• 回答数

    7

  • 浏览数

    160

武汉王钦
首页 > 期刊论文 > 电气自动化毕业论文英语和译文

7个回答 默认排序
  • 默认排序
  • 按时间排序

爱啃狼的木头

已采纳

以后希望到我毕业的时候能跟你要 哈哈

265 评论

天吃星星蒂小娜

1)机械技术机械技术是机电一体化的基础,机械技术的着眼点在于如何与机电一体化技术相适应,利用其它高、新技术来更新概念,实现结构上、材料上、性能上的变更,满足减小重量、缩小体积、提高精度、提高刚度及改善性能的要求。在机电一体化系统制造过程中,经典的机械理论与工艺应借助于计算机辅助技术,同时采用人工智能与专家系统等,形成新一代的机械制造技术。(2)计算机与信息技术其中信息交换、存取、运算、判断与决策、人工智能技术、专家系统技术、神经网络技术均属于计算机信息处理技术。(3)系统技术系统技术即以整体的概念组织应用各种相关技术,从全局角度和系统目标出发,将总体分解成相互关联的若干功能单元,接口技术是系统技术中一个重要方面,它是实现系统各部分有机连接的保证。(4)自动控制技术其范围很广,在控制理论指导下,进行系统设计,设计后的系统仿真,现场调试,控制技术包括如高精度定位控制、速度控制、自适应控制、自诊断校正、补偿、再现、检索等。(5)传感检测技术传感检测技术是系统的感受器官,是实现自动控制、自动调节的关键环节。其功能越强,系统的自动化程序就越高。现代工程要求传感器能快速、精确地获取信息并能经受严酷环境的考验,它是机电一体化系统达到高水平的保证。(6)伺服传动技术包括电动、气动、液压等各种类型的传动装置,伺服系统是实现电信号到机械动作的转换装置与部件、对系统的动态性能、控制质量和功能有决定性的影响。机电一体化系统组成1.机械本体机械本体包括机架、机械连接、机械传动等,它是机电一体化的基础,起着支撑系统中其他功能单元、传递运动和动力的作用。与纯粹的机械产品相比,机电一体化系统的技术性能得到提高、功能得到增强,这就要求机械本体在机械结构、材料、加工工艺性以及几何尺寸等方面能够与之相适应,具有高效、多功能、可靠和节能、小型、轻量、美观的特点。

