首页 > 论文发表知识库 > 目标检测论文与代码

目标检测论文与代码

发布时间:

目标检测论文与代码

原文: Scalable Object Detection using Deep Neural Networks——学术范 最近,深度卷积神经网络在许多图像识别基准上取得了最先进的性能,包括ImageNet大规模视觉识别挑战(ILSVRC-2012)。在定位子任务中获胜的模型是一个网络,它预测了图像中每个对象类别的单个边界框和置信度得分。这样的模型捕获了围绕对象的整幅图像上下文,但如果不天真地复制每个实例的输出数量,就无法处理图像中同一对象的多个实例。在这篇论文中提出了一个显著性启发的神经网络检测模型,它预测了一组与类无关的边界框,每个框有一个分数,对应于它包含任何感兴趣的对象的可能性。该模型自然地为每个类处理数量可变的实例,并允许在网络的最高级别上进行跨类泛化。 目标检测是计算机视觉的基本任务之一。一个解决这个问题的通用范例是训练在子图像上操作的对象检测器,并在所有的场所和尺度上以详尽的方式应用这些检测器。这一范例被成功地应用于经过区别训练的可变形零件模型(DPM)中,以实现检测任务的最新结果。对所有可能位置和尺度的穷举搜索带来了计算上的挑战。随着类数量的增加,这个挑战变得更加困难,因为大多数方法都训练每个类单独的检测器。为了解决这个问题,人们提出了多种方法,从检测器级联到使用分割提出少量的对象假设。 关于对象检测的文献非常多,在本节中,我们将重点讨论利用类不可知思想和解决可伸缩性的方法。 许多提出的检测方法都是基于基于部件的模型,最近由于有区别学习和精心设计的特征,已经取得了令人印象深刻的性能。然而,这些方法依赖于在多个尺度上详尽地应用零件模板,这是非常昂贵的。此外,它们在类的数量上是可伸缩的,这对像ImageNet这样的现代数据集来说是一个挑战。 为了解决前一个问题,Lampert等人使用分支绑定策略来避免计算所有可能的对象位置。为了解决后一个问题,Song et al.使用了一个低维部件基,在所有对象类中共享。基于哈希算法的零件检测也取得了良好的结果。 另一种不同的工作,与我们的工作更接近,是基于对象可以本地化的想法,而不必知道它们的类。其中一些方法建立在自底向上无阶级分割[9]的基础上。通过这种方式得到的片段可以使用自上而下的反馈进行评分。基于同样的动机,Alexe等人使用一种廉价的分类器对对象假设是否为对象进行评分,并以这种方式减少了后续检测步骤的位置数量。这些方法可以被认为是多层模型,分割作为第一层,分割分类作为后续层。尽管它们编码了已证明的感知原理,但我们将表明,有更深入的模型,充分学习可以导致更好的结果。 最后,我们利用了DeepLearning的最新进展,最引人注目的是Krizhevsky等人的工作。我们将他们的边界盒回归检测方法扩展到以可扩展的方式处理多个对象的情况。然而,基于dnn的回归已经被Szegedy等人应用到对象掩模中。最后一种方法实现了最先进的检测性能,但由于单个掩模回归的成本,不能扩展到多个类。 我们的目标是通过预测一组表示潜在对象的边界盒来实现一种与类无关的可扩展对象检测。更准确地说,我们使用了深度神经网络(DNN),它输出固定数量的包围盒。此外,它为每个盒子输出一个分数,表示这个盒子包含一个对象的网络信任度。 为了形式化上述思想,我们将i-thobject框及其相关的置信度编码为最后一网层的节点值: Bounding box: 我们将每个框的左上角和右下角坐标编码为四个节点值,可以写成vectorli∈R4。这些坐标是归一化的w. r. t.图像尺寸,以实现图像绝对尺寸的不变性。每个归一化坐标是由最后一层的线性变换产生的。 Confidence: 置信度:包含一个对象的盒子的置信度得分被编码为单个节点valueci∈[0,1]。这个值是通过最后一个隐藏层的线性变换产生的,后面跟着一个sigmoid。 我们可以组合边界盒位置sli,i∈{1,…K}为一个线性层。同样,我们可以将所有置信区间ci,i∈{1,…K}作为一个s型层的输出。这两个输出层都连接到最后一个隐藏层 在推理时,我们的算法生成kbound盒。在我们的实验中,我们使用ek = 100和K= 200。如果需要,我们可以使用置信分数和非最大抑制在推理时获得较少数量的高置信框。这些盒子应该代表对象。因此,它们可以通过后续的分类器进行分类,实现目标检测。由于盒子的数量非常少,我们可以提供强大的分类器。在我们的实验中,我们使用另一个dnn进行分类。 我们训练一个DNN来预测每个训练图像的边界框及其置信度得分,以便得分最高的框与图像的groundtruth对象框很好地匹配。假设对于一个特定的训练例子,对象被标记为boundingboxesgj,j∈{1,…,M}。在实践中,pre- dictionary的数量远远大于groundtruthboxm的数量。因此,我们试图只优化与地面真实最匹配的预测框子集。我们优化他们的位置,以提高他们的匹配度,最大化他们的信心。与此同时,我们将剩余预测的置信度最小化,这被认为不能很好地定位真实对象。为了达到上述目的,我们为每个训练实例制定一个分配问题。Wexij∈{0,1}表示赋值:xij= 1,如果第i个预测被赋值给第j个真对象。这项任务的目标可以表示为 其中,我们使用标准化边界框坐标之间的el2距离来量化边界框之间的不同。此外,我们希望根据分配x优化盒子的可信度。最大化指定预测的置信度可以表示为  最终的损失目标结合了匹配损失和信心损失 受式1的约束。α平衡了不同损失条款的贡献。 对于每个训练例子,我们通过解决一个最佳的赋值x*的预测到真实的盒子 约束执行赋值解决方案。这是二部匹配的一种变体,是一种多项式复杂度匹配。在我们的应用程序中,匹配是非常便宜的——每幅图像中标记的对象的数量少于一打,而且在大多数情况下只有很少的对象被标记。然后,通过反向传播优化网络参数。例如,反向传播算法的一阶导数计算w、r、t、l和c 尽管上述定义的损失在原则上是足够的,但三次修改使其有可能更快地达到更好的准确性。第一个修改是对地面真实位置进行聚类,并找到这样的聚类/质心,我们可以使用这些聚类/质心作为每个预测位置的先验。因此,鼓励学习算法为每个预测位置学习一个残差到一个先验。 第二个修改涉及到在匹配过程中使用这些先验:不是将N个groundtruth位置与K个预测进行匹配,而是在K个先验和groundtruth之间找到最佳匹配。一旦匹配完成,就会像之前一样计算目标的置信度。此外,位置预测损失也不变:对于任何一对匹配的(目标,预测)位置,其损失定义为groundtruth和对应于匹配先验的坐标之间的差值。我们把使用先验匹配称为先验匹配,并假设它促进了预测的多样化。  需要注意的是,尽管我们以一种与类无关的方式定义了我们的方法,但我们可以将它应用于预测特定类的对象盒。要做到这一点,我们只需要在类的边框上训练我们的模型。此外,我们可以预测每个类的kbox。不幸的是,这个模型的参数数量会随着类的数量线性增长。此外,在一个典型的设置中,给定类的对象数量相对较少,这些参数中的大多数会看到很少有相应梯度贡献的训练示例。因此,我们认为我们的两步过程——首先本地化,然后识别——是一个更好的选择,因为它允许使用少量参数利用同一图像中多个对象类型的数据 我们使用的本地化和分类模型的网络架构与[10]使用的网络架构相同。我们使用Adagrad来控制学习速率衰减,128的小批量,以及使用多个相同的网络副本进行并行分布式训练,从而实现更快的收敛。如前所述,我们在定位损失中使用先验——这些是使用训练集上的均值来计算的。我们还使用α = 来平衡局部化和置信度损失。定位器可以输出用于推断的种植区以外的坐标。坐标被映射和截断到最后的图像区域。另外,使用非最大抑制对盒进行修剪,Jaccard相似度阈值为。然后,我们的第二个模型将每个边界框分类为感兴趣的对象或“背景”。为了训练我们的定位器网络,我们从训练集中生成了大约3000万幅图像,并对训练集中的每幅图像应用以下步骤。最后,样品被打乱。为了训练我们的本地化网络,我们通过对训练集中的每一幅图像应用以下步骤,从训练集中生成了大约3000万幅图像。对于每幅图像,我们生成相同数量的平方样本,使样本总数大约为1000万。对于每幅图像,样本被桶状填充,这样,对于0 - 5%、5 - 15%、15 - 50%、50 - 100%范围内的每个比例,都有相同数量的样本,其中被包围框覆盖的比例在给定范围内。训练集和我们大多数超参数的选择是基于过去使用非公开数据集的经验。在下面的实验中,我们没有探索任何非标准数据生成或正则化选项。在所有的实验中,所有的超参数都是通过对训练集。 Pascal Visual Object Classes (VOC)挑战是最常用的对象检测算法基准。它主要由复杂的场景图像组成,其中包含了20种不同的对象类别的边界框。在我们的评估中,我们关注的是2007版VOC,为此发布了一个测试集。我们通过培训VOC 2012展示了结果,其中包含了大约。11000张图片。我们训练了一个100框的定位器和一个基于深度网络的分类器。 我们在一个由1000万作物组成的数据集上训练分类器,该数据集重叠的对象至少为 jaccard重叠相似度。这些作物被标记为20个VOC对象类中的一个。•2000万负作物与任何物体盒最多有个Jaccard相似度。这些作物被贴上特殊的“背景”类标签。体系结构和超参数的选择遵循。 在第一轮中,定位器模型应用于图像中最大-最小中心方形作物。作物的大小调整到网络输入大小is220×220。单次通过这个网络,我们就可以得到上百个候选日期框。在对重叠阈值为的非最大抑制后,保留评分最高的前10个检测项,并通过21路分类器模型分别通过网络进行分类。最终的检测分数是给定盒子的定位分数乘以分类器在作物周围的最大方形区域上评估的分数的乘积。这些分数通过评估,并用于计算精确查全曲线。 首先,我们分析了本地化器在隔离状态下的性能。我们给出了被检测对象的数量,正如Pascal检测标准所定义的那样,与生成的包围框的数量相对比。在图1中,我们展示了使用VOC2012进行训练所获得的结果。此外,我们通过使用图像的最大中心面积(max-center square crop)作为输入以及使用两个尺度(second scale)来给出结果:最大中心面积(max-center crop)的第二个尺度(select3×3windows的大小为图像大小的60%)正如我们所看到的,当使用10个边界框的预算时,我们可以用第一个模型本地化的对象,用第二个模型本地化48%的对象。这显示出比其他报告的结果更好的性能,例如对象度算法达到42%[1]。此外,这个图表显示了在不同分辨率下观察图像的重要性。虽然我们的算法通过使用最大中心作物获得了大量的对象,但当使用更高分辨率的图像作物时,我们获得了额外的提升。进一步,我们用21-way分类器对生成的包围盒进行分类,如上所述。表1列出了VOC 2007的平均精度(APs)。达到的平均AP是,与先进水平相当。注意,我们的运行时间复杂度非常低——我们只使用top10框。示例检测和全精度召回曲线分别如图2和图3所示。值得注意的是,可视化检测是通过仅使用最大中心方形图像裁剪,即使用全图像获得的。然而,我们设法获得了相对较小的对象,例如第二行和第二列的船,以及第三行和第三列的羊。 在本工作中,我们提出了一种新的方法来定位图像中的对象,该方法可以预测多个边界框的时间。该方法使用深度卷积神经网络作为基本特征提取和学习模型。它制定了一个能够利用可变数量的groundtruth位置的多箱定位成本。在“一个类一个箱”方法的情况下,对1000个盒子进行非max-suppression,使用与给定图像中感兴趣的DeepMulti-Box方法相同的准则,并学习在未见图像中预测这些位置。 我们在VOC2007和ILSVRC-2012这两个具有挑战性的基准上给出了结果,在这两个基准上,所提出的方法具有竞争力。此外,该方法能够很好地预测后续分类器将探测到的位置。我们的结果表明,deepmultibox的方法是可扩展的,甚至可以在两个数据集之间泛化,就能够预测感兴趣的定位,甚至对于它没有训练的类别。此外,它能够捕获同一类物体的多种情况,这是旨在更好地理解图像的算法的一个重要特征。 在未来,我们希望能够将定位和识别路径折叠到一个单一的网络中,这样我们就能够在一个通过网络的一次性前馈中提取位置和类标签信息。即使在其当前状态下,双通道过程(本地化网络之后是分类网络)也会产生5-10个网络评估,每个评估的速度大约为1个CPU-sec(现代机器)。重要的是,这个数字并不与要识别的类的数量成线性关系,这使得所提出的方法与类似dpm的方法非常有竞争力。

