 半导体技术 1003-353X E 半导体学报 0253-4177 C 爆破 1001-487X E 爆炸与冲击 1001-1455 C 北京大学学报. 医学版 1671-167X C 北京大学学报. 自然科学版 0479-8023 C 北京工业大学学报 0254-0037 C 北京航空航天大学学报 1001-5965 C 北京化工大学学报. 自然科学版 1671-4628 E 北京交通大学学报 1673-0291 E 北京科技大学学报 1001-053X C 北京理工大学学报 1001-0645 C 北京林业大学学报 1000-1522 C 北京师范大学学报. 自然科学版 0476-0301 C 北京医学 0253-9713 E 北京邮电大学学报 1007-5321 C 北京中医药大学学报 1006-2157 C 表面技术 1001-3660 E 冰川冻土 1000-0240 C 兵工学报 1000-1093 C 兵器材料科学与工程 1004-244X C 病毒学报 1000-8721 C 波谱学杂志 1000-4556 C 玻璃钢/复合材料 1003-0999 E 材料保护 1001-1560 C 材料导报 1005-023X C 材料工程 1001-4381 C 材料科学与工程学报 1004-793X C 材料科学与工艺 1005-0299 C 材料热处理学报 1009-6264 C 材料研究学报 1005-3093 C 蚕业科学 0257-4799 E 草地学报 1007-0435 E 草业科学 1001-0629 E 草业学报 1004-5759 C 测绘科学 1009-2307 E 测绘通报 0494-0911 C 测绘学报 1001-1595 C 测井技术 1004-1338 E 测控技术 1000-8829 E 茶叶科学 1000-369X E 长安大学学报. 自然科学版 1671-8879 E 长江科学院院报 1001-5485 E 长江流域资源与环境 1004-8227 C 肠外与肠内营养 1007-810X E 沉积学报 1000-0550 C 沉积与特提斯地质 1009-3850 E 成都理工大学学报. 自然科学版 1671-9727 E 城市规划学刊 1000-3363 E 城市环境与城市生态 1002-1264 C 传感技术学报 1004-1699 C 传感器与微系统 1000-9787 C 船舶工程 1000-6982 C 纯粹数学与应用数学 1008-5513 E 磁性材料及器件 1001-3830 E 催化学报 0253-9837 C 大地测量与地球动力学 1671-5942 C 大地构造与成矿学 1001-1552 C 大豆科学 1000-9841 C 大连海事大学学报 1006-7736 E 大连理工大学学报 1000-8608 C 大连水产学院学报 1000-9957 E 大气科学 1006-9895 C 大学物理 1000-0712 E 弹道学报 1004-499X C 弹箭与制导学报 61-1234/TJ C 导弹与航天运载技术 1004-7182 E 低温工程 1000-6516 E 低温物理学报 1000-3258 C 低温与超导 1001-7100 C 地层学杂志 0253-4959 C

确实是的,这个学报的文章已经纳入了sci的文章范畴里面的。半导体学报这个应该是按字按这个应该能更好地将学习,如果不随机的话,他们这个应该是就很难,有一些技术应该是不不能刚刚好的技能先搬下来的东西,所以应该是学习的。

