• 回答数

    2

  • 浏览数

    142

闪闪惹人爱ii
首页 > 期刊论文 > 关于磷化氢的研究论文

2个回答 默认排序
  • 默认排序
  • 按时间排序

小白淼淼

已采纳

元素名称:磷 原子序数:15 ,第二周期,第15族(VA 氮族) 元素符号:P 元素原子量: 晶体结构:晶胞为简单立方晶胞。 原子体积:(立方厘米/摩尔) 元素在太阳中的含量:(ppm) 7 元素在海水中的含量:(ppm) 太平洋表面 地壳中含量:(ppm) 1000 原子结构 原子半径/Å: 原子体积/cm3/mol: 17 共价半径/Å: 电子构型: 1s2 2s2p6 3s2p3 离子半径/Å: 氧化态: ±3,5,4 晶体结构 白磷是分子晶体,立方晶系,分子间靠范德华力结合,分子式P4,4个磷原子位于四面体的四个顶点。 红磷的结构目前还不十分清楚,有人认为红磷是链状结构。 发现 1669 在德国,汉堡, 由 Hennig Brandt 发明。 来源 以磷酸盐矿存在于自然界。 用途 用于制造磷肥、火柴、烟火、杀虫剂、牙膏和除垢剂。 氧化态: Main P+5 Other P-3, P-2, P0, P+2, P+3 化学键能: (kJ /mol) P-H 328 P-O 407 P=O 560 P-F 490 P-Cl 319 P-P 209 热导率: W/(m·K) (white) 晶胞参数: a = 1145 pm b = pm c = pm α = ° β = ° γ = ° 电离能 (kJ/ mol) M - M+ M+ - M2+ M2+ - M3+ 2912 M3+ - M4+ 4956 M4+ - M5+ 6273 M5+ - M6+ 21268 M6+ - M7+ 25397 M7+ - M8+ 29854 M8+ - M9+ 35867 M9+ - M10+ 40958 磷的同位素: 已发现的共有13种 包括从磷27到磷39 其中只有磷31最为稳定 其它同位素都具有放射性 磷的同素异形体: 黑磷(紫磷、金属磷) 白磷 红磷(赤磷) 元素类型:非金属 元素描述: 单质磷有几种同素异形体。其中,白磷或黄磷是无色或淡黄色的透明结晶固体。密度克/厘米3。熔点℃,沸点280℃,着火点是40℃。放于暗处有磷光发出。有恶臭。剧毒。白磷几乎不溶于水,易溶解与二硫化碳溶剂中.在高压下加热会变为黑磷,其密度克/厘米3,略显金属性。电离能为电子伏特。不溶于普通溶剂中。白磷经放置或在400℃密闭加热数小时可转化为红磷。红磷是红棕色粉末,无毒,密度克/厘米3,熔点59℃,沸点200℃,着火点240℃。不溶于水。在自然界中,磷以磷酸盐的形式存在,是生命体的重要元素。存在于细胞、蛋白质、骨骼和牙齿中。在含磷化合物中,磷原子通过氧原子而和别的原子或基团相联结。 元素来源: 单质磷是由磷酸钙、石英砂和碳粉的混合物在电弧炉中熔烧或蒸馏尿而制得。 元素用途: 白磷用于制造磷酸、燃烧弹和烟雾弹。红磷用于制造农药和安全火柴。 元素辅助资料: 西方化学史的研究者们几乎一致认为,磷是在1669年首先由德国汉堡一位叫汉林·布朗德的人发现的。他是怎么样取得磷的呢?一般只是说他是通过强热蒸发尿取得。他在蒸发尿的过程中,偶然地在曲颈瓶的接受器中发现到一种特殊的白色固体,在黑暗中不断发光,称它为kalte feuer(德文,冷火)。 磷广泛存在于动植物体中,因而它最初从人和动物的尿以及骨骼中取得。这和古代人们从矿物中取得的那些金属元素不同,它是第一个从有机体中取得的元素。最初发现时取得的是白磷,是白色半透明晶体,在空气中缓慢氧化,产生的能量以光的形式放出,因此在暗处发光。当白磷在空气中氧化到表面积聚的能量使温度达到40℃时,便达到磷的燃点而自燃。所以白磷曾在19世纪早期被用于火柴的制作中,但由于当时白磷的产量很少而且白磷有剧毒,使用白磷制成的火柴极易着火,效果倒是很好,可是不安全,所以很快就不再使用白磷制造火柴。到1845年,奥地利化学家施勒特尔发现了红磷,确定白磷和红磷是同素异形体。由于红磷无毒,在240℃左右着火,受热后能转变成白磷而燃烧,于是红磷成为制造火柴的原料,一直沿用至今。 是拉瓦锡首先把磷列入化学元素的行列。他燃烧了磷和其他物质,确定了空气的组成成分。磷的发现促进了人们对空气的认识。 磷的拉丁名称phosphorum有希腊文phos(光)和phero(携带)组成,也就是“发光物”的意思,元素符号是P。 另外,我们常说的的“鬼火”是P2H4气体在空气中自动燃烧的现象。 磷,原子序数15,原子量,元素名来自希腊文,原意是“发光物”。1669年德国科学家布兰德从尿中制得。