论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :

一个经典例子是存在一个测试集合,测试集合只有大雁和飞机两种图片组成,假设你的分类系统最终的目的是:能取出测试集中所有飞机的图片,而不是大雁的图片。然后就可以定义: 要得到Precision-Recall曲线(以下简称PR)曲线,首先要对检测模型的预测结果按照目标置信度降序排列。然后给定一个rank值,Recall和Precision仅在置信度高于该rank值的预测结果中计算,改变rank值会相应的改变Recall值和Precision值。这里选择了11个不同的rank值,也就得到了11组Precision和Recall值,然后AP值即定义为在这11个Recall下Precision值的平均值,其可以表征整个PR曲线下方的面积。即: 还有另外一种插值的计算方法,即对于某个Recall值r,Precision取所有Recall值大于r中的最大值,这样保证了PR曲线是单调递减的,避免曲线出现摇摆。另外需要注意的一点是在2010年后计算AP值时是取了所有的数据点,而不仅仅只是11个Recall值。我们在计算出AP之后,对所有类别求平均之后就是mAP值了,也是当前目标检测用的最多的评判标准。

目标检测论文代码

论文原文:

YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的情况下,解决了当时基于深度学习的检测中的痛点---速度问题。下图是各目标检测系统的检测性能对比:

如果说faster-RCNN是真正实现了完全基于深度学习的端到端的检测,那么yolo则是更进一步,将 目标区域预测 与 目标类别判断 整合到单个神经网络模型中。各检测算法结构见下图:

每个网格要预测B个bounding box,每个bounding box除了要回归自身的位置之外,还要附带预测一个confidence值。这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息,其值是这样计算的:

其中如果有object落在一个grid cell里,第一项取1,否则取0。第二项是预测的bounding box和实际的groundtruth之间的IoU值。

每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。即SxS个网格,每个网格除了要预测B个bounding box外,还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。(注意:class信息是针对每个网格的,即一个网格只预测一组类别而不管里面有多少个bounding box,而confidence信息是针对每个bounding box的。)

举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。整个网络结构如下图所示:

在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score:

等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。

得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS(非极大值抑制non-maximum suppresssion)处理,就得到最终的检测结果。

1、每个grid因为预测两个bounding box有30维(30=2*5+20),这30维中,8维是回归box的坐标,2维是box的confidence,还有20维是类别。其中坐标的x,y用bounding box相对grid的offset归一化到0-1之间,w,h除以图像的width和height也归一化到0-1之间。

2、对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。其实就是让算法对小box预测的偏移更加敏感。

3、一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。

4、损失函数公式见下图:

在实现中,最主要的就是怎么设计损失函数,坐标(x,y,w,h),confidence,classification 让这个三个方面得到很好的平衡。简单的全部采用sum-squared error loss来做这件事会有以下不足:

解决方法:

只有当某个网格中有object的时候才对classification error进行惩罚。只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。

作者采用ImageNet 1000-class 数据集来预训练卷积层。预训练阶段,采用网络中的前20卷积层,外加average-pooling层和全连接层。模型训练了一周,获得了top-5 accuracy为(ImageNet2012 validation set),与GoogleNet模型准确率相当。

然后,将模型转换为检测模型。作者向预训练模型中加入了4个卷积层和两层全连接层,提高了模型输入分辨率(224×224->448×448)。顶层预测类别概率和bounding box协调值。bounding box的宽和高通过输入图像宽和高归一化到0-1区间。顶层采用linear activation,其它层使用 leaky rectified linear。

作者采用sum-squared error为目标函数来优化,增加bounding box loss权重,减少置信度权重,实验中,设定为\lambda _{coord} =5 and\lambda _{noobj}= 。

作者在PASCAL VOC2007和PASCAL VOC2012数据集上进行了训练和测试。训练135轮,batch size为64,动量为,学习速率延迟为。Learning schedule为:第一轮,学习速率从缓慢增加到(因为如果初始为高学习速率,会导致模型发散);保持速率到75轮;然后在后30轮中,下降到;最后30轮,学习速率为。

作者还采用了dropout和 data augmentation来预防过拟合。dropout值为;data augmentation包括:random scaling,translation,adjust exposure和saturation。

YOLO模型相对于之前的物体检测方法有多个优点:

1、 YOLO检测物体非常快

因为没有复杂的检测流程,只需要将图像输入到神经网络就可以得到检测结果,YOLO可以非常快的完成物体检测任务。标准版本的YOLO在Titan X 的 GPU 上能达到45 FPS。更快的Fast YOLO检测速度可以达到155 FPS。而且,YOLO的mAP是之前其他实时物体检测系统的两倍以上。

2、 YOLO可以很好的避免背景错误,产生false positives

不像其他物体检测系统使用了滑窗或region proposal,分类器只能得到图像的局部信息。YOLO在训练和测试时都能够看到一整张图像的信息,因此YOLO在检测物体时能很好的利用上下文信息,从而不容易在背景上预测出错误的物体信息。和Fast-R-CNN相比,YOLO的背景错误不到Fast-R-CNN的一半。

3、 YOLO可以学到物体的泛化特征

当YOLO在自然图像上做训练,在艺术作品上做测试时,YOLO表现的性能比DPM、R-CNN等之前的物体检测系统要好很多。因为YOLO可以学习到高度泛化的特征,从而迁移到其他领域。

尽管YOLO有这些优点,它也有一些缺点:

1、YOLO的物体检测精度低于其他state-of-the-art的物体检测系统。

2、YOLO容易产生物体的定位错误。

3、YOLO对小物体的检测效果不好(尤其是密集的小物体,因为一个栅格只能预测2个物体)。

运动目标的检测的其主要目的是 获取目标对象的运动参数(位置、速度、加速度等)及运动轨迹 ,通过进一步分析处理,实现对目标行为更高层级上的理解。 运动目标检测技术目的是 从序列图像中将变化区域从背景图像中提取出来 ,常用于视频监视、图像压缩、三维重构、异常检测等。

运动目标检测主流方法有帧差法、背景差法、光流法等。光流法源于 仿生学 思想,更贴近于直觉,大量昆虫的视觉机理便是基于光流法。 二十世纪五十年代心理学家Gibson在他的著作“The Perception of Visual World”中首次提出了以心理学实验为基础的光流法基本概念,而直到八十年代才由Horn、Kanade、Lucash和Schunck创造性地将灰度与二维速度场相联系,引入光流约束方程的算法,对光流计算做了奠基性的工作。