物理学报》:发展与成就《物理学报》是由中国物理学会主办的,创刊于1933年,原名“Chinese Journal of Physics”,创刊初期用英、法、德三国文字发表论文。这是中国出版的第一份物理类综合性学术期刊,1953年易为现名的中文期刊。《物理学报》首任主编为我国第一代著名物理学家严济慈与丁燮林,随后担任主编的有吴大猷、王竹溪和黄祖洽,现任主编是原国家自然科学基金会副主任、中国原子能科学研究院研究员王乃彦院士。70余年的变迁,《物理学报》从初创到成长、壮大,特别是改革开放以来的发展,从一个侧面展现了我国现代物理学崛起与发展的梗概和脉络。现在,《物理学报》已成为目前中国历史最悠久、在国内外发行量最大、影响面最广的物理类学术期刊,赢得了国内外物理学界的普遍认同和信誉,受到包括诺贝尔物理奖获得者杨振宁教授在内的一些著名物理学家的高度评价,被认为是“中国权威性的物理刊物”,奠定了它在中国科技期刊中的重要地位。由中国科技信息所统计, 2003年《物理学报》被SCI-CD,SCI-E,EI-P,CA,INSPEC,JICST,AJ和MR等检索系统收录。根据SCI数据库统计,2003年《物理学报》的影响因子为,总被引频次为2410次。特别是该统计显示,在本学科国际同类期刊中,其影响因子和总被引频次位于中上水平,在68种国际上综合性物理类期刊中,《物理学报》的总被引频次和影响因子分别位居第23和第28。其中,本刊的总被引频次居中国物理类期刊第1位、中国科技期刊第1位,影响因子为中国物理类期刊第2位。这几年来,本刊继续以提高质量为增强核心竞争力的主线,在办刊理念、学术品位、编辑质量、出版发行与宣传,以及运用现代信息技术等方面,进一步加快与国际接轨的步伐。特别是进一步提高期刊学术水准,《物理学报》面向国际学科发展的前沿领域,以国家知识创新体系的建设为依托,跟踪热点课题加强组织和征集优秀稿件,进一步提高学术论文的创新性、导向性和权威性。主要刊登由国家知识创新体系组成的国家科技攻关项目、国家“863”计划项目、国家“973”基础研究项目,以及国家自然科学基金项目等一批最新科研进展或取得科技成果的优秀论文。其中,在2004年《物理学报》刊登的论文中,基金资助论文比例为。这表明《物理学报》吸收前沿科学和高质量学术论文的能力在不断增强,提高了期刊自身的整体学术水平。据有关部门的不完全统计,《物理学报》被引相对较多的论文,其学术内容按国际物理学分类来看,主要涉及混沌系统的理论和模型、量子光学、流体力学、量子论、离散系统的经典力学、黑洞、点阵理论和统计学、介观体系和量子干涉、表面电子态、聚合物、薄膜与低维结构、光电效应、固体团簇结构与碳纳米管及纳米结构材料、超导电性、分子运动论、辐射的发射与吸收及散射、自旋电子学、磁熵变材料等研究领域,其中反映了当今物理学研究中的热点问题和新的方向。目前,对国内外发行和交换约1700份,光盘发行量约为600多个平台。2003年《物理学报》在科技部西南信息中心期刊网站中论文下载为3080篇次;在清华同方数据中,本刊2003年web下载余万篇次,印刷版总被引频次2845次,其web扩散系数为倍,在物理类期刊中,下载论文篇次居第1位。该统计显示,《物理学报》2003年即年指标,web影响因子。本刊2003年总被引频次、影响因子均居物理类期刊第1位。并在2001-2003年中,《物理学报》平均被引频次和影响因子均居物理类期刊第1位。近几年来,《物理学报》先后获得第一、二、三届国家期刊奖,2001、2002、2003年度百种杰出期刊奖,以及中国科学院特别奖、一等奖等多项重要奖项。2003年10月《物理学报》创刊70周年。中国科学技术协会主席周光召题词祝贺:“格物唯实,推理求真”。全国人大副委员长、中国科学院院长路甬祥的题词为:“格物致知、勇创一流”。题词的著名科学家还有彭桓武、黄昆、杨振宁、李政道、冯端、陈佳洱、李荫远、黄祖洽、白春礼、王乃彦、赵忠贤、杨国桢、李方华、梁敬魁等。《物理学报》主管部门与主办单位及一些科研机构和高等学校也以各种方式表示祝贺。这些都表明《物理学报》的建设与发展始终得到物理界及各方面的高度重视与全力支持。其中除杨振宁教授上述对《物理学报》的评价外,我国著名超导专家赵忠贤院士指出:“《物理学报》是我国少数几个具有权威发性的高层次刊物之一,刊载的论文大多是在国内外处于领先地位的科研成果,审稿制度严格,对论文质量严格把关,编辑出版严谨细致认真”。“《物理学报》是我国物理学界水平最高、影响最大的著名学术期刊,是进行学术交流的重要刊物之一,一直受到国际物理学界专家的注目和好评。《物理学报》创刊71年来为繁荣我国的科学事业做出了重要贡献”。原国家自然科学基金委主任、中国物理学会理事长、北京大学校长陈佳洱院士称:《物理学报》是我国物理学界水平最高、影响最大的著名学术刊物,所登的许多论文达到国际先进水平,编辑出版质量高,是我国少数几个具有权威性的高层次刊物之一,受到国际物理学界专家的注目和好评。当今,科技期刊已成为一个国家科技发展和社会经济文化进步的重要标志。可以看到,面对我国入世后激烈的挑战,中国期刊的使命更加艰巨。时代呼唤期刊工作者与科学家、出版社和信息系统团结起来相互支持合作,在我国政府及其主管部门的组织的协调下,共同营造我国科技期刊发展的优良环境,为创办国际一流的学术刊物作出积极贡献,让中国科技期刊加快融入国际学术交流。《半导体学报》简介 《半导体学报》是中国电子学会和中国科学院半导体研究所主办的学术刊物。它报道半导体物理学、半导体科学技术和相关科学技术领域内最新的科研成果和技术进展,内容包括半导体超晶格和微结构物理,半导体材料物理,包括量子点和量子线等材料在内的新型半导体材料的生长及性质测试,半导体器件物理,新型半导体器件,集成电路的CAD设计和研制,新工艺,半导体光电子器件和光电集成,与半导体器件相关的薄膜生长工艺,性质和应用等等。本刊与物理类期刊和电子类期刊不同,是以半导体和相关材料为中心的,从物理,材料,器件到应用的,从研究到技术开发的,跨越物理和信息两个学科的综合性学术刊物。《半导体学报》发表中、英文稿件。《半导体学报》被世界四大检索系统(美国工程索引(EI),化学文摘(CA),英国科学文摘(SA),俄罗斯文摘杂志(РЖ))收录。 《半导体学报》1980年创刊。现为月刊,每期190页左右,国内外公开发行。每期均有英文目次,每篇中文论文均有英文摘要。《半导体学报》主编为王守武院士。国内定价为35元。主要读者对象是从事半导体科学研究、技术开发、生产及相关学科的科技人员、管理人员和大专院校的师生。国内读者可直接到全国各地邮局订阅。