磷在地壳中的含量为。自然界中含磷的矿物有磷酸钙、磷辉石等,磷还存在于细胞、蛋白质、骨骼中。天然的磷有一种稳定同位素:磷31。 磷有白磷、红磷、黑磷三种同素异构体。白磷又叫黄磷为白色至黄色蜡性固体,熔点°C,沸点280°C,密度克/厘米³。白磷活性很高,必须储存在水里,人吸入克白磷就会中毒死亡。白磷在没有空气的条件下,加热到260°C或在光照下就会转变成红磷,而红磷在加热到416°C变成蒸汽之后冷凝就会变成白磷。红磷无毒,加热到240°C以上才着火。在高压下,白磷可转变为黑磷,它具有层状网络结构,能导电,是磷的同素异形体中最稳定的。 如果氧气不足,在潮湿情况下,白磷氧化很慢,并伴随有磷光现象。白磷可溶于热的浓碱溶液,生成磷化氢和次磷酸二氢盐;干燥的氯气与过量的磷反应生成三氯化磷,过量的氯气与磷反应生成五氯化磷。磷在充足的空气中燃烧可生成五氧化二磷,如果空气不足则生成三氧化二磷。 约三分之二的磷用于磷肥。磷还用于制造磷酸、烟火、燃烧弹、杀虫剂等。三聚磷酸盐用于合成洗涤剂。 磷的简介 磷在生物圈内的分布很广泛,地壳含量丰富列前10位,在海水中浓度属第2类。广泛存在于动、植物组织中,也是人体含量较多的元素之一,稍次于钙排列为第六位。约占人体重的1%,成人体内约含有600-900g的磷。体内磷的集中于骨和牙,其余散在分布于全身各组织及体液中,其中一半存在于肌肉组织。它不但构成人体成分,且参与生命活动中非常重要的代谢过程,是机体很重要的一种元素。 磷的发现 关于磷元素的发现,还得从欧洲中世纪的炼金术说起。那时候,盛行着炼金术,据说只要找到一种聪明人的石头——哲人石,便可以点石成金,让普通的铅、铁变成贵重的黄金。炼金术家仿佛疯子一般,采用稀奇古怪的器皿和物质,在幽暗的小屋里,口中念着咒语,在炉火里炼,在大缸中搅,昭思慕想寻觅点石成金的哲人石。1669年,德国汉堡一位叫布朗特(Brand H)的商人在强热蒸发人尿的过程中,他没有制得黄金,却意外地得到一种像白蜡一样的物质,在黑暗的小屋里闪闪发光。这从未见过的白蜡模样的东西,虽不是布朗特梦寐以求的黄金,可那神奇的蓝绿色的火光却令他兴奋得手舞足蹈。他发现这种绿火不发热,不引燃其它物质,是一种冷光。于是,他就以“冷光”的意思命名这种新发现的物质为“磷”。磷的拉丁文名称Phosphorum就是“冷光”之意,它的化学符号是P,它的英文名称是Phosphorus。 食物来源 磷在食物中分布很广,无论动物性食物或食物性食物,在其细胞中,都含有丰富的磷,动物的乳汁中也含有磷,所以磷是与蛋白质并存的,瘦肉、蛋、奶、动物的肝、肾含量都很高,海带、紫菜、芝麻酱、花生、干豆类、坚果粗粮含磷也较丰富。但粮谷中的磷为植酸磷,不经过加工处理,吸收利用率低。 代谢吸收 磷的吸收部位在小肠,其中以十二指肠及空肠部位吸收最快,回肠较差。磷的吸收分为通过载体需能的主动吸收和扩散被动吸收两种机制。磷的代谢过程与钙相似,体内的磷平衡取决于体内和体外环境之间磷的交换。磷的主要排泄途径是经肾脏。未经肠道吸收的磷从粪便排出,这部分平均约占机体每日摄磷量的30%,其余70%经由肾以可溶性磷酸盐形式排出,少量也可由汗液排出。 生理功能 1.构成骨骼和牙齿。 2.磷酸组成生命的重要物质,促进成长及身体组织器官的修复。 3.参与代谢过程,协助脂肪和淀粉的代谢,供给能量与活力。 4.参与酸碱平衡的调节。 需要人群 甲状腺功能亢进的人需要补充磷质。 生理需要 成人适宜摄入量为700mg/d。 过量表现 骨质疏松易碎、牙齿蛀蚀、各种钙缺乏症状日益明显、精神不振甚至崩溃,破坏其他矿物质平衡。高磷血症。 缺乏症 1.磷质缺乏会导致佝偻病和牙龈溢脓等疾患。 2.缺磷会使人虚弱,全身疲劳,肌肉酸痛,食欲不振。 摄取提示 因为人类食物中含有丰富的磷,故人类营养性的磷缺乏很少见,中国人不缺乏,已经过量并干扰钙的吸收。 物理性质 状态:软的白色蜡状固体,棕红色粉末或黑色固体。 熔 点(℃): 沸 点(℃): 280 密度(g/cc,300K): 比 热/J/gK : 蒸发热/KJ/mol : 熔化热/KJ/mol: 导电率/106/cm : 导热系数/W/cmK: 地质数据 丰 度 滞留时间/年: 100000 太阳(相对于 H=1×1012): × 105 海水中/. 地壳/.: 1000 大西洋表面: 太平洋表面: 大西洋深处: 太平洋深处: 生物数据 人体中含量 肝/.: 3 - 器官中: 肌肉/.: 3000 - 8500 血/mg dm-3 : 345 日摄入量/mg: 900 - 19000 骨/.: 67000 - 71000 人(70Kg)均体内总量/g: 780