光流(optical flow):由于目标对象或者摄像机的移动造成的图像对象在连续两帧图像中的移动。

通俗说,对于一个图片序列,把每张图像每个像素在连续帧之间的运动速度和方向( 某像素点在连续两帧上的位移矢量 )找出来就是光流场。

第t帧的时A点的位置是(x1, y1),第t+1帧时A点位置是(x2,y2),则像素点A的位移矢量:(ux, vy) = (x2, y2) - (x1,y1)

如何知道第t+1帧的时候A点的位置涉及到不同的光流计算方法,主要有四种:基于梯度的方法、基于匹配的方法、基于能量的方法、基于相位的方法。

光流法依赖于三个假设:

根据所形成的光流场中 二维矢量的疏密程度 ,光流法可分为稠密光流与稀疏光流。

稀疏光流只对有 明显特征的组点 (如角点)进行跟踪,计算开销小。

(1)calcOpticalFlowPyrLK 基于金字塔LK光流算法,计算某些点集的稀疏光流。 参考论文《Pyramidal Implementation of the Lucas Kanade Feature TrackerDescription of the algorithm》 (2)calcOpticalFlowFarneback 基于Gunnar Farneback 的算法计算稠密光流。 参考论文《Two-Frame Motion Estimation Based on PolynomialExpansion》 (3)CalcOpticalFlowBM 通过块匹配的方法来计算光流 (4)CalcOpticalFlowHS 基于Horn-Schunck 的算法计算稠密光流。 参考论文《Determining Optical Flow》 (5)calcOpticalFlowSF 论文《SimpleFlow: A Non-iterative, Sublinear Optical FlowAlgo》的实现

论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :

