• 回答数

    4

  • 浏览数

    135

紫薯飘香
首页 > 期刊论文 > 碳化硅发展规划研究论文

4个回答 默认排序
  • 默认排序
  • 按时间排序

大大大小精灵

已采纳

从原始社会的石器时代到今日的信息时代,人类社会的发展史无疑也是一部材料的发展变革史。上世纪初发展起来的硅材料也应运成为当代信息产业发展的基石,而正是硅材料芯片造就了独占世界信息产业鳌头的美国硅谷高科技产业集群,吸引了苹果、英特尔、谷歌等世界顶级半导体产业巨头聚集此处。目前95%以上的半导体器件和99%以上的集成电路都是由硅材料制作。经过近百年的发展,性能优势已得到充分发挥的硅材料逐渐无法满足高温、高压、抗辐射等方面要求,半导体行业急需适应现代产业需求的新型材料。而经过100多年的认知和20多年的研发后,碳化硅材料已被业界认为是继硅、砷化镓之后发展最为成熟的第三代半导体材料,其优越的半导体性能远超硅材料。碳化硅材料可广泛应用于电力电子器件(二极管、场效应管、换能器、马达驱动器、输出整流器)、射频器件(宽带通讯、有源相控阵雷达)、光电子器件(大功率发光二极管)等领域,与大众生活息息相关,具有重要的战略地位,业界广泛认为,宽禁带半导体碳化硅材料的发展将引领世界第三次半导体产业革命。据统计,如果使用半导体碳化硅材料LED路灯替代高压钠灯,以1000支为单位,一年可节省人民币万元;我国照明用电每年在3000亿度以上,如果用半导体碳化硅LED取代全部白炽灯或部分取代荧光灯,可节省三分之一的照明用电,即1000亿千瓦时,这也就意味着节省了相当于总投资超过2000亿元人民币的三峡工程全年的发电量。这对于能源供应紧张的我国来说,具有重要的战略意义。根据新能源产业技术综合开发研究机构的估算结果,到2030年,随着半导体碳化硅材料的普及,如将内置半导体器件全部由碳化硅材料制作,与传统的硅材料器件相比,电力损耗下降幅度最高可达47%。综上可见,解决未来新能源发展问题的一个重要途径就是更为广泛地推广使用半导体碳化硅材料,世界正在迎来由半导体碳化硅材料引领的新时代。

