• 回答数

    3

  • 浏览数

    272

别吃哥的菜
首页 > 期刊论文 > 硬碳正极材料的储锂机理研究论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

正在缓冲1234

已采纳

研究亮点(1)利用原位磁性监测技术研究了一个典型的Fe3O4/Li电池内部电子结构的演化;(2)揭示了Fe3O4/Li体系中,表面电荷容量是额外容量的主要来源;(3)金属纳米粒子的表面电容机制可以推广到大范围的过渡金属化合物中。图文导读1.结构表征和电化学性能用传统的水热法合成了单分散的空心Fe3O4纳米球,在100 mA g−1电流密度下充放电(图1a),第一次放电容量为1718 mAh g−1,在第二次和第三次分别为1370 mAh g−1和1364 mAh g−1,远远超过926 mAh g−1的理论预期。完全放电产物的BF-STEM图像(图1b-c)表明,经锂还原后,Fe3O4纳米球转化为尺寸约为1-3nm的更小的Fe纳米颗粒,分散在Li2O中。为了证明在电化学循环过程中磁性的变化,获得了完全放电至后的磁化曲线(图1d),显示了由于纳米铁颗粒的形成而产生的超顺磁性行为。图1(a)在100 mA g−1电流密度下循环的Fe3O4/Li电池的恒流充放电曲线;(b)全锂化Fe3O4电极的BF-STEM图像;(c)团聚体中存在Li2O和Fe的高分辨率BF-STEM图像;(d)Fe3O4电极在锂化过程前(黑色)和之后(蓝色)的磁滞曲线,以及后者(紫色)的Langevin拟合曲线。2.结构和磁演化的实时检测为了将电化学与Fe3O4的结构和磁性变化联系起来,对Fe3O4电极进行了原位X射线衍射(XRD)和原位磁性监测。在从开路电压(OCV)到的初始放电过程中,一系列XRD衍射图中的Fe3O4衍射峰在强度和位置上都没有明显的变化(图2a),表明Fe3O4只经历了Li插层过程。当充电到3V时,Fe3O4的反尖晶石结构仍然保持完好,这表明在这个电压窗口中的过程是高度可逆的。进一步进行了与恒流充放电试验相结合的原位磁性监测,以研究磁化是如何实时演变的(图2b)。图2原位XRD和磁性监测表征。(a)原位XRD图;(b)研究了Fe3O4在3 T外加磁场下的电化学充放电曲线及相应的可逆原位磁响应。为了从磁化强度变化的角度对这种转换过程有一个更基本的了解,实时收集了磁性响应,以及伴随电化学驱动反应的对应相变(图3)。很明显,第一次放电时,Fe3O4电极的磁化响应与其他循环不同,这是由于第一次锂化过程中Fe3O4发生不可逆相变所致。当电位降至时,Fe3O4的反尖晶石相转变为含Li2O的FeO类盐石结构,Fe3O4相在充电后无法恢复。相应地,磁化强度迅速下降至μbFe−1。随着锂化的进行,没有新相形成,(200)和(220)类FeO衍射峰的强度开始减弱。当Fe3O4电极完全锂化时,没有明显的XRD峰保留(图3a)。