122 评论

kellycai4141

我是电气自动化的,有专业英语!这个给你看看希望能帮到你!电力和电路的来源One of them is the electric cell, or battery, which generates electricity by chemical action. The other device called generator makes use of light, heat, and mechanical motion to produce electric energy. Now, more than 95 percent of the world's electric energy is produced by generators其中之一是由化学作用产生电力的电池的电的单元格。调用生成器使其他设备使用的光、 热和机械的运动来产生电能。现在,世界电力能源的 95%以上是由发电机产生的An electric current is a constant flow of electrons through a conductor. The reason why an electric current flows through conductors is much like reason why water flows through mains. 源源不断地通过导体电子的电流。为什么电流流经导线的原因很多像为什么水流通过水管的原因。智能机器人An entirely new phase in robotic applications has been opened with the development of “intelligent robots”. An intelligent robot is basically one that must be capable of sensing its surroundings and possess intelligence enough to respond to a changing environment in much the same way as we do. Such an ability requires the direct application of sensory perception and artificial intelligence. Much of research in robotics has been and is still concerned with how to equip robots with visual sensors-eyes and tactile sensors-the “fingers”. Artificial intelligence will enable the robot to respond to and adapt to changes in its tasks and in its environment, and to reason and make decisions in reaction to those changes.一个全新的阶段,在机器人的应用程序中已打开的"智能机器人"发展。一个智能机器人基本上是一种必须能够感知周围的环境并拥有足够的智能响应不断变化的环境一样,我们做的。这种能力需要感官知觉与人工智能技术直接的应用。多机器人的研究一直,仍然关注如何使机器人视觉传感器眼睛和触觉传感器在"手指"。人工智能技术将使机器人响应和适应其任务和它的环境变化的原因和反应对这些变化做出的决定。Integrated circuit集成电路The invention of IC is a great revolution in the electronic industry. Sharp size, weight reductions are possible with these techniques; and more importantly, high reliability, excellent functional performance, now cost and low power dissipation can be achieved. ICs are widely used in electronic industry.集成电路的发明是大革命在电子工业中。锋利的大小重量减少有可能与这些技术 ;和更重要的是现在成本的优良性能的高可靠性和可以实现低功耗。集成电路 广泛应用于电子行业。The electrically interconnected components that make up an IC are called integrated elements. If an integrated circuit includes only one type of components, such as only diodes or resistors, it is said to be an assembly or set of components.芯片组成的电互连的组件称为集成的元素。如果一个集成电路包含一种类型如仅二极管或电阻的组件的据说是一个程序集或一组组件。Digital integrated circuit can contain anything form a few thousand to millions of logic gates, flip-flops, multiplexers, and other circuits in a few square millimeters. These digital ICs, typically microprocessors, digital signal processing, and micro controllers work using binary mathematics to process “one” and “zero” signals.数字集成电路可以包含任何内容形成数千数以百万计的逻辑门、 触发器、 多路复用器和其他线路的几个平方毫米。这些数字集成电路、 通常微处理器、 数字信号处理和微控制器工作使用二进制的数学处理"1"和"零"的信号。SIM Card Want to use your GSM service in the United States? Bring along this tiny piece of you’re traveling to the United States, be sure to take your SIM card with you. Because your GSM service can work in the . just like it dose at you have to do is to rent the right frequency handset for use in the States. (If you don't have your SIM card with you, relax. We'll provide a handset with the SIM card included.)As in other countries, you'll find using GSM in the . is often less expensive than calling cards, pay phones and hotel phones. And, of course, far more convenientAll you have to do to enjoy GSM convenience is call one of the numbers listed below. We'll provide the handset to rent within 24 hours, or, in some cities, the very same rent a handset call:In France 0800 508 968In Italy 0800 790948In In 1877 OMNI-2-GOAll other countries +44 SIM 卡要使用您的 GSM 服务在美国吗?携带此小件行李。如果您正在前往美国,一定要带上您的 SIM 卡。因为您的 GSM 服务可以像工作在美国它剂量在家里。你要做的是租住在美国使用合适的频率手机。(如果您不具有您的 SIM 卡,放松。我们会提供一个手机 SIM 卡包括。)在其他的国家一样,你会发现使用 GSM 在美国通常是少比电话卡、 电话和酒店电话。的课程,更方便你要享受 GSM 方便做的只是调用下面列出的数字之一。我们会提供租 24 小时,或在一些的城市非常同一天手机。