半导体学报最新

物理学报》:发展与成就《物理学报》是由中国物理学会主办的,创刊于1933年,原名“Chinese Journal of Physics”,创刊初期用英、法、德三国文字发表论文。这是中国出版的第一份物理类综合性学术期刊,1953年易为现名的中文期刊。《物理学报》首任主编为我国第一代著名物理学家严济慈与丁燮林,随后担任主编的有吴大猷、王竹溪和黄祖洽,现任主编是原国家自然科学基金会副主任、中国原子能科学研究院研究员王乃彦院士。70余年的变迁,《物理学报》从初创到成长、壮大,特别是改革开放以来的发展,从一个侧面展现了我国现代物理学崛起与发展的梗概和脉络。现在,《物理学报》已成为目前中国历史最悠久、在国内外发行量最大、影响面最广的物理类学术期刊,赢得了国内外物理学界的普遍认同和信誉,受到包括诺贝尔物理奖获得者杨振宁教授在内的一些著名物理学家的高度评价,被认为是“中国权威性的物理刊物”,奠定了它在中国科技期刊中的重要地位。由中国科技信息所统计, 2003年《物理学报》被SCI-CD,SCI-E,EI-P,CA,INSPEC,JICST,AJ和MR等检索系统收录。根据SCI数据库统计,2003年《物理学报》的影响因子为,总被引频次为2410次。特别是该统计显示,在本学科国际同类期刊中,其影响因子和总被引频次位于中上水平,在68种国际上综合性物理类期刊中,《物理学报》的总被引频次和影响因子分别位居第23和第28。其中,本刊的总被引频次居中国物理类期刊第1位、中国科技期刊第1位,影响因子为中国物理类期刊第2位。这几年来,本刊继续以提高质量为增强核心竞争力的主线,在办刊理念、学术品位、编辑质量、出版发行与宣传,以及运用现代信息技术等方面,进一步加快与国际接轨的步伐。特别是进一步提高期刊学术水准,《物理学报》面向国际学科发展的前沿领域,以国家知识创新体系的建设为依托,跟踪热点课题加强组织和征集优秀稿件,进一步提高学术论文的创新性、导向性和权威性。主要刊登由国家知识创新体系组成的国家科技攻关项目、国家“863”计划项目、国家“973”基础研究项目,以及国家自然科学基金项目等一批最新科研进展或取得科技成果的优秀论文。其中,在2004年《物理学报》刊登的论文中,基金资助论文比例为。这表明《物理学报》吸收前沿科学和高质量学术论文的能力在不断增强,提高了期刊自身的整体学术水平。据有关部门的不完全统计,《物理学报》被引相对较多的论文,其学术内容按国际物理学分类来看,主要涉及混沌系统的理论和模型、量子光学、流体力学、量子论、离散系统的经典力学、黑洞、点阵理论和统计学、介观体系和量子干涉、表面电子态、聚合物、薄膜与低维结构、光电效应、固体团簇结构与碳纳米管及纳米结构材料、超导电性、分子运动论、辐射的发射与吸收及散射、自旋电子学、磁熵变材料等研究领域,其中反映了当今物理学研究中的热点问题和新的方向。目前,对国内外发行和交换约1700份,光盘发行量约为600多个平台。2003年《物理学报》在科技部西南信息中心期刊网站中论文下载为3080篇次;在清华同方数据中,本刊2003年web下载余万篇次,印刷版总被引频次2845次,其web扩散系数为倍,在物理类期刊中,下载论文篇次居第1位。该统计显示,《物理学报》2003年即年指标,web影响因子。本刊2003年总被引频次、影响因子均居物理类期刊第1位。并在2001-2003年中,《物理学报》平均被引频次和影响因子均居物理类期刊第1位。近几年来,《物理学报》先后获得第一、二、三届国家期刊奖,2001、2002、2003年度百种杰出期刊奖,以及中国科学院特别奖、一等奖等多项重要奖项。