条形码目标检测论文

问题一:商品的条形码分别代表什么 条形码图中13位数字所代表的意义是:前3位显示该商品的出产地区(国家)。接着的4位数字表示所属厂家的商号,这是由所在国家(或地区)的编码机构统一编配给所申请的商号的。再接下来的5位数是个别货品号码,由厂家先行将产品分门别类,再逐一编码,厂家一共可对10万项货品进行编码。最后一个数字是校验码,以方便扫描器核对整个编码,避免误读。 如果想通过条码分辨真伪,就必须先知道,厂家的条码数据,然后进行对比。正规产品上一般都有真伪查询方法,通过短信息、电话、或者网络等,这几种查询方式就是通过厂家数据库进行的,你发送查询请求后,系统会进入数据库,拿你发送的条码数据与数据库中的数据进行对比,相符就是真的,不相符就是假的,别人伪造的。假如什么都不知道,只是从条码上看,是分不出真伪的,只能看到一串数字或者英文字母、甚至什么也看不到(条码下面的数据是可以隐藏的),只看到一个黑白相间的条形码,这样的条形码只有用条码扫描器才能够识别的出条形码所对应的数值。 目前世界上常用的码制有ENA条形码、UPC条形码、二五条形码、交叉二五条形码、库德巴条形码、三九条形码和128条形码等,而商品上最常使用的就是EAN商品条形码。 EAN商品条形码亦称通用商品条形码,由国际物品编码协会制定,通用于世界各地,是目前国际上使用最广泛的一种商品条形码。我国目前在国内推行使用的也是这种商品条形码。EAN商品条形码分为EAN-13(标准版)和EAN-8(缩短版)两种。 EAN-13通用商品条形码一般由前缀部分、制造厂商代码、商品代码和校验码组成。商品条形码中的前缀码是用来标识国家或地区的代码,赋码权在国际物品编码协会,如00-09代表美国、加拿大。45-49代表日本。690-692代表中国大陆,471代表我国台湾地区,489代表香港特区。制造厂商代码的赋权在各个国家或地区的物品编码组织,我国由国家物品编码中心赋予制造厂商代码。商品代码是用来标识商品的代码,赋码权由产品生产企业自己行使,生产企业按照规定条件自己决定在自己的何种商品上使用哪些 *** 数字为商品条形码。商品条形码最后用1位校验码来校验商品条形码中左起第l-12数字代码的正确性。 商品条形码的编码遵循唯一性原则,以保证商品条形码在全世界范围内不重复,即一个商品项目只能有一个代码,或者说一个代码只能标识一种商品项目。不同规格、不同包装、不同品种、不同价格、不同颜色的商品抚能使用不同的商品代码。 商品条形码的标准尺寸是 x ,放大倍率是。当印刷面积允许时,应选择倍率以上的条形码,以满足识读要求。放大倍数越小的条形码,印刷精度要求越高,当印刷精度不能满足要求时,易造成条形码识读困难。 由于条形码的识读是通过条形码的条和空的颜色对比度来实现的,一般情况下,只要能够满足对比度(PCS值)的要求的颜色即可使用。通常采用浅色作空的颜色,如白色、橙色、黄色等,采用深色作条的颜色,如黑色、暗绿色、深棕色等。最好的颜色搭配是黑条白空。根据条形码检测的实践经验,红色、金色、浅黄色不宜作条的颜色,透明、金色不能作空的颜色。 EAN-8商品条形码是指用于标识的数字代码为8位的商品条形码,由7位数字表示的商品项目代码和1位数字表示的校验符组成。 商品条形码的诞生极大地方便了商品流通,现代社会已离不开商品条形码。据统计,目前我国已有50万种产品使用了国际通用的商品条形码。我国加人世贸组织后,企业在国际舞台上必将赢得更多的活动空间。要与国际惯例接轨,......>> 问题二:商品条码有多少位?各代表什么? 商品条形码的编码遵循唯一性原则,以保证商品条形码在全世界范围内不重复,即一个商品项目只能有一个代码,或者说一个代码只能标识一种商品项目。不同规格、不同包装、不同品种、不同价格、不同颜色的商品只能使用不同的商品代码。 EAN商品条形码亦称通用商品条形码,由国际物品编码协会制定,通用于世界各地,是目前国际上使用最广泛的一种商品条形码。EAN商品条形码分为EAN-13(标准版)和EAN-8(缩短版)两种。 EAN-13通用商品条形码一般由前缀部分、制造厂商代码、商品代码和校验码组成。商品条形码中的前缀码是用来标识国家或地区的代码,赋码权在国际物品编码协会,如00-09代表美国、加拿大。45、49代表日本。69代表中国大陆,471代表我国台湾地区,489代表香港特区。制造厂商代码的赋权在各个国家或地区的物品编码组织,我国由国家物品编码中心赋予制造厂商代码。商品代码是用来标识商品的代码,赋码权由产品生产企业自己行使,生产企业按照规定条件自己决定在自己的何种商品上使用哪些 *** 数字为商品条形码。商品条形码最后用1位校验码来校验商品条形码中左起第l-12数字代码的正确性。 详细请参考 商品条形码 百科 问题三:商品的条形码都代表什么意思? 商品条码数字的含义(EAN-13) 以条形码 6936983800013 为例 此条形码分为4个部分,从左到右分别为: 1-3位:共3位,对应该条码的693,是中国的国家代码之一。(690--695都是中国大陆的代码,由国际上分配) 4-8位:共5位,对应该条码的69838,代表着生产厂商代码,由厂商申请,国家分配 9-12位:共4位,对应该条码的0001,代表着厂内商品代码,由厂商自行确定 第13位:共1位,对应该条码的3,是校验码,依据一定的算法,由前面12位数字计算而得到。 问题四:条形码的各位数字代表什么含义 商品条码数字的含义: 以条形码 6936983800013为例 此条形码分为4个部分,从左到右分别为: 1-3位:共3位,对应该条码的693,是中国的国家代码之一。(690--695都是中国的代码,由国际上分配) 4-8位:共5位,对应该条码的69838,代表着生产厂商代码,由厂商申请,国家分配 9-12位:共4位,对应该条码的0001,代表着厂内商品代码,由厂商自行确定 第13位:共1位,对应该条码的3,是校验码,依据一定的算法,由前面12位数字计算而得到。 公式第13位算法: 1:取出该数的奇数位的和,c1=6+3+9+3+0+0=21; 2:取出该数的偶数位的和,c2=9+6+8+8+0+1=32; 3:将奇数位的和与“偶数位的和的三倍”相加。 4:取出结果的个位数:117(117%10=7); 5:用10减去这个个位数:10-7=3; 6:对得到的数再取个位数(对10去余)3%10=3; 条形码或称条码(barcode)是将宽度不等的多个黑条和空白,按照一定的编码规则排列,用以表达一组信息的图形标识符。常见的条形码是由反射率相差很大的黑条(简称条)和白条(简称空)排成的平行线图案。条形码可以标出物品的生产国、制造厂家、商品名称、生产日期、图书分类号、邮件起止地点、类别、日期等信息,因而在商品流通、图书管理、邮政管理、银行系统等许多领域都得到了广泛的应用。 问题五:商品上的条码有什么含义和作用呢 条形码起始于20世纪70年代,在国际上已广泛用于各类商品,为商贸活动和商品管理提供了极大的便利,1988年中国物品编码中心成立,条形码也在我国广泛应用于各个领域,包括在出版物上的应用,1991年4月,我国被正式接纳为国际物品编码协会成员,商品条码前缀码代号是“690”。 条形码也叫条码,是由一组规则排列、宽度不同、黑白相间、平行相邻的线条组成,并配有相对应字符组成的码记,用来表示一定的信息。 条形码的一组规则排列的条、空的含义:条,是条形码中反射率较低的部分,即黑色或彩色条纹部分;空,是条形码中反射率较高的部分,即白色或无色条纹部分。条形码是一种自动识别技术,是利用光电扫描阅读设备给计算机输入数据的特殊代码,这个代码包括了产品名称、规格、价格等。 一、条形码的使用功能 (一)自动进行阅读识别。只要用扫描阅读器扫过条形码的标签,计算机就可以自动进行阅读识别,确定商品的代码,然后找定价、做累计等,进行汇总结算,输出总金额。具有快速、准确的特点。 (二)能对商品销售的信息进行分类、汇总和分析,有利于经营管理活动的顺利进行。 (三)可以通过计算机网络及时将销售信息反馈给生产单位,缩小产、供、销之间信息传递的时空差。 二、EAN商品条形码 EAN即欧洲物品编码的缩写,也是国际物品编码协会的简称。参加协会的成员国(或地区),称为EAN成员国(或地区),并分别规定了EAN条形码的代码,EAN条形码是通用商品条码。EAN条形编码由12位数字的产品代码和一位校验码组成,12位数字中前三位为前缀号,中间四位为制造商代码,代表一个企业,后五位为产品代码。 前三位只是国家地区(EAM)成员的条形码前缀码,和商品的质量没有关系。只能说明一些大的企业率先采用了条形码这种标示。 商品条形码是指由一组规则排列的条、空及其对应字符组成的标识,用以表示一定的商品信息的符号。其中条为深色、空为纳色,用于条形码识读设备的扫描识读。其对应字符由一组 *** 数字组成,供人们直接识读或通过键盘向计算机输人数据使用。这一组条空和相应的字符所表示的信息是相同的。 条形码技术是随着计算机与信息技术的发展和应用而诞生的,它是集编码、印刷、识别、数据采集和处理于一身的新型技术。 使用条形码扫描是今后市场流通的大趋势。为了使商品能够在全世界自由、广泛地流通,企业无论是设计制作,申请注册还是使用商品条形码,都必须遵循商品条形码管理的有关规定。 目前世界上常用的码制有ENA条形码、UPC条形码、二五条形码、交叉二五条形码、库德巴条形码、三九条形码和128条形码等,而商品上最常使用的就是EAN商品条形码。 EAN商品条形码亦称通用商品条形码,由国际物品编码协会制定,通用于世界各地,是目前国际上使用最广泛的一种商品条形码。我国目前在国内推行使用的也是这种商品条形码。EAN商品条形码分为EAN-13(标准版)和EAN-8(缩短版)两种。 EAN-13通用商品条形码一般由前缀部分、制造厂商代码、商品代码和校验码组成。商品条形码中的前缀码是用来标识国家或地区的代码,赋码权在国际物品编码协会,如00-09代表美国、加拿大。45-49代表日本。690-692代表中国大陆,471代表我国台湾地区,489代表香港特区。制造厂商代码的赋权在各个国家或地区的物品编码组织,我国由国家物品编码中心赋予制造厂商代码。商品代码是用来标识商品的代码,赋码权由产品生产企业自己行使,生产企业按照规定条件自己决定在自己的何种商品上使用哪些 *** 数字为商品条形码。商品条形码最后用1位校验码来校验商品条......>> 问题六:商品上的条形码表示的数字分别指什么? EAN-13通用商品条形码一般由前缀部分、制造厂商代码、商品代码和校验码组成。商品条形码中的前缀码是用来标识国家或地区的代码,赋码权在国际物品编码协会,如00-09代表美国、加拿大。45-49代表日本。690-692代表中国大陆,471代表我国台湾地区,489代表香港特区。制造厂商代码的赋权在各个国家或地区的物品编码组织,我国由国家物品编码中心赋予制造厂商代码。商品代码是用来标识商品的代码,赋码权由产品生产企业自己行使,生产企业按照规定条件自己决定在自己的何种商品上使用哪些 *** 数字为商品条形码。商品条形码最后用1位校验码来校验商品条形码中左起第l-12数字代码的正确性。 全文: 商品条形码是指由一组规则排列的条、空及其对应字符组成的标识,用以表示一定的商品信息的符号。其中条为深色、空为纳色,用于条形码识读设备的扫描识读。其对应字符由一组 *** 数字组成,供人们直接识读或通过键盘向计算机输人数据使用。这一组条空和相应的字符所表示的信息是相同的。 条形码技术是随着计算机与信息技术的发展和应用而诞生的,它是集编码、印刷、识别、数据采集和处理于一身的新型技术。 使用条形码扫描是今后市场流通的大趋势。为了使商品能够在全世界自由、广泛地流通,企业无论是设计制作,申请注册还是使用商品条形码,都必须遵循商品条形码管理的有关规定。 目前世界上常用的码制有ENA条形码、UPC条形码、二五条形码、交叉二五条形码、库德巴条形码、三九条形码和128条形码等,而商品上最常使用的就是EAN商品条形码。 EAN商品条形码亦称通用商品条形码,由国际物品编码协会制定,通用于世界各地,是目前国际上使用最广泛的一种商品条形码。我国目前在国内推行使用的也是这种商品条形码。EAN商品条形码分为EAN-13(标准版)和EAN-8(缩短版)两种。 EAN-13通用商品条形码一般由前缀部分、制造厂商代码、商品代码和校验码组成。商品条形码中的前缀码是用来标识国家或地区的代码,赋码权在国际物品编码协会,如00-09代表美国、加拿大。45-49代表日本。690-692代表中国大陆,471代表我国台湾地区,489代表香港特区。制造厂商代码的赋权在各个国家或地区的物品编码组织,我国由国家物品编码中心赋予制造厂商代码。商品代码是用来标识商品的代码,赋码权由产品生产企业自己行使,生产企业按照规定条件自己决定在自己的何种商品上使用哪些 *** 数字为商品条形码。商品条形码最后用1位校验码来校验商品条形码中左起第l-12数字代码的正确性。 商品条形码的编码遵循唯一性原则,以保证商品条形码在全世界范围内不重复,即一个商品项目只能有一个代码,或者说一个代码只能标识一种商品项目。不同规格、不同包装、不同品种、不同价格、不同颜色的商品只能使用不同的商品代码。 商品条形码的标准尺寸是,放大倍率是。当印刷面积允许时,应选择倍率以上的条形码,以满足识读要求。放大倍数越小的条形码,印刷精度要求越高,当印刷精度不能满足要求时,易造成条形码识读困难。 由于条形码的识读是通过条形码的条和空的颜色对比度来实现的,一般情况下,只要能够满足对比度(PCS值)的要求的颜色即可使用。通常采用浅色作空的颜色,如白色、橙色、黄色等,采用深色作条的颜色,如黑色、暗绿色、深棕色等。最好的颜色搭配是黑条白空。根据条形码检测的实践经验,红色、金色、浅黄色不宜作条的颜色,透明、金色不能作空的颜色。 EAN-8商品条形码是指用于标识的数字代码......>> 问题七:那个商品条码下的编号代表什么? 前缀码 编码组织所在国家 ( 或地区 )/ 应用领域 前缀码 编码组织所在国家 ( 或地区 )/ 应用领域 000 ~ 019;030 ~ 039;060 ~ 139 美国 020 ~ 029;040 ~ 049;200 ~ 299 店内码 050 ~ 059 优惠券 300 ~ 379 法国 380 保加利亚 383 斯洛文尼亚 385 克罗地亚 387 波黑 400 ~ 440 德国 450 ~ 459;490 ~ 499 日本 460 ~ 469 俄罗斯 470 吉尔吉斯斯坦 471 中国台湾 474 爱沙尼亚 475 拉脱维亚 476 阿塞拜疆 477 立陶宛 478 乌兹别克斯坦 479 斯里兰卡 480 菲律宾 481 白俄罗斯 482 乌克兰 484 摩尔多瓦 485 亚美尼亚 486 格鲁吉亚 487 哈萨克斯坦 489 中国香港特别行政区 500 ~ 509 英国 520 希腊 528 黎巴嫩 529 塞浦路斯 530 阿尔巴尼亚 531 马其顿 535 马耳他 539 爱尔兰 540 ~ 549 比利时和卢森堡 560 葡萄牙 569 冰岛 570 ~ 579 丹麦 590 波兰 594 罗马尼亚 599 匈牙利 600、601 南非 603 加纳 608 巴林 609 毛里求斯 611 摩洛哥 613 阿尔及利亚 616 肯尼亚 618 象牙海岸 619 突尼斯 621 叙利亚 622 埃及 624 利比亚 625 约旦 626 伊朗 627 科威特 628 沙特 *** 629 *** 联合酋长国 640 ~ 649 芬兰 690 ~ 695 中华人民共和国 700 ~ 709 挪威 729 以色列 730 ~ 739 瑞典 740 危地马拉 741 萨尔瓦多 742 洪都拉斯 743 尼加拉瓜 744 哥斯达黎加 745 巴拿马 746 多米尼加 750 墨西哥 754 ~ 755 加拿大 759 委内瑞拉 760 ~ 769 瑞士 770 哥伦比亚 773 乌拉圭 775 秘鲁 777 玻利维亚 779 阿根廷 780 智利 784 巴拉圭 786 厄瓜多尔 789 ~ 790 巴西 800 ~ 839 意大利 840 ~ 849 西班牙 850 古巴 858 斯洛伐克 859 捷克 860 南斯拉夫 865 蒙古 867 朝鲜 869 土耳其 870 ~ 879 荷兰 880 韩国 884 柬埔寨 885 泰国 888 新加坡 890 印度 893 越南 899 印度尼西亚 900 ~ 919 奥地利 930 ~ 939 澳大利亚 940 ~ 949 新西兰 955 马来西亚 958 中国澳门特别行政区 977 连续出版物 978、979 图书 980 应收票据 981、982 普通流通券 990 ~ 999 优惠券 资料提供:labelmx专业条码软件技术服务(ancc) 问题八:条形码上的数字代表什么意思? 条形码图中13位数字所代表的意义是:前3位显示该商品的出产地区(国家)。接着的4位数字表示所属厂家的商号,这是由所在国家(或地区)的编码机构统一编配给所申请的商号的。再接下来的5位数是个别货品号码,由厂家先行将产品分门别类,再逐一编码,厂家一共可对10万项货品进行编码。最后一个数字是终检码,以方便扫描器核对整个编码,避免误读 问题九:什么是商品编码?商品编码和商品条码有什么区别 5分 商品编码是指用一组 *** 数字标识商品的过程,龚组数字称为代码。 海关商品编码:指一组8位或10位的 *** 数字,用以划分进出商品的货物类型。也称为HS编码、税则号、税号。详见HS编码。 商品条码是由一组按一定规则排列的条、空及对应字符( *** 数字)所组成的用于表示商店自动销售管理系统的信息标记或者对商品分类编码进行表示的标记。