注意到当Fe3O4电极从放电到时,磁化强度(从 μb Fe−1增加到μbFe−1),这归因于FeO到Fe的转化反应。然后,在放电结束时,磁化强度缓慢下降至 μB Fe−1。这一发现表明,完全还原的金属Fe0纳米颗粒仍可能参与锂存储反应,从而降低电极的磁化强度。图3相变和磁响应的原位观测。(a)Fe3O4电极第一次放电过程中采集的原位XRD图;(b)Fe3O4/Li电池在外加磁场3 T下电化学循环的原位磁力测定。体系的表面电容Fe3O4电极的磁性变化发生在低电压下,在该电压下最有可能产生额外的电化学容量,这表明电池内存在未发现的电荷载体。为了探索潜在的储锂机理,利用XPS、STEM和磁性能谱等手段,研究了Fe3O4电极在、和的磁化峰,以确定磁性变化的来源。结果表明,磁矩是影响磁性变化的关键因素,因为测量到的Fe0/Li2O体系的Ms不受磁各向异性和粒子间耦合的影响。为了进一步了解Fe3O4电极在低压下的动力学性质,在不同的扫描速率下进行了循环伏安测量。如图4a所示,矩形循环伏安曲线出现在和1V之间的电压范围内(图4a)。图4b表明Fe3O4电极上发生了电容响应。伴随恒流充放电过程的高度可逆磁响应(图4c),电极的磁化强度在放电过程中从1V下降到,在充电过程中又重新增加,说明Fe0的类电容表面反应是高度可逆的。图4在–1 V下的电化学性能和原位磁性表征。(a)循环伏安曲线。(b)利用峰值电流与扫描速率的相关性确定b值;(c)在5 T外加磁场下,磁化强度相对于充放电曲线的可逆变化。上述Fe3O4电极的电化学、结构和磁性特征表明,额外的电池容量是由Fe0纳米粒子的自旋极化表面电容引起的,并伴随磁性变化。自旋极化电容是界面上自旋极化电荷积累的结果,在充放电过程中可以显示磁响应。对于Fe3O4基电极,在第一次放电过程中,分散在Li2O基底中的细Fe纳米颗粒具有较大的表体积比,由于高度局部化d轨道,可实现费米能级的高状态密度。根据Maier的空间电荷储存理论模型,作者提出在金属Fe纳米粒子的自旋分裂带中,可以储存大量电子,这可能会在Fe/Li2O纳米复合材料中产生自旋极化表面电容(图5)。图5Fe/Li2O界面自旋极化电子的表面电容示意图。(a)铁磁性金属颗粒表面(放电前后)的自旋极化态密度示意图,与铁的体自旋极化相反;(b)超储锂表面电容模型中空间电荷区的形成。总结与展望通过先进的原位磁性监测,研究了TM/Li2O纳米复合材料内部电子结构的演变,以揭示该锂离子电池额外存储容量的来源。结果表明,在Fe3O4/Li模型电池系统中,电化学还原的Fe纳米颗粒能够储存大量的自旋极化电子,导致过大的电池容量和明显改变的界面磁性。实验进一步验证了CoO、NiO、FeF2和Fe2N电极材料中存在这种电容,说明锂离子电池中金属纳米粒子的自旋极化表面电容的存在,并为这种空间电荷存储机制在其它过渡金属化合物基电极材料上的应用奠定了基础