289 评论

腊肉炒豆丝

为何人类永远无法登陆金星?

我觉得这个问题不成立。人类迄今没有登陆金星,主要基于两点:一是金星环境条件太过恶劣,在金星上无人探测登陆都很难,更别说载人登陆了;二是载人登陆金星去干什么呢?登陆金星的投入产出比根本无法成正比,何必劳民伤财呢?

现在人类无法在金星登陆,并不等于永远做不到。我认为如有需要,未来人类在金星上登陆并非不可能。

在这方面成就最为卓著的是前苏联。从1961年开始,苏联就不断向金星发射探测器,先先后后大概发射有20来艘。最早发射的巨人号金星探测器失败了,后来又不断地发射了金星1号到金星16号探测器,还发射了织女星1号、2号。这些探测器大部分发射成功,有的飞掠金星,有的在轨环绕金星,有的释放了着陆器,取得了大量金星环境数据。

美国紧跟在苏联之后,同样连续对金星开展探测活动。先后发射了水手号系列、先驱号系列、麦哲伦号等探测器,也是绝大多数成功,其中也有飞掠、环绕、硬着陆、软着陆,取得了不菲的成就。

两个航天大国的探测活动主要发生在上世纪,本世纪欧洲航天局2005年发射了金星快车号探测器,日本2010年发射了拂晓号探测器,都成功到达了金星,以轨道器的方式进行探测。

美国和俄罗斯现在又提出了名为“韦内拉-D”的太空合作任务,计划在2025年左右发射探测器到金星,并释放登陆器登陆金星,地表工作时间要超过以往的探测器,达到数小时之久,以便对金星远古气候和是否具备孕育生命条件做更详尽的分析。

迄今,人类派往金星的探测器已经达到40余艘,据不完全统计,其中飞掠器有11艘,轨道器有9艘,硬着陆(坠落)探测有6艘,软着陆探测有10艘,气球探测有2艘,还有若干失败的探测器。

在金星表面软着陆工作时间最长的是前苏联的金星11号、12号,都达到110分钟。人类通过这些探测,对金星虽不能说是了如指掌,但大致基本情况还是掌握的。

金星有浓密的大气包裹,主要成分是二氧化碳,占总比例的96%以上;其次是氮,占3%以上;其余不到1%的气体有微量的水汽、二氧化硫、氧气、一氧化碳等。由于大气密度比地球大100倍,因此金星表面气压达到地球海平面压力的90倍以上。