1 引 言 磁性纳米粒子是近年来发展起来的一种新型材料,因其具有独特的磁学特性,如超顺磁性和高矫顽力,在生物分离和检测领域展现了广阔的应用前景[1]。同时,因磁性氧化铁纳米粒子具有小尺寸效应、良好的磁导向性、生物相容性、生物降解性和活性功能基团等特点[2~4], 在核磁共振成像、靶向药物、酶的固定、免疫测定等生物医学领域表现出潜在的应用前景[5~7]。但由于其较高的比表面积,强烈的聚集倾向,所以通常对其表面进行修饰,降低粒子的表面,能得到分散性好、多功能的磁性纳米粒子。对磁性纳米粒子的表面进行特定修饰,如果在修饰后的粒子上引入靶向剂、药物分子、抗体、荧光素等多种生物分子,可以改善其分散稳定性和生物相容性, 以实现特定的生物医学应用。此外,适当的表面修饰或表面功能化还可以调节磁性纳米粒子表面的反应活性[8],从而使其应用在细胞分离、蛋白质纯化、核酸分离和生物检测等领域。本文介绍了磁性氧化铁纳米粒子的制备方法, 比较了各种制备方法的优缺点,并对其在生物分离及检测中应用的最新进展进行了评述。2 磁性氧化铁纳米粒子的合成方法 磁性纳米粒子的制备是其应用的基础。目前已发展了多种合成和制备方法,如共沉淀法、水热合成法、溶胶凝胶法和微乳液法等,上述方法均可制备高分散、粒度分布均匀的纳米粒子,并能方便地对其表面进行化学修饰,这些方法的优点和缺点见表1。 在这些合成方法当中,共沉淀法是水相合成氧化铁纳米粒子最常用的方法。该方法制备的磁性纳米颗粒具有粒径小,分散均匀,高度生物相容性等优点,但制得的颗粒存在形状不规则,结晶差等缺点。通过在反应体系中加入柠檬酸,可得到形状规则、分散性好的纳米粒子。利用这种方法合成的磁性纳米材料被广泛应用在生物化学及生物医学等领域[9]。微乳液法制备纳米粒子,产物均匀、单分散,可长期保持稳定,通过控制胶束、结构、极性等,可望从分子规模来控制粒子的大小、结构、特异性等。微乳液合成的磁性纳米粒子仅溶于有机溶剂,其应用受到限制。通常需要在磁性纳米粒子的表面修饰上亲水分子,使其溶于水,从而能应用于生物、医学等领域。 热分解法是有机相合成氧化铁纳米粒子最多也是最稳定的方法。利用热分解法制备的纳米Fe3O4颗粒产物具有好的单分散性,且呈疏水性,可以长期稳定地分散于非极性有机溶剂中。该方法合成的氧化铁纳米粒子虽然具有粒径均一的特点,但必须在其表面偶联亲水性及生物相容性好的生物分子或制备成核壳结构,才可用于生物医学领域。表1 磁性氧化铁纳米粒子的制备方法(略)此外,绿色化学和生物方法合成氧化铁纳米粒子也备受关注[28,29]。磁性氧化铁纳米粒子除具有的表面效应、小尺寸效应、量子效应、宏观量子隧道效应等纳米粒子基本特性外,它同时还具有超顺磁特性、类酶催化特性和生物相容性等特殊性质,因此在医学和生物技术领域中的应用引起了人们的广泛兴趣。 3 磁性氧化铁纳米材料在生物分离与生物检测的应用 磁性氧化铁纳米材料在生物分离的应用 磁性氧化铁纳米粒子可以通过外界磁场来控制纳米粒子的磁性能,从而达到分离的目的,如细胞分离[30,31]、蛋白分离[32] 和核酸分离[33]等。此外磁性氧化铁纳米粒子由于兼有纳米、磁学和类酶催化活性等性能,不仅能够实现被检测物的分离和富集,而且能够使检测信号放大,在生物分析领域也都具有很好的应用前景[34,35]。磁性纳米粒子(MNP)能够应用于这些领域主要基于它的表面化学修饰,包括非聚合物有机固定、聚合物有机固定、无机分子固定及靶向配体修饰等[36](图1)。纳米粒子表面功能化修饰是目前研究的热点。 磁性氧化铁纳米材料在细胞分离方面的应用 细胞分离技术的目的是快速获得所需目标细胞。传统细胞分离技术主要根据细胞的大小、形态以及密度的差异进行分离,如采用微滤、超滤以及超离心等方法。这些方法操作简单,但是特异性差,而且存在纯度不高、制备量偏小、影响细胞活性等缺点,因此未能被广泛地用于细胞的纯化研究[37]。近年来,随着对磁性纳米粒子研究的深入,人们开始利用磁性纳米粒子来分离细胞[38,39]。如磁性氧化铁纳米粒子在其表面接上具有生物活性的吸附剂或配体(如抗体、荧光物质、外源凝结素等),利用它们与目标细胞的特异性结合,在外加磁场的作用下将细胞分离、分类以及对其种类、数量分布进行研究。张春明等[40]运用化学连接方法将单克隆抗体CD133连接到SiO2/Fe3O4复合粒子的表面得到免疫磁性Fe3O4纳米粒子,利用它分离出单核细胞和CD133细胞。经培养后可以看出,分离出来的CD133细胞与单核细胞一样,具有很好的活性,能够正常增殖形成集落,并且在整个分离过程中对细胞的形态以及活性没有明显的毒副作用,这与Kuhara等[30]]报道的采用磁分离技术分离CD19+和CD20+细胞的结果一致。Chatterjee等[39]采用外源凝结素分别修饰聚苯乙烯包被的磁性Fe3O4微球和白蛋白磁性微球,利用凝结素与红细胞良好的结合能力,快速、高效的分离了红细胞。此外,磁性粒子在分离癌细胞和正常细胞方面的动物实验也已获得成功。 磁性氧化铁纳米材料在蛋白质和核酸分离中的应用 利用传统的生物学技术(如溶剂萃取技术等)来分离蛋白质和核酸程序非常繁杂,而磁分离技术是分离蛋白、核酸及其他生物分子便捷而有效的方法。目前在外磁场作用下,超顺磁性氧化铁纳米粒子已广泛应用于蛋白质和核酸的分离。 Liu等[41]利用聚乙烯醇等表面活性剂存在下制备出共聚磁性高分子微球,表面用乙二胺修饰后用于分离鼠腹水抗体,得到很好的分离效果。Xu等[42]在磁性氧化铁纳米粒子表面偶联多巴胺分子,用于多种蛋白质的分离纯化。多巴胺分子具有二齿烯二醇配体,它可以与氧化铁纳米粒子表面配位不饱和的Fe原子配位,形成纳米颗粒多巴胺复合物,此复合物可以进一步偶联次氨基三乙酸分子(NTA),NTA分子可特异螯合Ni+,对于具有6×His标签的蛋白质的分离纯化方面表现出很高的专一性。Liu等[43]用硅烷偶联剂(AEAPS)对核壳结构的SiO2/Fe2O3复合粒子的表面进行处理,研究复合磁性粒子对牛血清白蛋白(BSA)的吸附情况,结果表明BSA与磁性复合粒子之间是通过化学键作用被吸附的,复合粒子对BSA的最大吸附量达86 mg/g,显示出在白蛋白的分离和固定上有很大的应用潜力。Herdt等[44]利用羧基修饰的吸附/解离速度快的核壳型(Fe3O4/PAA)磁性纳米颗粒与Cu2+亚氨基二乙酸(IDA)共价交联,通过Cu2+与组氨酸较强的亲和能力实现了组氨酸标记蛋白的选择性分离,分离过程如图2所示。 磁性纳米粒子也是核酸分子分离的理想载体[45]。DNA/mRNA含有单一碱基错位,它们的富集和分离在人类疾病诊断学、基因表达研究方面有着至关重要的作用。Zhao等[46]合成了一种磁性纳米基因捕获器,用于富集、分离、检测痕量的DNA/mRNA分子。这种材料以磁性纳米粒子为核,包覆一层具有生物相容性的SiO2保护层,表面再偶联抗生素蛋白维生素H分子作为DNA分子的探针,可以将10-15 mol/L DNA/mRNA有效地富集,并能实时监控产物。Tayor等[47]用硅酸钠水解法、正硅酸乙酯水解法制备SiO2/Fe2O3磁性纳米粒子并对DNA进行了分离。结果表明,SiO2功能化的Fe2O3磁性纳米粒子对DNA的吸附分离效果明显好于单独Fe2O3磁性纳米粒子的分离效果,但是其吸附机理有待进一步研究。 磁性氧化铁纳米材料在生物检测中的应用 基于磁学性能的生物检测磁性氧化铁纳米粒子因其特有的磁导向性、小尺寸效应及其偶联基团的活性,兼有分离和富集地作用,使其在生物检测领域有广泛的应用。当检测目标为低含量的蛋白分子时,不能通过聚合酶链反应(PCR)对其信号进行放大,而磁微球与有机染料或量子点荧光微球结合可以对某些特异性蛋白、细胞因子、抗原和核酸等进行多元化检测,实现信号放大的作用。Yang等[48]采用一对分子探针分别连接荧光光学条码(彩色)和磁珠(棕色),对DNA(顶端镶板)和蛋白质(底截镶板)生物分子进行目标分析(图3)。如果目标DNA序列或蛋白存在,它将与两个磁珠结合一起,形成了一个三明治结构,经过磁选,光学条码可以在单磁珠识别目标水平下,通过分光光度计或是在流式细胞仪读出。通过此方法检测目标分子是基于数百万个荧光基团组成的微米尺寸光学条码信号的扩增而检测出来,其基因和蛋白的检出限可达到amol/L量级,甚至更低。 Nam等[49]利用多孔微粒法(每个微粒可填充大量条形码DNA)和金纳米微粒为基础的比色法生物条形码检测技术检测了人白细胞介素2(IL2),检出限可达到30 amol/L,比普通的酶联免疫分析技术的灵敏度高3个数量级。Oh等 [50]利用荧光为基础的生物条形码放大方法检测了前列腺特异性抗原(PSA)的水平,其检出限也低于300 amol/L,而且实现了快速检测。 在免疫检测中,磁性纳米粒子作为抗体的固相载体,粒子上的抗体与特性抗原结合,形成抗原抗体复合物,在磁力作用下,使特异性抗原与其它物质分离,克服了放免和酶联免疫测定方法的缺点。这种分离具有灵敏度高、检测速度快、特异性高、重复性好等优点。Yang等[51]通过反相微乳液法制备了粒径很小的SiO2包覆的Fe3O4磁性纳米粒子,生物分子通过诱导这些高单分散的磁性纳米粒子可用于酶的固定和免疫检测。Lange等[52]采用直接或三明治固相免疫法(生物素基化抗IgG抗体和共轭连接链霉素的磁性纳米粒子组成三明治结构)和超导量子干涉法(SQUID),研究它们在确定抗原、抗体相互作用免疫检测中的应用,结果表明特异性键合的磁性纳米颗粒的驰豫信号大小依赖于抗原(人免疫球蛋白G,IgG)的用量,这种磁弛豫(Magnetic relaxation)免疫检测方法得到的结果与广泛使用的ELISA方法的结果相当。 因磁性纳米粒子独特的性能,在生物传感器上也有潜在的应用前景。Fan等[53]在磁珠上偶联被检测物的一级抗体,在金纳米颗粒上连接二级抗体,两者反应后,利用HClNaClBr2将Au氧化为Au3+,催化发光胺(Luminol)化学发光,人免疫球蛋白G(IgG)的检出限可达2 × 10-10 mol/L ,实现了磁性纳米颗粒化学发光免疫结合的方法对IgG进行生物传感分析(图4)。 