租手机的调用:在法国 0800年 508 968在意大利 0800年 790948在英国 0800年 328 5396在美国 1877年转到 2-OMNI所有其他国家 + 44 Computer Control TechnologyA computer is a fast and accurate symbol manipulating system that is organized to accept, store ,and process data and produce output results under the direction of stored program of instructions. This section explains why a computer is a system and how a computer system is organized. Key elements in a computer system include input, processing, and output devices. Let's examine each computer of the more detail.计算机是一种快速而又准确的操纵系统,为了接受、 存储,和处理的数据并产生输出结果存储程序的指导下的指令的快速、 准确的符号。此部分说明为什么一台计算机是一个系统和计算机系统的组织方式。计算机系统中的关键元素包括输入、 处理,和输出设备。让我们看一下每台计算机的更多详细信息。Central Processing Unit the heart of any computer system is the central processing unit (CPU). There is three main sections found in the CPU of a typical personal computer system: the primary storage section, the arithmetic-logic section, and the control section. Bit these three sections aren’t unique to personal computers. They are found in CPUs of all sizes.中央处理器是任何计算机系统的核心是中央处理单元 (CPU)。有三个主要部分,在典型的个人计算机系统的 CPU 中找到: 主存储部分、 算术逻辑部分和控制部分。位这三个部分不是唯一的个人计算机。他们有各种规模的CPU。Output Devices Like input units, output devices are instruments of interpretation and communication between humans and computer systems of all sizes. These devices take output results from the CPU in machine-coded form and convert them into a form that can be used (a) by people (., a printed and/or displayed report) or (b) as machine input in another processing cycle.输出设备 如同输入设备,输出设备是文书的解释和人与各种规模的计算机系统之间的 通信 。这些设备从CPU的输出结果以机编码的窗体,并将它们转换为一个窗体,可以在另一个处理周期中使用(a)的(例如,印刷和/或显示报告),或(b作为输入机。In personal computer systems, display screen and desktop printers are popular output devices. Larger and faster printers, many online workstations, and magnetic tape drives are commonly found in larger systems.在个人计算机显示屏幕和桌面打印机是受欢迎的输出设备。更大、 更快的打印机、 很多的在线工作站和磁带驱动器通常有较大的系统。The operating system must ensure correct operation of the computer system. To prevent user programs from interfering with the proper operation of the system, the hardware was modified to create two modes: user mode and monitor mode. Various instructions (such as I/O instructions and halt instructions) are privileged and can only be execute in monitor mode. The memory in which the monitor resides must also be protected from modification by the user. A timer prevents infinite loops. Once these changes (dual mode, privileged instructions, memory protection, timer interrupt) have been made to the basic computer architecture, it is possible to write a correct operating system.操作系统必须确保计算机系统的正确操作。防止在干扰系统的正确操作用户程序修改硬件创建两种模式: 用户模式和显示器模式。(例如,I/O 指令和停止指令) 的各项说明享有特权,并且只能在显示器模式下执行。显示器所驻留的内存也必须由用户修改保护。计时器可防止无限循环。一旦到基本的计算机体系结构做了这些更改 (双模式、 特权的指令、 内存保护、 计时器中断),就可以编写正确的操作系统。Completes with the digital signal to the digital quantity carries on the arithmetic operation and the logic operation circuit is called the digital circuit, or number system. Because it has the logic operation and the logical processing function, therefore calls the numeral logic circuit.完成与数字信号,数字的数量进行算术运算和逻辑操作电路被称为数字电路或数字系统。因为它有逻辑操作和逻辑处理功能,因此呼吁数字逻辑电路。Karnaugh Map consists of one square for each possible minterm in a function. The method to write the Karnaugh Map: When we plot a function, we put a 1 in each square corresponding to a minterm that is included in the function, and put a 0 in or leave blank those squares not included in the function.卡诺图包含每个可能的最小项函数中的一方。写入卡诺图的方法:当我们绘制一个函数时,我们放在一个最小项的函数中包含的每个平方米对应的 1 和放一个0或保留为空函数中不包括这些方块。Industrial robot 工业机器人Binary 二进制Semiconductor 半导体Instruction 指令Spot welding 点焊Anode 阳极Counter 计数器Bipolar transistor 双极晶体管Switch 交换机Amplifier 放大器Microprocessor 微处理器Microcontroller 微控制器Digital Logic Circuits 数字逻辑电路Off-line 离线Memory 内存Register 注册Mother board 母板On-line 在线Counter 计数器CPU 中央处理器Cathode 阴极Software 软件Low cost 低成本Programming 编程Electronic Octal 电子八Multimeter 万用表Integrated circuit 集成电路Hard ware 五金Resistor 电阻Diode 二极管