164 评论

夕颜无照

锂电池中,应该是储锂恰当。将电能以化学能的形式储存起来,但是又不能直接“储存电子”,因此以可逆脱嵌的“Li+”“Na+”的形式储存于host structure的正负极材料中另外,楼上说的“锂离子从正极脱出,穿过电解液和隔膜,来到了负极”,是一个经常被误解的概念。感兴趣的同学可以算算,一个Li+从正极“跑到”负极得花多久的时间,是否符合电池的正常充放电周期。一般是认为,Li+从正极脱出,通过cathode/electrolyte interface进入电解液,同时另一端,电解液中的Li+通过anode/electrolyte interface嵌入负极,这就是为什么在锂电(其它输运过程其实都差不多)中,界面反应被那么看重的原因锂离子电池已经广泛应用到社会生活bai的各个方面,给人们的生活带来便利。但锂离子电池中还存在一些基础科学问题不是很清楚,其中,进一步揭示储锂材料的储锂机理对改善锂离子电池性能和探索新材料有着至关重要的作用。

111 评论

金威家具

1990年以来发表的论文(Eng.):新世纪1. Surface-modified Graphite as an improved intercalating Anode for Lithium ion Batteries,, , e l,Electrochem. & Solid State Lett. , 6 (2003).A30-A332. Possible use of ferrocyanide as a redox additive for prevention of electrolyte decomposition in overcharged nickel batteries, Electrochem. Acta, (2003)3. Temperature Effects on the Electrodeposition of Zinc, u, e l ,J. Electrochem. Soc., 150 (2003) . Hydrogen production from catalyzed hydrolysis of sodium borohydride solution using nickel boride catalyst,, e l,Int. J. Hydrogen Energy 28 (2003)10955. A Mechanistic Study of Electrocatalytic Reduction of Oxygen on Manganese Dioxides in Alkaline Aqueous Solution, Y. L. Cao, H. X. Yang*, X. P. Ai, and L .F .Xiao, J. Electroanal. Chem.,(2003) ,6. Structural and electrochemical characterization of calcium zincate mechanochemically synthesized as rechargeable anodic materials,, H. Yang, X. Ai, J. Yu and Y. Cao, J. Appl. Electrochem., 33(2003)6077. A study of calcium zincate as negative electrode materials for secondary batteries, u, l, J. Power Sources, 103 (2001) 938. Effects of Anions on the Zinc Electrodeposition onto Glassy-Carbon Electrode, u, e l,, Russ. J. Electrochemistry, 38 (2002) . Modeling and prediction for discharge lifetime of battery systems using hybrid evolutionary algorithms, , J. Yu et al., Computer and Chem., 25(2001)251上世纪10. The influences of organic additives on Zinc electrocrystallization from KCl solution, u, , , l, J. Electrochem. Soc., 146 (1999)178911. A new approach to the estimation of electrocrystallization parameters, J. Electroanal. Chem., 474 (1999)6912. Preparation and characterization of LiNiO2 synthesized from Ni(OH)2 and , , , u, i, J. Power Souces, 79(1999)25613. A study of LiMn2O4 synthesized from LiCO3 and MnCO3, u, i, , i, J. Power Sources, 74(1998)24014. The kinetic study on the electrolytic hydrogenation of nitrobenzene