类酶催化特性在生物检测中的应用 Cao等[54]发现Fe3O4磁性纳米粒子能够催化H2O2氧化3,3',5,5'四甲基联苯胺(TMB)、3,3'二氨基联苯胺四盐酸盐(DAB)和邻苯二胺(OPD),使其发生显色反应,具有类辣根过氧化物酶(HRP)活性(图5),而且其催化活性比相同浓度的辣根过氧化物酶高40倍。并且Fe3O4磁性纳米粒子可以运用磁分离手段进行重复性利用,显著降低了生物检测的实验成本,利用此特性可进行多种生物分子的检测。 利用葡萄糖氧化酶(GOx)与Fe3O4磁性纳米粒子催化葡萄糖的反应(见式(1)和(2)),通过比色法检测葡萄糖,其检测的灵敏度达到5×10-5 ~ 1×10-3 mol/L 。由于Fe3O4磁性纳米粒子制备简单、稳定性好、活性高,成本低,因而比普通酶更有竞争优势,这也为葡萄糖的检测提供了高灵敏度和选择性的分析方法,在生物传感领域的应用上展现了巨大的潜能,为糖尿病人疾病的诊断提供了快速、灵敏的检测方法。然而要提高检测灵敏度,合成催化效率高的Fe3O4磁性纳米粒子及多功能磁性纳米粒子是关键。Peng等[56]用电化学方法比较了不同尺寸Fe3O4纳米粒子的催化活性发现,随着尺寸的变小,磁性纳米粒子的催化活性变高。Wang等[57]制备的单分散哑铃型PtFe3O4纳米粒子,由于本身尺寸和结构特点,可更大限度地提高催化活性。本研究组已经合成了分散性好和磁性高的氧化铁纳米粒子并对其进行了表征,利用其磁学和催化特性,已开展了葡萄糖等生物分子的检测,该方法的检出限达到1 μmol/L,具有灵敏度高、操作简便和成本低等优点[58]。总之,Fe3O4磁性氧化铁纳米粒子不但具有显著的超顺磁性,而且具有类辣根过氧化物酶催化特性,可通过使用过氧化物敏感染料,设计了一系列(如乙肝病毒表面抗原等)的免疫检测模型[59],因此超顺磁性纳米粒子在生物分离和免疫检测领域具有广阔的应用前景。4 结 语 随着纳米技术的迅速发展,磁性氧化铁纳米粒子的开发及其在生物医学、生物分析、生物检测等领域的潜在应用已经越来越受到重视,但同时也面临很多挑战和问题。(1)构建并制备尺寸小、粒径均一、分散性和生物相容性好及催化性能高的多功能磁性纳米粒子;(2)根据被检测生物分子的特点设计多功能磁性氧化铁纳米粒子,实现高灵敏度、特异性检测;(3)利用纳米氧化铁颗粒作为分子探针进行实时、在线、原位、活体和细胞内生物分子的检测。这些问题不仅是纳米材料在生物分子检测领域应用需要解决的难点,也是目前其进行生物分子检测研究的热点和重点。【参考文献】 1 Perez J M, Simeone F J, Saeki, Y, Josephson L, Weissleder R. J. Am. Chem. Soc., 2003, 125(34): 10192~101932 Kim G J, O'Regan R M, Nie S M. 2005 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2005,17:714~7163 LIU JunTao(刘军涛), LIU RuPing(刘儒平), WANG MiXia(王蜜霞), LIU ChunXiu(刘春秀), LUO JinPing(罗金平), CAI XinXia(蔡新霞). Chinese J. Anal. Chem.(分析化学), 2009, 37(7): 985~9884 Lang C, Schuler D, Faivre D. Macromol. Biosci., 2007, 7(2): 144~1515 Silva G A. Surg. Neurol., 2007, 67(2):113~1166 Corot C, Robert P, Idee J M, Port M. Adv. Drug Delivery. Rev., 2006, 58(14): 1471~15047 Kohler N, Sun C, Wang J, Zhang M Q. Langmuir., 2005, 21(19), 8858~88648 LI BaoYu(李宝玉). Biomedical Nanomaterials(纳米生物医药材料). Beijing(北京): Chemical Industry Press(化学工业出版社), 2004: 1419 Tartaj P, Morales M P, GonzalezCarreno T, VeintemillasVerdaguer S, Serna C J. J. Magn. Magn. Mater., 2005, 290: 28~3410 ZHANG Xin(张 鑫), LI XinGang(李鑫钢), JIANG Bin(姜 斌). Chinese Chem. Industry. Eng.(化学工业与工程), 2006, 23(1): 45~4811 Wu J H, Ko S P, Liu H L, Jung M H, Lee J H, Ju J S, Kim Y K. Colloids Surf. A, 2008, 313/314: 268~27212 CHENG HaiBin(程海斌), LIU GuiZhen(刘桂珍), LI LiChun(李立春), GUAN JianGuo(官建国), Yuan RunZhang(袁润章). J. Wuhan University of Technology(武汉理工大学学报), 2003, 25(5): 4~613 QIU XingPing(邱星屏). J. Xiamen University: Natural Science(厦门大学学报:自然科学版), 1999, 38(5): 711~71514 Mao B D, Kang Z H, Wang E B, Lian S Y, Gao L, Tian C G, Wang C L. Mater. Res. Bull., 2006, 41(12): 2226~223115 Fan R, Chen X H, Gui Z, Liu L, Chen Z Y. Mater. Res. Bull., 2001, 36(3~4): 497~50216 Wang H W, Lin H C, Yeh Y C, Kuo C H. J. Magn. Magn. Mater., 2007, 310(2): 2425~242717 Harris L A, Goff J D, Carmichael A Y, Riffle J S, Harburn J J, St Pierre T G, Saunders M. Chem. Mater., 2003, 15(6):1367~137718 SONG LiXian(宋丽贤), LU ZhongYuan(卢忠远), LIAO QiLong(廖其龙). J. Funct. Mater.(功能材料), 2005, 36(11): 1762~176819 Itoh H, Sugimoto T. J. Colloid. Interface. Sci., 2003, 265(2): 283~29520 Xu J, Yang H B, Fu W Y, Du K, Sui Y M, Chen J J, Zeng Y, Li M H, Zou G. J. Magn. Magn. Mater., 2007, 309(2): 307~31121 Li Z, Wei L, Gao M Y, Lei H. Adv. Mater., 2005, 17(8): 11301~11305 22 Sun S H, Zeng H. J. Am. Chem. Soc., 2002, 124(28): 8204~820523 Bang J H, Suslick K S. J. Am. Chem. Soc. 2007, 129(8): 224224 Vijayakumar R, Koltypin Y, Felner I, Gedanken A. Mater. Sci. Eng. A, 2000, 286(1): 101~10525 Pinkas J, Reichlova V, Zboril R, Moravec Z, Bezdicka P, Matejkova J. Ultrason. Sonochem., 2008, 15(3): 257~26426 Khollam Y B, Dhage S R, Potdar H S, Deshpande S B, Bakare P P, Kulkarni S D, Date S K. Mater. Lett., 2002, 56(4): 571~57727 HAI YanBing(海岩冰), YUAN HongYan(袁红雁), XIAO Dan(肖 丹). Chinese Chem. Res. Appl.(化学研究与应用), 2006, 18(6): 744~74628 Jun Y W, Huh Y. M, Choi J S, Lee J H, Song H T, Kim S, Yoon, S, Kim K S, Shin J S, Suh J S, Cheon J. J. Am. Chem. Soc., 2005, 127(16), 5732~573329 Bharde A A, Parikh R Y, Baidakova M, Jouen S, Hannoyer B, Enoki T, Prasad B L V, Shouche Y S, Ogale S, Sastry M. Langmuir, 2008, 24(11): 5787~579430 Kuhara M, Takeyama H, Tanaka T, Matsunaga T. Anal. Chem., 2004, 76(21): 6207~621331 Y, G. Biofuctionalization of Nanamaterials. WileyVCH: Weinheim 200532 Safarik I M S. Biomagn. Res. Technol., 2004, 2(1): 7