249 评论

勿忘我1239

用于分布式在线UPS中的并联逆变器的一种无线控制器A Wireless Controller for Parallel Inverters in Distributed Online UPS SystemsJosep M. Guerrero', Luis Garcia de Vicufia", Jose Matas'*, Jaume Miret", and Miguel Castilla". Departament #Enginyeria de Sistemes, Automatica i Informhtica Industrial. Universitat Polithica de CatalunyaC. Comte d'Urgell, -Barcelona. Spain. Email: .. Departament #Enginyeria Electrbnica. Universitat Polit6cnica de CatalunyaAV. Victor BaLguer s/n. 08800I - Vilanova i la Geltrh. SpainAbsiract - In this paper, a novel controller for parallelconnectedonline-UPS inverters without control wireinterconnections is presented. The wireless control technique isbased on the well-known droop method, which consists inintroducing P-oand Q-V schemes into the inverters, in order toshare properly the power drawn to the loads. The droop methodhas been widely used in applications of load sharing betweendifferent parallel-connected inverters. However, this methodhas several drawbacks that limited its application, such as atrade-off between output-voltage regulation and power sharingaccuracy, slow transient response, and frequency and phasedeviation. This last disadvantage makes impracticable themethod in online-UPS systems, since in this case every modulemust be in phase with the utility ac mains. To overcome theselimitations, we propose a novel control scheme, endowing to theparalleled-UPS system a proper transient response, strictlyfrequency and phase synchronization with the ac mains, andexcellent power sharing. Simulation and experimental resultsare reported confirming the validity of the proposed . INTRODUCTIONThe parallel operation of distributed Uninterruptible PowerSupplies (UPS) is presented as a suitable solution to supplycritical and sensitive loads, when high reliability and poweravailability are required. In the last years, many controlschemes for parallel-connected inverters has been raised,which are derived from parallel-schemes of dc-dc converters[I], such as the master-slave control [2], or the democraticcontrol [3]. In contrast, novel control schemes have beenappeared recently, such as the chain-structure control [4], orthe distributed control [ 5 ] . However, all these schemes needcontrol interconnections between modules and, hence, thereliability of the system is reduced since they can be a sourceof noise and failures. Moreover, these communication wireslimited the physical situation ofthe modules [6].In this sense, several control techniques has been proposedwithout control interconnections, such as the droop this method, the control loop achieves good power sharingmaking tight adjustments over the output voltage frequencyand amplitude of the inverter, with the objective tocompensate the active and reactive power unbalances [7].This concept is derived from the power system theory, inwhich the frequency of a generator drops when the powerdrawn to the utility line increases [8].0-7803-7906-3/03/$ 02003 IEEE. 1637However, this control approach has an inherent trade-offbetween voltage regulation and power sharing. In addition,this method exhibits slow dynamic-response, since it requireslow-pass filters to calculate the average value of the activeand reactive power. Hence, the stability and the dynamics ofthe whole system are hardly influenced by the characteristicsof these filters and by the value of the droop coefficients,which are bounded by the maximum allowed deviations ofthe output voltage amplitude and , when active power increases, the droopcharacteristic causes a frequency deviation from the nominalvalue and, consequently, it results in a variable phasedifference between the mains and the inverter output fact can be a problem when the bypass switch mustconnect the utility line directly to the critical bus in stead ofits phase difference. In [9], two possibilities are presented inorder to achieve phase synchronization for parallel lineinteractiveUPS systems. The first one is to locate a particularmodule near the bypass switch, which must to synchronizethe output voltage to the mains while supporting overloadcondition before switch on. The second possibility is to waitfor the instant when phase matching is produced to connectthe , the mentioned two folds cannot be applied to aparallel online-UPS system, since maximum transfer timeought to be less than a % of line period, and all the modulesmust be always synchronized with the mains when it ispresent. Hence, the modules should be prepared to transferdirectly the energy from the mains to the critical bus in caseof overload or failure [lo].In our previous works [11][12], we proposed differentcontrol schemes to overcome several limitations of theconventional droop method. However, these controllers bythemselves are inappropriate to apply to a parallel online-UPS system. In this paper, a novel wireless control scheme isproposed to parallel different online UPS modules with highperformance and restricted requirements. The controllerprovides: 1) proper transient response; 2) power sharingaccuracy; 3) stable frequency operation; and 4) good phasematching between the output-voltage and the utility , this new approach is especially suitable for paralleled-UPS systems with true redundancy, high reliability andpower availability. Simulation and experimental results arereported, confirming the validity of this control . 1. Equivalenl cimuif ofan invener connecled 10 a bust"Fig. 2. P-odraop . REVlEW OF THE CONVENTIONAL DROOP METHODFig. 