on the hydrogen-storage alloy electrode, S. Lu, i, u, iu, , J. Electroanal. Chem., 457(1998)14915. Initial activation of hydrogen storage alloy electrode by chemical modification, J. Rare earth metals, S. Lu, i, u, iu, u, . Rare Earths,16( 4), 307(1998)16. Effects of lanthanum and neodymium hydroxides on secondary alkaline zinc electrode, J. L. Zhou, Y. H. Zhou , H. X. Yang , J. Power sources, 69,(1997)16917. Polypyridine complexes of iron used as redox shuttles for overcharge protection of secondary lithium batteries. C. S. Cha , X. P. Ai, and H. X. Yang , J. Power Sources , 54, (1995)25518. In-situ ESR study on electrochemical lithium intercalation into petrulum coke , L. Zhuang, J. Lu, X. Ai, H. Yang , J. Electroanal. Chem. , 397, (1995)31519. Powder Microelectrodes, C. S. Cha, C. M. Li , H. X. Yang , P. F. Liu , J. Electroanal. Chem. , 368, (1994)4720. Electrochemical and structural studies of the composite MnO2 cathode doped with metal oxides , H. X. Yang, X. P. Ai , M .Lei ,S. X. Li , J. Power sources , 43-44, (1993)53321. Recent advances in experimental methods applied to lithium battery researches , J. Power Sources , C. S. Cha , H. X. Yang, J. Power sources , 43-44, (1993). Fractal structure structure of colloidal silver and its effects on SERS intensities of crystal violet , Chinese Chem. Letters, 3, (1992)91923. The observation of enhanced RAMAN scattering of gaseous molecules by Hg microdroplets, Chinese Chem. Letters, 2, (1991)54924. A novel optically transparent thin layer electrode for in situ IR spectroelectrochemistry , Chinese Chem. Letters, 2, (1991)25. Fiber optic thin-layer electrode cell for in situ transmission spectro- electrochemistry , Chinese Chem. Letters, 2, (1991)329 1990年以来发表的论文(中文):21世纪1. 联苯用作锂离子电池过充保护剂的研究, 肖利芬, 艾新平, 曹余良, 杨汉西, 电化学, 9(1), 23(2003)2. 塑料化聚合物电解质的导电性质, 艾新平,董全峰,杨汉西, 电池,32(S1), 48(2002)3. 尖晶石型ZnMn_2O_4的合成及其电化学行为, 李升宪,李保旗,杨汉西,艾新平, 电池,32, 3( 2002)4. 锌酸钙的制备与电化学性能研究, 喻敬贤,杨汉西,朱晓明,艾新平, 电池, 31(2) 65(2001)5. 圆柱型锌空气电池研究, 李升宪,周贵茂,艾新平,杨汉西, 电化学,6(3), 341(2000).6. 塑料化薄膜锂离子电池的制造技术, 艾新平,洪昕林,董全峰,李升宪,杨汉西, 电化学, 6(2), 193(2000)上世纪90年代7. LiMn2O4正极在高温下性能衰退现象的研究, 胡晓宏,杨汉西,艾新平,李升宪,洪昕林, 电化学, 5(2), 224(1999)8. 纳米光亮镀锌层的结构研究, 喻敬贤,陈永言,黄清安,杨汉西, 高等学校化学学报,20(1),107 (1999)9. 添加剂对锌结晶行为的影响及参数的演化优化, 化学学报, 57,953(1999)10. 锡基非晶态材料的化学合成及其嵌锂性能的初步研究, 刘立,杨汉西,孙聚堂,艾新平, 电化学,4(4), 362 (1998)11. 