二氧化碳是温室气体的主要组成,因此在如此浓密的温室气体包裹下,金星表面温度达到460~480 ,极限温度可能高达500 。金星表面没有水,但金星也有云也有雨,浓密橙黄色的云里面都是硫酸和硫粒子,因此落下来的雨不是水,而是浓硫酸。这就是探测器即便做得再坚固,设法做得更耐腐蚀和高温,也无法在地表坚持很久的原因。

金星上有风,有电闪雷鸣,闪电次数和强度都大于地球,每分钟有几十次之多,探测器记录到的一次闪电竟长达15分钟。

通过上世纪对金星的频繁探测,人们了解了金星地狱般的极端环境,那里可能存在金星人的幻想破灭了,因此渐渐对金星心灰意冷了,基本对金星存在生命的期望判了死刑。

但一项新的发现,让人们对金星又燃起了热情。

2020年9月14日,《自然天文学》杂志披露了一项研究,金星厚厚的硫酸云层中,发现了磷化氢的化学特征。发表这项研究论文的通讯作者是英国卡迪夫大学简·格里夫斯(Jane Greaves)和他的同事,他们在2017年和2019年,通过用麦克斯韦望远镜和阿塔卡马大型毫米/亚毫米波阵观测金星,探测到了一个只属于磷化氢的光谱特征,并估算出金星云层中磷化氢的丰度为20ppb,也就是十亿分之一。

磷化氢是一种有毒气体,这种闻起来有大蒜味或者腐鱼味的气体,在地球上一般与厌氧微生物有关,因此是一种生命的信号。那么金星上这种气体的出现,是生命的象征吗?目前无法确定。

上述团队还考察了产生磷化氢的各种不同方式,包括来自金星地表、微陨星、闪电、云层内部化学反应都有可能生成磷化氢。但金星上磷化氢浓度虽然很稀薄,总体量还是很庞大的,这种量光靠自然化学反应很难解释,由此人们对金星可能存在生命又充满了兴趣。

当然,即便真的存在生命,也只是低级的微生物生命。美俄的“韦内拉-D”太空合作项目,或许就是为了去解开这个谜团。

从前面介绍的探测器进行表面软着陆,最长坚持的工作时间只有不到2个小时,就可以看出,机器都无法在金星长久坚持,人类这种娇贵的肉体要登陆金星,当然难度非常大。但难度大并非不可能,既然探测器能够在那里坚持一段时间,那么就为未来人类在金星登陆留下了可能。

不管是机器还是人类,要登陆金星,首先必须解决三个大问题:一是耐高温,二是耐腐蚀,三是耐高压。这三大问题一个一个突破是比较容易的,但要综合解决,还要为人类登陆做好生存保障就比较难了。

比如耐高温,消防队员们进入的火场就需要耐千度高温的防护服,碳纤维可以耐受高温,但这些又要耐高压就很难;深潜器可以潜到万米深的海沟,那里的压力达到海平面1000倍以上,金星上只有90多倍,因此制造出耐高压的着陆器并不难,难的是还能够耐浓硫酸吗?陶瓷、玻璃和特殊橡胶制品可以耐浓硫酸腐蚀,但怎么如何做到耐压和个高温又是个难题。

目前宇航服能够耐受零下180 低温和150 高温;由于可采用聚四氟乙烯的强化玻璃纤维制成,因此具有较强的抗腐蚀性。但现在国际空间站任务,或者月球和火星任务应对的主要是低气压环境,因此舱外宇航服主要是为应对低压而设计。显然,现在的宇航服是无法在金星上保障宇航员生命的。

(上面2图:穿上这种潜水服可以深潜330米,相当33个大气压)

那么以后能设计出适合金星表面活动的飞船或宇航服吗?我想是有可能的。现在人类能够深潜到万米海沟,就能够创造出抵御金星表面压力的着陆器,防高温和防腐蚀的材料也都掌握了,关键是如何把这些材料和技术柔和在一起,制造出既能够防高温,又能够耐受高压和强腐蚀的设施。

随着人类未来的 科技 进步,真到了人类对金星探测或开发有迫切需求的时候,保障人类在金星工作生存的装置就会制造出来。不信?我们可以拭目以待,这个时间不需要很长。

人类永远无法登陆金星?前苏联人发射的探测器已经做到了。 只是对于现在人类的 科技 水平而言,金星的地理环境十分恶劣,难以登陆。 金星的环境几乎能够运用地狱来形容,人类登入金星无疑是登入地狱一般,前苏联登入金星的探测器工作时间只是维持不到2个小时就报废了。

金星作为离地球最近的行星,(火星有时候会更近)。近些年来,人类对附近地球的几个行星燃起了非常大的热心,登入月球,登入火星等等,但是作为与地球附近的另一颗星球,人类却对它热心大减。为何人类只提登入月球、火星而不想登入金星呢?