1 shows the equivalent circuit of an inverter connectedto a common bus through coupled impedance. When thisimpedance is inductive, the active and reactive powers drawnto the load can be expressed asEVcosQ - V2 Q=where Xis the output reactance of an inverter; Q is the phaseangle between the output voltage of the inverter and thevoltage of the common bus; E and V are the amplitude of theoutput voltage of the inverter and the bus voltage, the above equations it can be derived that the activepower P is predominately dependent on the power angle Q,while the reactive power Q mostly depends on the outputvoltageamplitude. Consequently, most of wireless-control ofparalleled-inverters uses the conventional droop method,which introduces the following droops in the amplitude Eand the frequency U of the inverter output voltageu = w -mP (3)E = E ' - n Q , (4)being W* and E' the output voltage frequency and amplitudeat no load, respectively; m and n are the droop coefficientsfor the frequency and amplitude, , a coupled inductance is needed between theinverter output and the critical bus that fixes the outputimpedance, in order to ensure a proper power flow. However,it is bulky and increase:; the size and the cost of the UPSmodules. In addition, tho output voltage is highly distortedwhen supplying nonlinezr loads since the output impedanceis a pure is well known that if droop coefficients are increased,then good power sharing is achieved at the expense ofdegrading the voltage regulation (see Fig. 2).The inherent trade-off of this scheme restricts thementioned coefficients, which can be a serious limitation interms of transient response, power sharing accuracy, andsystem the other hand, lo carry out the droop functions,expressed by (3) and (4), it is necessary to calculate theaverage value over one line-cycle of the output active andreactive instantaneous power. This can be implemented bymeans of low pass filters with a smaller bandwidth than thatof the closed-loop inverter. Consequently, the powercalculation filters and droop coefficients determine, to a largeextent, the dynamics and the stability of the paralleledinvertersystem [ conclusion, the droop method has several intrinsicproblems to be applied a wireless paralleled-system ofonline UPS, which can he summed-up as follows:Static trade-off between the output-voltage regulation(frequency and amplitude) and the power-sharingaccuracy (active an4d reactive).2) Limited transient response. The system dynamicsdepends on the power-calculation filter characteristics,the droop coefficients, and the output of ac mains synchronization. The frequency andphase deviations, due to the frequency droop, makeimpracticable this method to a parallel-connectedonline UPS system, in which every UPS should becontinuously synchronized to the public ac )3)111. PROPOSED CONTROL FOR PARALLEL ONLINE UPSINVERTERSIn this work, we will try to overcome the above limitationsand to synthesize a novel control strategy withoutcommunication wires that could be appropriate to highperformanceparalleled industrial UPS. The objective is toconnect online UPS inverters in parallel without usingcontrol interconnections. This kind of systems, also namedinverter-preferred, should be continuously synchronized tothe utility line. When an overload or an inverter failureoccurs, a static bypass switch may connect the input line tothe load, bypassing the inve:rter [14][15].Fig. 3 shows the general diagram of a distributed onlineUPS system. This system consists of two buses: the utilitybus, which is connected lo the public ac mains; and thesecure bus, connected to the distributed critical loads. Theinterface between these buses is based on a number of onlineUPS modules connected in parallel, which providescontinuously power to the: loads [16]. The UPS modulesinclude a rectifier, a set of batteries, an inverter, and a staticbypass ac mainsutility busI I Ij distributed loads !Fig. 3. Online distributed UPS /I 4(4Fig. 4. Operation modes of an online UPS.(a) Normal operation. (b) Bypass operation. (c) Mains failureThe main operation modes of a distributed online UPS1) Normal operation: The power flows to the load, fromthe utility through the distributed UPS ) Mains failure: When the public ac mains fails, theUPS inverters supply the power to the loads, from thebatteries, without operation: When an overload situation occurs,the bypass switch must connect the critical busdirectly to the ac mains, in order to guarantee thecontinuous supply of the loads, avoiding the damageof the UPS this reason, the output-voltage waveform should besynchronized to the mains, when this last is are listed below (see Fig. 5):3)Nevertheless, as we state before, the conventional droopmethod can not satisfy the need for synchronization with theutility, due to the frequency variation of the inverters, whichprovokes a phase obtain the required performance, we present a transientP-w droop without frequency-deviation in steady-state,proposed previously by OUT in [ 111w=o -mP (5)where is the active power signal without the dccomponent,which is done by. -I t -1sP= p ,( s + t - ' ) ( s + o , )being zthe time constant of the transient droop transient droop function ensures a stable frequencyregulation under steady-state conditions, and 'at the sametime, achieves active power balance by adjusting thefrequency of the modules during a load transient. Besides, toadjust the phase of the modules we propose an additionalsynchronizing loop, yieldingo=w'-m%k,A$, (7)where A$ is the phase difference between the inverter and themains; and k, is the proportional constant of the frequencyadjust. The steady-state frequency reference w* can beobtained by measuring the utility line second term of the previous equality trends to zero insteady state, leading tow = w' - k4($ -@'), (8)being $and $* the phase angles of the output voltage inverterand the utility mains, into account that w = d $ / d t , we can obtain thenext differential equation, which is stable fork, positived$ *dt dt- + km$ = - + k,$' . (9)Thus, when phase difference increases, frequency willdecrease slightly and, hence, all :he UPS modules will besynchronized with the utility, while sharing the power drawnto the . CONTROLLIEMRP LEMENTATIONFig. 