2003年10月《物理学报》创刊70周年。中国科学技术协会主席周光召题词祝贺:“格物唯实,推理求真”。全国人大副委员长、中国科学院院长路甬祥的题词为:“格物致知、勇创一流”。题词的著名科学家还有彭桓武、黄昆、杨振宁、李政道、冯端、陈佳洱、李荫远、黄祖洽、白春礼、王乃彦、赵忠贤、杨国桢、李方华、梁敬魁等。《物理学报》主管部门与主办单位及一些科研机构和高等学校也以各种方式表示祝贺。这些都表明《物理学报》的建设与发展始终得到物理界及各方面的高度重视与全力支持。其中除杨振宁教授上述对《物理学报》的评价外,我国著名超导专家赵忠贤院士指出:“《物理学报》是我国少数几个具有权威发性的高层次刊物之一,刊载的论文大多是在国内外处于领先地位的科研成果,审稿制度严格,对论文质量严格把关,编辑出版严谨细致认真”。“《物理学报》是我国物理学界水平最高、影响最大的著名学术期刊,是进行学术交流的重要刊物之一,一直受到国际物理学界专家的注目和好评。《物理学报》创刊71年来为繁荣我国的科学事业做出了重要贡献”。原国家自然科学基金委主任、中国物理学会理事长、北京大学校长陈佳洱院士称:《物理学报》是我国物理学界水平最高、影响最大的著名学术刊物,所登的许多论文达到国际先进水平,编辑出版质量高,是我国少数几个具有权威性的高层次刊物之一,受到国际物理学界专家的注目和好评。当今,科技期刊已成为一个国家科技发展和社会经济文化进步的重要标志。可以看到,面对我国入世后激烈的挑战,中国期刊的使命更加艰巨。时代呼唤期刊工作者与科学家、出版社和信息系统团结起来相互支持合作,在我国政府及其主管部门的组织的协调下,共同营造我国科技期刊发展的优良环境,为创办国际一流的学术刊物作出积极贡献,让中国科技期刊加快融入国际学术交流。《半导体学报》简介 《半导体学报》是中国电子学会和中国科学院半导体研究所主办的学术刊物。它报道半导体物理学、半导体科学技术和相关科学技术领域内最新的科研成果和技术进展,内容包括半导体超晶格和微结构物理,半导体材料物理,包括量子点和量子线等材料在内的新型半导体材料的生长及性质测试,半导体器件物理,新型半导体器件,集成电路的CAD设计和研制,新工艺,半导体光电子器件和光电集成,与半导体器件相关的薄膜生长工艺,性质和应用等等。本刊与物理类期刊和电子类期刊不同,是以半导体和相关材料为中心的,从物理,材料,器件到应用的,从研究到技术开发的,跨越物理和信息两个学科的综合性学术刊物。《半导体学报》发表中、英文稿件。《半导体学报》被世界四大检索系统(美国工程索引(EI),化学文摘(CA),英国科学文摘(SA),俄罗斯文摘杂志(РЖ))收录。 《半导体学报》1980年创刊。现为月刊,每期190页左右,国内外公开发行。每期均有英文目次,每篇中文论文均有英文摘要。《半导体学报》主编为王守武院士。国内定价为35元。主要读者对象是从事半导体科学研究、技术开发、生产及相关学科的科技人员、管理人员和大专院校的师生。国内读者可直接到全国各地邮局订阅。

这个没有固定的名录。

什么是权威期刊? 权威期刊没有固定的标准,不同的、不同的行业有不同的要求,但制定标准都有一个大致的原则,如国家权威学术期刊的原则是:

登陆EI,侧面有分类情况,罗列所有不同级别的期刊名录。

  • 索引序列
  • 半导体行业研究报告论文
  • 半导体学报2021
  • 半导体晶圆研究论文
  • 半导体学报在哪
  • 半导体学报最新
  • 返回顶部