以下是金星和火星的基本数据:

表面温度,摄氏度(最低/平均/最高):火星:-87/-63/-5;金星: 465/475/485

可见火 星起码还有可能生存,金星干脆不适合人类居住 ,另外火星局部地区的温度在夏天可以到十几至二十几度。

自转周期:火星:小时;金星:243天

火星一天跟地球差不多,金星一天就太长了,另外金星没有四季变化,火星有。

二者大气成份差不多,但 金星上有时速为每小时350公里的飓风,大气层中有大量的硫酸,连探测器都坚持不了多久,更别说人类了 。

金星表面大气压是地球的92倍 ,火星气压只有不足地球的1%,气压太大就意味着登陆以后非常困难,气压低可以搭棚子住人,但气压太高就比较困难了。

以上几条就可以说明火星比金星更适合人类居住了。金星仅仅只是个头上跟地球差不多而已。人类的太空探测很大程度上是为了寻找人类的第二家园,而金星显然不是。所以人类登陆金星的热情并没多少,也没有登陆火星更有价值。

因为有新的线索暗示金星可能曾经是一颗云层密布的海洋世界,基本上不具备在金星生存的条件。

根据我们从课本上获取的知识,金星是一处闷热荒凉的“废土”。其表面温度超过了 800 ( 400 ),如果你想要在太阳系内寻找哪里有水,它绝对是最后一个地方。 然而巴黎萨克莱大学的一组科学家们,却在通过计算机模型来模拟金星在各种条件下的进化过程之后,发现了新的线索。 得益于极低的转速(约为地球的 1/116)、以及当前这颗星球上留存的足够多的二氧化碳,模型揭示金星可能曾经拥有过一个广阔而较浅的海洋。

(上图来自:NASA)

听起来似乎很不可思议,但这其实还有另一个前提 —— 如果金星有足够厚的云层来帮地表显著降温的话。

新研究基于此前关于岩石行星形成最初的数据和模型而打造,先是极端的高温和构造活动,然后观察它们开始冷却后最终会发生什么。

科学家们猜测金星与地球的形成方式类似,模拟结果显示 —— 金星只需要大约 30% 的地球海洋水分,就能够给它的表面披上一层稀薄的海洋层。

需要指出的是,研究人员们没有将他们所有的筹码都押在这个理论上,仅仅是暗示我们的行星邻居“在多云的天空的支持下,还是有可能存在过液态水的”。

此外,我们对于金星地下有什么也还不清楚。如果俄罗斯的一个金星任务可在 2024 年如愿落地的话,我们或许不用等待太久就等得到答案。

98 评论

相关问答

  • 磷化促进剂研究论文

    这个问题问的相当模糊,只能说磷化促进剂是磷化添加剂的关键成分,类似酶的作用,降低反应温度,提升反应速度,优化反应条件,磷化剂有很多种,常见的有亚硝酸盐型、氧化型

    *和氣生財*** 3人参与回答 2023-12-07
  • 关于储氢材料的毕业论文

    镧镍合金能大量吸收H2形成金属氢化物,可作储氢材料。20世纪70年代以来,在氢能研究中发现某些过渡金属合金具有可逆吸放氢的功能,如镧镍金属间化合物:LaNi5+

    吃要吃好的 3人参与回答 2023-12-08
  • 论文磷化氢气体检测管

    不会,因为金星上没有水,也没有氧气,不符合生命出现的基本条件。所以,金星上不会有生物生存。

    米果janicefeng 5人参与回答 2023-12-10
  • 焦化硫化氢超标措施研究论文

    最根本的方法是将硫化氢去除。如果小范围少量超标可以加强通风。务必注意佩戴报警器,防毒面具或供气式呼吸器。

    ~Miss.Q~ 4人参与回答 2023-12-11
  • 析氢腐蚀的有关研究论文

    6CH3COOH +2Al ==2(CH3COO)3Al +3H2 负极 :Al -3e ==Al3+ 正极:O2 +2H2O +4e ==4OH- 总反

    德润天成 4人参与回答 2023-12-07