5 depicts the block diagram of the proposedcontroller. The average active power P , without the dccomponent, can be obtained by means of multiplying theoutput voltage by the output current, and filtering the product........................................................................................io",.LSj'nchronirorion loop.......................................................................................Fig. 5. Block diagram of the proposed a band-pass filter. In a similar way, the averagereactive power is obtained, hut in this case the output-voltagemust be delayed 90 degrees, and using a low-pass order to adjust the output voltage frequency, equation(7) is implemented, which corresponds to the frequencymains drooped by two transient-terms: the transient activepower signal term; and the phase difference term, whichis added in order to synchronize the output voltage with theac mains, in a phase-locked loop (PLL) fashion. The outputvoltageamplitude is regulated by using the conventionaldroop method (4).Finally, the physical coupled inductance can be avoided byusing a virtual inductor [17]. This concept consists inemulated an inductance behavior, by drooping the outputvoltage proportionally to the time derivative of the outputcurrent. However, when supplying nonlinear loads, the highordercurrent-harmonics can increase too much the outputvoltageTHD. This can be easily solved by using a high-passfilter instead of a pure-derivative term of the output current,which is useful to share linear and nonlinear loads [I 1][12].Furthermore, the proper design of this output inductance canreduce, to a large extent, the unbalance line-impedanceimpact over the power sharing . SIMULATION AND EXPERIMENTARELS ULTSThe proposed control scheme, (4) and (7), was simulatedwith the parameters listed in Table 1 and the scheme shownin Fig. 6, for a two paralleled inverters system. Thecoefficients m, n, T, and kv were chosen to ensure stability,proper transient response and good phase matching. Fig. 7shows the waveforms of the frequency, circulating currents,phase difference between the modules and the utility line,and the evolution of the active and reactive powers. Note theexcellent synchronization between the modules and theACmiiinr 4 j. ...L...... ..........................B...u...n...... ................................... iFig. 6. Parallel operation oftwa online UPS modules,mains, and, at the same time, the good power sharingobtained. This characteristik let us to apply the controller tothe online UPS paralleled I-kVA UPS modules were built and tested in order toshow the validity of the proposed approach. Each UPSinverter consisted of a single-phase IGBT full-bridge with aswitching frequency of 20 kHz and an LC output filter, withthe following parameters: 1. = 1 mH, C = 20 WF, Vi" = 400V,v, = 220 V, I50 Hz. The controllers of these inverters werebased on three loops: an inner current-loop, an outer PIcontroller that ensures voltage regulation, and the loadsharingcontroller, based on (4) and (7). The last controllerwas implemented by means of a TMS320LF2407A, fixedpoint40 MHz digital sigrial processor (DSP) from TexasInstruments (see Fig. 8), using the parameters listed in TableI. The DSP-controller also includes a PLL block in order tosynchronize the inverter with the common bus. When thisoccurs, the static bypass switch is tumed on, and the droopbasedcontrol is 7 Wa\cfc)rms for , ;mnectcd in parallel. rpchrontred io Ihc ac mdnl.(a) Frequencics ufhoth UPS (b) Clrculattng currcni among modulcs. (CJ Phmc d!Nercn;: betucen ihc UPS a#>dth e ai mum(d) Ikiril uf the phze diNmncc (e) md (0 Activc and rcactlw pouerr "I ooih UPSNote that the iimc-acs arc deliheratcly JiNercni due in thc disiinct timuion*uni) ofthe \ THE PARALLELESDYS Order I IFilter Cut-off Frequency I 0, I 10 I ragsFig. 8 shows the output-current transient response of theUPS inverters. First, the two UPS are operating in parallelwithout load. Notice that a small reactive current is circlingbetween the modules, due to the measurement , a nonlinear load, with a crest factor of 3, is connectedsuddenly. This result shows the good dynamics and loadsharingof the paralleled system when sharing a . 8. Output current for the two paralleled UPS, during the connection of Bcommon nonlinear load with a crest factor of 3. (Axis-x: 20 mddiv. Axis-y:5 Mdiv.).VI. CONCLUSIONSIn this paper, a novel load-sharing controller for parallelconnectedonline UPS systems, was proposed. The controlleris based on the droop method, which avoids the use ofcontrol interconnections. In a sharp contrast with theconventional droop method, the controller presented is ableto keep the output-voltage frequency and phase strictlysynchronized with the utility ac mains, while maintaininggood load sharing for linear and nonlinear loads. This fact letus to extend the droop method to paralleled online the other hand, the proposed controller emulates aspecial kind of impedance, avoiding the use of a physicalcoupled inductance. results reported here show theeffectiveness of the proposed approach.