条形码是用条码打印机打印的,或者是用条码电子秤打印的。条形码上是没有磁性的,是不具备防盗功能的,条码只起到识读的作用,在超市买东西,交钱的时候,收银员会用条码扫描器扫描一下条形码,商品条码里面包含的意思有:厂家代码、商品编号,商品价格、重量等,当然以上我说的这几种不一定都包括,具体包含哪几个内容,要看制作条码的人。如果是零售商品,如:食品、蔬菜等,条码上就包含有价格、重量等信息,直接就会显示在POS机上,如果是衣服、生活用品等等,这种商品上面的条码是不包含价格等信息的,POS上都是有系统的,这个系统和服务器相连,当这些产品采购来入库的时候就已经被扫描保存到了数据库中,并且定义好价格,卖出扫描的时候得到商品上贴的条码信息(13位数字),会和数据库中的信息比较,遇到相同的原本定好价格的,就显示出来了。自己做条形码需要用条码电子秤(超市用,称东西打条码)或者条码打印机(专业制作条码,可以用在目前任何需要使用条码的行业)参考:刷条形码的是条码扫描器,在超市是不可能买到的,这是专业设备,超市里用的也是在外面采购的。对我的回答不明白,可以给我发信息。青岛艾讯条码技术小组提供

论文代码会检测吗

会查重的。

各个学校不一样,全文重复率在30%一下(而有的学校,本科是20%)。每章重复率应该没有要求,这个每个学校会出细则的,并且学校也出给出他们查重复率的地方--基本都是中国知网。具体打电话问老师,每界每个学校要求都不一样

相关查重系统名词的具体作用:查重率的具体概念就是抄袭率,引用率,要用专业软件来测试你的文章与别人论文的相似度,杜绝抄袭。基本就这意思。

一个是自写率就是自己写的;

一个是复写率就是抄袭的;

还有一个引用率就是那些被画上引用符号的,是合理的引用别人的资料。

扩展资料:

毕业论文查重包括:

1、论文的段落与格式

论文检测基本都是整篇文章上传,上传后,论文检测软件首先进行部分划分,上交的最终稿件格式对抄袭率有很大影响。

不同段落的划分可能造成几十个字的小段落检测不出来。因此,可以通过划分多的小段落来降低抄袭率。

2、数据库

论文检测,多半是针对已发表的毕业论文期刊文章,还有会议论文进行匹配的,有的数据库也包含了网络的一些文章。

3、章节变换

很多同学改变了章节的顺序,或者从不同的文章中抽取不同的章节拼接而成的文章,对抄袭检测的结果影响几乎为零。

4、标注参考文献

论文中加了参考文献的引用符号,但是在抄袭检测软件中,都是统一看待。软件的阀值一般设定为1%,例如一篇文章有5000字,文章的1%就是50字,如果抄袭了多于50,即使加了参考文献,也会被判定为抄袭。

5、字数匹配

论文抄袭检测系统相对比较严格,只要多于20单位的字数匹配一致,就被认定为抄袭,但是前提是满足第4点,参考文献的标注。

参考资料来源:百度百科——论文检测服务

单从学术角度来说,论文写的代码不会是查重,里面包含了字母和公式的代码。有些论文查重系统写论文就认不出来了,当然也有学校要求查重。那么当我们知道论文代码时,是否会查重,还是要结合实际情况来进行判断。

原码不会是查重的原因是原码重复率低。其实我们也可以在写作的过程中把别人的代码改成一些基本的内容。只要把代码加起来,然后使用自己的原格式写,那么可以有效降低重复率的,这样对于整个论文的影响也不会很大。代码会不会是查重这个问题真的需要从多方面详细分析,才能更好的帮助你了解更多关于论文查重的知识。

避免论文的高重复率,写代码的时候,千万不要抄袭别人的相同代码,只要内容相同,就会判断查重率更高。同学们在写毕业论文的时候,可以考虑这些基本情况,比如论文代码的编写过程中需要注意哪些事项。代码的格式应该是正确的,只是需要按照一定的规则编写。为什么论文要进行查重?

结合以上情况,我们也可以在搞清楚论文代码的时候,搞清楚我们是否会进行查重。不仅要用正确的格式写代码,而且不要抄袭别人的内容。内容相似肯定会导致论文重复率高,有的学校对于代码也有查重要求,所以我们要考虑到学校的实际要求,才知道怎样去操作。

能如果我们的论文中含有代码,是可以被查重系统进行检测的,论文查重系统的原理和算法是我们传什么样的内容到系统,论文查重系统会跟我们上传的内容跟自己的论文数据库进行对比分析,如果数据库存在跟上传的论文一模一样的代码就会被认为论文中存在抄袭。论文系统通过不断的发展和更新,目前的对比库都是非常丰富的。我们写论文的时候要想顺利通过查系统的检测就不要存在侥幸心理。

入侵检测论文带算法代码

《科技传播》杂志国家级科技学术期刊中英文目录知网 万方全文收录随着对网络安全问题的理解日益深入,入侵检测技术得到了迅速的发展,应用防护的概念逐渐被人们所接受,并应用到入侵检测产品中。而在千兆环境中,如何解决应用防护和千兆高速网络环境中数据包线速处理之间的矛盾,成为网络安全技术发展一个新的挑战。 入侵检测技术的演进。 入侵检测系统(IDS, Intrusion Detection System)是近十多年发展起来的新一代安全防范技术,它通过对计算机网络或系统中的若干关键点收集信息并对其进行分析,从中发现是否有违反安全策略的行为和被攻击的迹象。IDS产品被认为是在防火墙之后的第二道安全防线在攻击检测、安全审计和监控等方面都发挥了重要的作用。 但在入侵检测产品的使用过程中,暴露出了诸多的问题。特别是误报、漏报和对攻击行为缺乏实时响应等问题比较突出,并且严重影响了产品发挥实际的作用。Gartner在2003年一份研究报告中称入侵检测系统已经“死”了。Gartner认为IDS不能给网络带来附加的安全,反而会增加管理员的困扰,建议用户使用入侵防御系统(IPS, Intrusion Prevention System)来代替IDS。Gartner公司认为只有在线的或基于主机的攻击阻止(实时拦截)才是最有效的入侵防御系统。 从功能上来看,IDS是一种并联在网络上的设备,它只能被动地检测网络遭到了何种攻击,它的阻断攻击能力非常有限,一般只能通过发送TCP reset包或联动防火墙来阻止攻击。而IPS则是一种主动的、积极的入侵防范、阻止系统,它部署在网络的进出口处,当它检测到攻击企图后,它会自动地将攻击包丢掉或采取措施将攻击源阻断。因此,从实用效果上来看,和IDS相比入侵防御系统IPS向前发展了一步,能够对网络起到较好的实时防护作用。 近年来,网络攻击的发展趋势是逐渐转向高层应用。根据Gartner的分析,目前对网络的攻击有70%以上是集中在应用层,并且这一数字呈上升趋势。应用层的攻击有可能会造成非常严重的后果,比如用户帐号丢失和公司机密泄漏等。因此,对具体应用的有效保护就显得越发重要。从检测方法上看,IPS与IDS都是基于模式匹配、协议分析以及异常流量统计等技术。这些检测技术的特点是主要针对已知的攻击类型,进行基于攻击特征串的匹配。但对于应用层的攻击,通常是利用特定的应用程序的漏洞,无论是IDS还是IPS都无法通过现有的检测技术进行防范。 为了解决日益突出的应用层防护问题,继入侵防御系统IPS之后,应用入侵防护系统(AIP,Application Intrusion Prevention)逐渐成为一个新的热点,并且正得到日益广泛的应用。 应用入侵防护 对应用层的防范通常比内网防范难度要更大,因为这些应用要允许外部的访问。防火墙的访问控制策略中必须开放应用服务对应的端口,如web的80端口。这样,黑客通过这些端口发起攻击时防火墙无法进行识别控制。入侵检测和入侵防御系统并不是针对应用协议进行设计,所以同样无法检测对相应协议漏洞的攻击。而应用入侵防护系统则能够弥补防火墙和入侵检测系统的不足,对特定应用进行有效保护。 所谓应用入侵防护系统AIP,是用来保护特定应用服务(如web和数据库等应用)的网络设备,通常部署在应用服务器之前,通过AIP系统安全策略的控制来防止基于应用协议漏洞和设计缺陷的恶意攻击。 在对应用层的攻击中,大部分时通过HTTP协议(80端口)进行。在国外权威机构的一次网络安全评估过程中发现,97%的web站点存在一定应用协议问题。虽然这些站点通过部署防火墙在网络层以下进行了很好的防范,但其应用层的漏洞仍可被利用进而受到入侵和攻击。因此对于web等应用协议,应用入侵防护系统AIP应用比较广泛。通过制订合理的安全策略,AIP能够对以下类型的web攻击进行有效防范: 恶意脚本 Cookie投毒 隐藏域修改 缓存溢出 参数篡改 强制浏览 Sql插入 已知漏洞攻击 应用入侵防护技术近两年刚刚出现,但发展迅速。Yankee Group预测在未来的五年里, AIP将和防火墙,入侵检测和反病毒等安全技术一起,成为网络安全整体解决方案的一个重要组成部分。 千兆解决方案 应用入侵防护产品在保护企业业务流程和相关数据方面发挥着日益重要的作用,同时随着网络带宽的不断增加,只有在适合千兆环境应用的高性能产品才能够满足大型网络的需要。 传统的软件形式的应用入侵防护产品受性能的限制,只能应用在中小型网络中;基于x86架构的硬件产品无法达到千兆流量的要求;近年来,网络处理器(NP)在千兆环境中得到了日益广泛的应用,但NP的优势主要在于网络层以下的包处理上,若进行内容处理则会导致性能的下降。 通过高性能内容处理芯片和网络处理芯片相结合形式,为千兆应用入侵防护产品提供了由于的解决方案。其设计特点是采用不同的处理器实现各自独立的功能,由网络处理芯片实现网络层和传输层以下的协议栈处理,通过高速内容处理芯片进行应用层的协议分析和内容检查。从而实现了千兆流量线速转发和高速内容处理的完美结合,真正能够为用户提供千兆高性能的应用防护解决方案。 在上面系统框架中,包处理引擎收到数据包后,首先由网络处理器进行传输层以下的协议栈处理,并将数据包还原成数据流。接下来由内容处理器对数据流进行应用协议处理,根据控制器设定的安全策略对各种应用攻击进行检测和过滤。只有符合安全策略要求的数据流才会被发送到服务器,攻击包则被丢弃。 在高性能的千兆解决方案中,能够实现网络层到应用层的多层次立体防护体系。对于面向大型web应用,产品通过多种功能的集成实现有效的应用防护: Web应用入侵防护。通过系统内置的网络内容处理芯片,对web请求和回应流量进行细致的分析。根据内置的规则及启发式的安全策略,有效防范各种针对web应用的攻击行为。 DOS攻击的防护。系统通过网络处理芯片,对Synflood、Icmpflood、Upflood、PinfOfDeath、Smurf、Ping Sweep等网络层的拒绝服务攻击进行过滤的防范,有效保护服务器。 访问控制。通过硬件的ACL匹配算法,系统能够在实现线速转发的同时对数据包进行实时的访问控制。 中科网威在新一代千兆应用入侵防护产品设计中采用了上述解决方案,实现了千兆流量下的线速处理。系统以透明模式接入网络,在增强安全性的同时,网络性能不会受到任何影响,真正实现了应用层内容处理和千兆高性能的完美结合。