242 评论

一首ciao情歌

碳化硅耐热,耐高温。 现在国产大飞机不是叫嚷着要用碳化硅么。一般都是纳米级高米碳化硅了

117 评论

tuzhiluobo

本文说说碳化硅的那些事。 碳化硅材料的发展 历史 比较久远,1824年瑞典化学家Berzelius在人工生长金刚石的过程中发现了碳化硅SiC。1885年Acheson用焦炭和硅石的混合物以及一定量氯化钠在熔炉中高温加热,制备出了小尺寸碳化硅晶体,但存在大量缺陷。 碳化硅材料的应用始于20世纪初。1907年美国Round制造出第一个碳化硅发光二极管;1920年碳化硅单晶作为探测器用于早期的无线电接收机上。不过因为单晶生长难度较大,碳化硅在很长一段时间内没有很好的应用,到了1955年飞利浦发明了一种采用升华法制备高质量碳化硅的新方法即Lely法,碳化硅材料再次焕发生机。 七八十年代碳化硅的制备及应用实现重大突破。1978年前苏联科学家Tairov等人改良了Lely法,可以获得较大尺寸的碳化硅晶体。1979年第一个碳化硅发光二极管问世;1981年Matsunami发明了在硅衬底上生长碳化硅单晶的方法;1991年美国公司Cree采用升华法生长出碳化硅晶片并实现产业化。 目前碳化硅及其应用呈现出以下几个特点:第一是晶圆尺寸实现大尺寸化,Cree的6英寸碳化硅晶片实现产业化,并积极推进8英寸晶片的产业化。第二晶体缺陷密度不断下降,比如4英寸碳化硅单晶微管密度下降至以下,穿透性螺位错和基平面位错密度控制在10^2cm^-2。第三碳化硅基功率器件不断涌现,除了特斯拉和蔚来 汽车 在电动车上使用了SiC-MOSFET,还发展出了SBD、HMET等器件。当然第四点相比硅基半导体的奋起直追,中国在碳化硅第三代半导体上与国外发展水平基本持平,衬底方面天科合达等实现了4英寸的产业化和6英寸的技术突破,并积极向8英寸推进;山东天岳等公司拥有相应的外延生长技术。在器件制造上扬杰 科技 、士兰微等也积极推进碳化硅基功率半导体的产业化。 碳化硅材料的特性之一就是拥有超过200多种晶体结构,每一种结构对应的电学性能等存在一定差异。目前主要是六角4H、六角6H和菱方15R等,其中4H和6H实现产业化: 总体上相比氮化镓和硅等,碳化硅材料拥有最高的热导率、较高的带隙、电子迁移率和饱和电子速率等,可以制造能在高温、高压、更高功率和更高工作频率等情形下的器件。 在具体应用方面,碳化硅主要实现了以下应用:第一是碳化硅为衬底制备高亮度和超高亮度蓝绿InGaN铟镓氮LED;第二是实现了KV级高压MOSFET器件制造,比如罗姆半导体生产的1200V、35A的SiC-MOSFET;第三是用于300V到1200V甚至3300V等更高压的碳化硅基肖特基势垒管SBD的制造;第四是在半绝缘碳化硅衬底上制备氮化镓、铝镓氮AlGaN高电子迁移率晶体管HEMT;第五是在SiC-IGBT上有所突破,实现了P沟道IGBT的制造。 在碳化硅材料制备上,1955年飞利浦提出了Lely法,也称升华法。Lely法的基本原理是:在空心圆筒状石墨坩埚中(最外层石墨坩埚,内置多孔石墨环),将具有工业级纯度的碳化硅粉料投入坩埚与多孔石墨环之间加热到2500度,碳化硅在此温度下分解与升华,产生一系列气相物质比如硅单晶、Si2C和SiC2等。由于坩埚内壁与多孔石墨环之间存在温度梯度,这些气相物质在多孔石墨环内壁随机生成晶核。总的来说Lely法产率低,晶核难以控制,而且会形成不同结构,尺寸也有限制。 目前碳化硅材料制备多采用改进Lely法、高温CVD法和溶液法,其中以改进Lely法为主流。 改进Lely法也称物理气相传输法PVT,是前苏联科学家Tairov和Tsvetkov于1978年提出的。改进Lely法使用了工作频率10-100KHz的中频感应加热单晶炉,在生长过程中加入籽晶用于控制晶核和晶向: 在改进Lely法中碳化硅单晶生长主要经历低温高真空阶段、高压升温阶段、高压保温成核阶段、降压生长阶段、恒压恒温生长阶段和升压冷却阶段等六个阶段。当然在具体生长过程中,为了制备符合要求的碳化硅单晶,降低微管、位错密度等缺陷,会对籽晶的籽晶面等适当微调,在此不再展开。 碳化硅单晶有绝缘型、半绝缘型之分,按照掺杂类型还有P型掺杂和N型掺杂之分,无形中提升了碳化硅的制备难度。比如制备功率器件的是N型4H-SiC衬底,器件要求衬底电阻率小于20毫欧姆*厘米,制备低电阻率的N型4H-SiC常用高浓度N掺杂,但随着掺杂浓度提高,单晶中位错密度会升高。Kato等人提出的氮、铝共掺杂技术制备出了低电阻率的N型4H-SiC单晶,所用的单晶炉有两套加热系统,其中上部加热系统与普通Lely法相同,主要对SiC原料加热并为单晶生长提供合适的温度;下部加热系统为铝原料加热。这样通过对生长压力、温度等参数调整,可以实现有效的氮、铝共掺杂。 碳化硅的外延主要采用化学气相沉积CVD,以后再说。

296 评论

贝贝克2011

碳化硅单晶体可以制作晶体管(二极管和三极管)。因为碳化硅的禁带宽度大,故做成的器件能耐高压和高温,是一种很好的大功率器件的材料。缺点是其单晶的制造比较困难,器件工艺也不成熟,而且在器件中的欧姆接触难以做好(因为是宽禁带半导体,重掺杂难以起作用)。碳化硅的硬度很大(仅次于金刚石),可用作为磨料。碳化硅的熔点高,能够耐高温(比一般的陶瓷还好),所以作为高温保护膜是较好的。碳化硅耐热,耐高温。 现在国产大飞机不是叫嚷着要用碳化硅么。一般都是纳米级高米碳化硅了

203 评论

相关问答

  • 产业发展空间布局规划研究论文

    加快市工业园区建设的思考论文 园区建设是加快我市新型工业化、城市化、现代化建设的重要途径,也是实施市委市政府提出的“以旅游经济为中心、工业经济为支撑”发展战略的

    gangyaya037 4人参与回答 2023-12-09
  • 青海旅游发展规划研究论文

    第一章绪论1.1研究背景和意义1.2研究内容和基本思路1.3相关理论介绍第二章青海省的旅游资源2.1青海旅游资源的特点2.2青海旅游资源的评价2.3青海省旅游资

    多收了三五斗啊 4人参与回答 2023-12-12
  • 研究生论文发表规划

    作为一名研究生,到大学毕业的时候要面临的一个问题就是发表论文。研究生论文发表,怎么符合要求,成为了很多人都非常关心的一个问题,其实现在发表论文的方法,相对来讲是

    沙发里的土豆 5人参与回答 2023-12-09
  • 低碳城镇化发展策略研究论文

    低碳环保的城市其实就是一种比较复杂的低碳经济的发展方式,这是我为大家整理的低碳生活的科技论文,仅供参考!低碳生活的科技论文篇一 探讨低碳环保城市规划

    脉脉含情阿 3人参与回答 2023-12-08
  • 低碳国土空间规划体系研究论文

    低碳经济与低碳生活论文摘要:阐述了低碳经济与低碳生活的概念和两者之间的关系。“低碳经济”是国际社会应对人类大量消耗化石能源、大量排放二氧化碳引起全球气候灾害性变

    明亮宜家 2人参与回答 2023-12-06