258 评论

winnie222626

什么意思?要英文的?题目要汉语翻译?

194 评论

jason大魔王

用于分布式在线UPS中的并联逆变器的一种无线控制器已经发送。

306 评论

时间不等人了

Control of Parallel Inverters in Distributed AC Power Systems with Consideration of Line Impedance Effect在分布式交流电力系统中考虑连线阻抗影响时的并联逆变器控制 论文发到你的邮箱了

360 评论

相关问答

  • 电气自动化毕业论文绪论

    随着科学技术的快速发展,电气工程自动化在多个领域发挥着越来越重要的作用,为人们的工作、学习和生活提供了极大的便利。下文是我为大家搜集整理的关于本科电气工程及其自

    肥胖卷的肥蛋卷 2人参与回答 2023-12-05
  • 电气自动化专业英语论文

    什么意思?要英文的?题目要汉语翻译?

    Smileの夏天 7人参与回答 2023-12-05
  • 自动化和电气论文题目

    1. PLC控制花样喷泉.doc 2. S7-200PLC在数控车床控制系统中的应用 3. PLC控制五层电梯设计 4. 超高压水射流机器人切割系统电气控制设计

    dodolong64 4人参与回答 2023-12-08
  • 电气和自动化毕业论文

    随着科学技术的快速发展,作为一门新兴的技术,电气工程及其自动化已被广泛应用到各个行业。下面是我为大家整理的电气工程及其自动化设计 毕业 论文,供大家参考。

    我叫歪歪 3人参与回答 2023-12-11
  • 电气自动化毕业论文电大

    电气工程自动化工程控制体系则是社会工业化发展的关键,是其应用和功能表达的按钮和键盘 。下文是我为大家搜集整理的关于电气工程自动化专科毕业论文的内容,欢迎大家阅读

    闪灯背后 3人参与回答 2023-12-11