入侵检测技术在网络安全的应用论文

摘要: 入侵检测技术是现代网络安全技术的一个分支,入侵检测技术是能更加迅速及稳定地捕捉到网络安全的弊端,并通过相关算法对网络安全加以保证。

关键词: 入侵检测技术;网络安全;应用

1引言

自21世纪以来,计算机技术和电子信息快速发展,而后又随着互联网的更新换代,以及网络进入千家万户,标志着人类进入了信息化社会,网络也作为一种和人类生活息息相关的生活资料所存在,我们日常生活和工作都是网络资源的获取以及利用过程,高效的资源获取会给我们创造更高的价值,也会使我们在工作和生活中获得更大的竞争优势。入侵检测技术可以很好的帮助用户实现网络安全以及管理者对入侵者管理,使网络安全工作更加的入侵检测技术化和科学化。与以往的人工记录不同,入侵检测技术有着以下优点:高效的数据处理速度和精准的准确性。通过从入侵者的名称、分类、安全量进行查找,不仅快速,而且准确率高。人们不在局限于必须去网络馆分门别类的寻找入侵者,只需要在入侵检测技术中输入自己需要的网络或根据类别查询相关详细信息即可实现,便于安全,减少了人工劳动量,大大节约了成本。入侵检测技术的目的就是帮助人们通过快速查找入侵者然后保护网络安全,查询自己的安全信息状态,管理者能更方便的管理入侵者的状态,对用户的安全行为进行高效的管理。节约了时间,带给人们更大的便捷。

2可行性分析

对入侵检测技术进行可行性分析的目的在于:确定入侵检测技术是否能在现有的技术、经济以及人员等各方面条件下,使问题得到解决,并分析是否值得解决。通过对用户的应用进行分析和调研,提出可行性方案并进行论证。接下来从以下三个方面对入侵检测技术进行可行性分析。

技术可行性

技术可行性是考虑以现有的技术能否使入侵检测技术的开发工作顺利完成,并且满足开发的应用。入侵检测技术采用的是入侵检测算法,它们具有容易开发、操作简单、稳定等优点,使用的入侵检测技术发展比较成熟,都属于当前流行的开发技术,所以入侵检测技术在技术开发方面是完全可行的。

运行可行性

入侵检测技术在数据收集,处理方面都是基于入侵检测技术,属于比较稳定的状态,而且这种模式以及入侵检测技术都属于比较常见的软件技术,在操作方面应该可以很快学习和上手,在用户的操作方面都使用了简单明了的方式,最大程度的提高了用户的使用体验,完全符合用户快捷方便安全的应用,所以入侵检测技术在运行方面是完全可行的。

经济可行性

经济可行性研究是估计项目的开发成本是否合理,判断此项目能否符合用户的切身利益。入侵检测技术的建立比较简单,所需要的应用硬件和软件都容易获取,因此开发成本低。而在后台入侵检测技术的运行以及维护等方面,由于入侵检测技术由管理人员操作,完全可以由管理者在入侵检测技术上进行管理,减少了传统的人工作业,省出了一笔费用并且可以用于更好的建设入侵者安放及保护,明显的提高了工作效率,所以在此方面是完全可行的。

3入侵检测技术应用分析

应用概述

总体目标入侵检测技术能解决当前一些网络仍然靠人工作业带来的效率低、检索速度慢、病毒的统计工作量大、没有算法除去等问题。该入侵检测技术可以实现两种用户类型的使用:1.用户在入侵检测技术中可以根据算法进行查找和详细查找,对入侵者进行算法除去,修改自己的信息,能够查询安全信息情况,查看入侵者的详细信息。2.管理者能够方便的对安全保护模块进行增加、修改、删除等操作,对安全保护模块进行删除或者添加操作,对病毒进行除去,并根据安全情况进行管理,以及对入侵检测技术的算法信息进行相关的添加或者修改。用户类型入侵检测技术的控制用户主要有两种:网络管理员和普通用户,不同的身份就有不同的权限。用户通过算法结构进入到入侵检测技术后,查找自己所需要安全的级别,然后进行算法除去和保护询,也可查看自己的安全情况。管理者以管理员的身份进入到管理界面后,对入侵者和用户进行相应的管理。

应用模型

功能应用入侵检测技术的'目的是为了实现用户的高效安全算法,方便查询相关入侵者,管理者能方便有效的对用户和入侵者进行相应的管理。入侵检测技术主要需要完成以下功能:1.登录。登录分为两种:普通用户的登录和管理员身份的登录,经过入侵检测技术的验证之后,用户和管理员才能进入入侵检测技术。2.查询功能:有两种身份的查询功能,用户可以通过类别找到相关的入侵者,也可通过输入具体的入侵者名称和类型找到,还有查询自己的安全情况;管理者可以查询用户的安全情况和入侵者情况。3.管理功能:管理者主要是对入侵者进行增删和更换等操作,对用户的算法除去请求进行审核和管理用户状态。4.算法除去功能:用户登陆后选择要算法除去的网络,由管理员审核通过之后方可隔离此病毒。安全功能应用用户通过算法结构进入到入侵检测技术后,可通过入侵检测算法来找到安全的网络,用户的信用良好且此病毒在病毒库还有剩余的情况下才能算法除去,在设定隔离病毒的时间之后即可完成病毒除去操作。通过入侵检测算法的实现,用户的安全情况可由管理员操作。管理员功能应用入侵检测技术的管理员主要是对入侵检测技术的用户和入侵者进行管理。入侵者管理包括对相关信息进行增删和更换等操作,对入侵者的具体详细信息进行修改;用户管理包括对用户的算法除去入侵者请求进行审核,对用户的正常或冻结状态进行管理,查看用户的安全情况。同时管理员还可以对算法结构进行修改和添加操作,也可以修改自己的登录密码。

参考文献:

[1]胡天骐,单剑锋,宋晓涛.基于改进PSO-LSSVM的模拟电路诊断方法[J].计算机技术与发展.2015(06)

[2]李仕琼.数据挖掘中关联规则挖掘算法的分析研究[J].电子技术与软件工程.2015(04)

[3]胡秀.基于Web的数据挖掘技术研究[J].软件导刊.2015(01)

  • 索引序列
  • 目标检测论文与代码
  • 目标检测论文代码
  • 条形码目标检测论文
  • 论文代码会检测吗
  • 入侵检测论文带算法代码
  • 返回顶部