石墨负极锂嵌碳机理的研究, 周震涛,黄静,汪国杰,艾新平,杨汉西,, 华南理工大学学报(自然科学版) 1998年07期12. 贮氢合金用作有机加氢反应新型催化剂研究进展, 卢世刚,杨汉西,杨聪智, 化学通报 12, 1(1998)13. 电阻应变法用于密封电池内压变化的动态检测, 杨汉西, 胡容辉,艾新平,杨聪智,李升宪, 电化学, 4(3), 318(1998)14. 薄膜塑料锂离子电池的初步研究, 董全峰, 杨汉西, 艾新平, 胡晓宏,李升宪, 电化学, 4(1), 9(1998)15. 电化学制备Ni-Cu/Cu超晶格多层膜, 喻敬贤,陈永言,黄清安,杨汉西, 武汉大学学报(自然科学版) 1998年06期16. 氢气在贮氢合金电极上析出反应机理的研究, 卢世刚,李群,刘庆国,路春,党兵,杨汉西, 电化学,4(3),265 (1998)17. 非水介质中Zn-MnO_2的可充性研究, 李保旗,杨汉西,李升宪,杜米芳,艾新平, 电化学,3(3), 277 (1997)18. 泡沫镍的电沉积制备技术, 何细华,胡蓉晖,杨汉西,左正忠, 电化学,2(1), 66 (1996)19. 微电极定量方法评价贮氢合金的电化学性质, 胡蓉晖,杨汉西,刘金成,李升宪,查全性, 电化学,2(4), 391(1996)20. 贮氢合金电极的活化方法和作用机理研究, 胡蓉晖,杨汉西,卢世刚,李升宪,刘金城,杨聪智, 电化学,2(2), 170 (1996)21. 电沉积泡沫铜, 何细华,左正忠,杨汉西, 材料保护 1996年11期22. 无氟微酸性体系镀铅研究, 何细华,左正忠,杨汉西, 电镀与环保 1995年05期23. 贮氢合金用作硝基苯电解加氢的催化电极研究, 卢世刚,杨汉西,王长发, 电化学, 1(1), 15(1995)24. 金属氢化物-镍电池充电过程消气反应研究, 刘金城, 杨汉西, 胡蓉辉, 吴锋, 电源技术, 19(4), 1(1995)25. 超薄层红外光透电解池的设计和应用, 肖以金,杨汉西,查全性,, 分析化学 1994年02期26. 电化学石英晶体微天平对银电极氧化还原过程的研究, 陈胜利, 吴秉亮, 杨汉西, 高等学校化学学报, 15(1), 103(1994)27. 炭材料作为储锂负极的研究, 杨汉西, 雷鸣,李升宪,艾新平, 应用化学, 10(1), 113(1993)28. Li/SOCl2 电池的拉曼光谱电化学研究, 钟发平, 杨汉西, 查全性等, 高等化学学报, 14, 265(1993)29. 简易多功能光谱电化学池的设计, 肖以金, 杨汉西, 冯之刚, 伏亚萍, 光谱学与光谱分析, 13(6), 103(1993)30. 激光拉曼光谱的光纤采样技术, 钟发平, 吴国帧, 杨汉西等, 光谱学与光谱分析, 13(6), 29(1993)31. 甲基吡啶电氧化过程的表面增强RAMAN光谱研究, 钟发平, 杨汉西, 查全性, 化学学报, 51, 273(1993)32. 阴极限制型Li/SOCl2电池过放电产物的热分析, 肖以金, 杨汉西, 查全性, 应用化学, 10(3), 54(1993)33. C60 电化学还原的稳态性质研究,杨汉西, 肖以金, 朱凌等, 物理化学学报, 8, 580(1992)34. 微型拉曼电解池现场研究硫酰氯的电化学还原, 钟发平, 杨汉西, 徐知三, 查全性, 物理化学学报, 8, 266(1992)35. 锌离子在λ-MnO2中的电化学嵌入, 吴智远, 杜米芳, 杨汉西等, 应用化学, 9(2), 99(1992)36. 锂电化学嵌入尖晶石二氧化锰研究, 吴智远, 杨汉西, 石中等, 电池, 22(1), 13(1992)37. 锂离子电池炭负极研究, 杨汉西, 艾新平, 雷鸣, 李升宪, 电源技术, 5, 2(1992)38. MnO2作为二次锂电池阴极材料研究, 李升宪, 杨汉西, 吴智远, 汪振道, 电源技术, 4, 7(1991)39. AA-型Li/λ-MnO2 二次电池研究, 李升宪, 杨汉西, 吴智远等, 电池,21(5), 10(1991)40. 锂/硫酰氯电池体系的初步研究, 杨汉西,钟发平, 汪振道等, 电源技术, 2, 5(1990)41. 大功率锂/亚硫酰氯电池高效炭阴极研究, 汪振道, 杨汉西, 范玉章, 雷鸣, 电源技术, 1, 3(1990)

258 评论

相关问答

  • 碳材料研究进展论文

    成果简介 本文,浙江大学王树荣教授团队在《ChemElectroChem》期刊 发表名为“Preparation of Nitrogen and Sulfur

    兜兜里有糖布布 3人参与回答 2023-12-11
  • 锂电池正极材料研究论文

    “‘低钴’和‘无钴’是未来电池正极材料的发展趋势。” 谈及电池产业的未来发展,清华大学车辆与运载学院助理教授、电池安全实验室主任冯旭宁指出。对此,中国科学院物理

    馋佬胚祖宗 3人参与回答 2023-12-11
  • 锂离子电池负极材料的研究论文

    尖晶石型锰酸锂正极材料的合成及电化学性能研究 在线阅读 整本下载 分章下载 分页下载 【英文题名】 The Study of Electrochem

    yiyiling1221 4人参与回答 2023-12-12
  • 碳纤维材料的研究论文

    碳纤维材料!~

    susanwangyue 6人参与回答 2023-12-09
  • 新型碳材料的研究与应用论文

    金刚石薄膜,做晶体,碳60,研究中,结构稳定

    五十岚零 3人参与回答 2023-12-10