• 回答数

    5

  • 浏览数

    210

Smileの夏天
首页 > 期刊论文 > 新型电池材料研究进展论文怎么写

5个回答 默认排序
  • 默认排序
  • 按时间排序

单色的星空

已采纳

1)引言:引言又称前言、序言和导言,用在论文的开头。 引言 一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作 的范围。引言要短小精悍、紧扣主题。 〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论 证过程和结论。主体部分包括以下内容: a.提出问题-论点; b.分析问题-论据和论证; c.解决问题-论证方法与步骤; d.结论。 6、参考文献 一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要 文献资料,列于论文的末尾。 中文:标题--作者--出版物信息(版地、版者、版期) 书讲的1.纳米材料 (1)洗衣机桶表面经过纳米技术处理可放菌 (2)领带表面经纳米技术处理后防水防油 (3)用纳米陶瓷粉制陶瓷有韧性,制造发动机可提高性能 2.“绿色”能源 (1)干电池轻便但只能用一次且污染环境,铅电池太重,锂电池密度小,所以它体积小、质量轻、能多次充电、对环境污染小。 (2)硅光电池可把太阳能转化成电能,可用于人造卫星。 3.记忆合金 (1)记忆合金主要成分镍和钛,记忆合金独有物理特性:当温度达到某一数值时,材料内部的晶体结构会发生变化。 (2)记忆合金可用于外科手术,还可装在热水器的出水阀门内,防止烫人

258 评论

西尔米奥奈

一、 引言石墨锂电池作为新一代高效可靠的能源储存器,面临着越来越高的需求和技术要求。石墨锂电池的性能特性,是决定石墨锂电池功能、实用性、经济性和持久性的关键因素。研究石墨锂电池性能,一方面要深入探究其影响因素,另一方面也要采取有效措施,以期提高石墨锂电池性能。本文旨在通过对近年来石墨锂电池性能研究文献的综述,总结出石墨锂电池性能影响因素,以及一些有效提高石墨锂电池性能的研究成果,为提高石墨锂电池的性能提供参考。二、石墨锂电池性能影响因素(一)极板材料。石墨锂电池的正极材料对其电化学性能影响很大,一般来讲,正极材料的特性会影响电池的充放电容量。如LiFePO4、LiMn2O4等材料具有较高的安全性和耐久性,可用于安全功能性型号的石墨锂电池。LiCoO2和LiNiMnCo系列材料具有更高的能量密度,可用于超高能量密度型号的石墨锂电池。(二)电解液体系。电解液对石墨锂电池的电化学性能具有重要的影响。典型的电解液体系包括锂离子电解质和有机溶剂体系,其中,有机溶剂的性能好坏会直接影响电池的动力学性能。(三)电极工艺。电极工艺也是影响

316 评论

莎菲娜娜

作者: Raymond George Klaus Hassmann【摘要】燃料电池具有非同寻常的性能: 电效率可达60%以上,而且可以在带着部分负荷运行的情况下进行维修,除了有低比率碳氧化物排放外几乎没有任何有害的排放物。文章介绍按温度划分的4种主要燃料电池(PEMFC、PAFC、MCFC和SOFC)的性能,重点介绍高温固体氧化物燃料电池(SOFC)的应用及其发展前景。 With demonstration projects fuel cells are Well uder way toward penetrating the power market,covering a wide range of application.This paper introduces the main four types of fuel cells which are PEMFC,PAFC,MCFC and SOFC.Then it puts the emphasis on SOFC and its application market. 燃料电池是通过由电解液分隔开的2个电极中间的燃料(如天然气、甲醇或纯净氢气)的化学反应直接产生出电能。与汽轮发电机生产的电能相比,燃料电池具有非同寻常的特性:它的电效率可达60%以上,可以在带部分负荷运行的情况下进行维修,而且除了排放低比率碳氧化物外,几乎没有任何其他的有害排放物。1 燃料电池的分类 目前研制的燃料电池技术在运行温度上有不同的类型,从比室温略高直到高达1000℃的范围。大多数工业集团公司的注意力集中在以下4种主要类型上:(1)运行温度在60-80℃之间的聚合物电解液隔膜型燃料电池(PEMFC);(2)运行温度在160-220℃之间的磷酸类燃料电池(PAFC);(3)运行温度在620-660℃之间的熔融碳酸盐类燃料电池(MCFC);(4)运行温度在880-1000℃之间的固体氧化物燃料电池(SOFC)。 可以将这些类型的燃料电池划分为低温型(100℃及以下)、中温型(约200℃左右)及高温型(600-l000℃)燃料电池。 表1简要地列出了各种类型燃料电池的性能。中温型和高温型燃料电池适于用在静止式装置上,而低温型燃料电池对于静止装置和移动式装置都适用。 实用装置的功率容量差别也很大,可以给笔记本电脑及移动电话供电(数以W计),也可以给居民住宅(数kW)或是分散的电热设备和动力设备(数百KW到数MW)供电。 最适于用来驱动汽车的是低温型燃料电池。 根据使用期限成本进行的经济性比较结果表明,就发电成本而言,SOFC型燃料电池要PEM型低30%。这个结果是根据SOFC型燃料电池的电效率比PEM型的高,这2种燃料电池最终都可以达到l000美元/KW的投资成本这一假设条件而推导出来的。 2 高温燃科电池 高温型燃料电池具有许多适于在静止式装置上使用的特性。但是在高温型燃料电池产生出电能之前需要较长的加热过程,因而这种技术不能应用于要求在短时间内频繁起动的各种实用装置。此外,高温型燃料电池还具有以下特点: (1)不需要使用贵金属来催化电化学反应。一般情况下使用陶瓷材料。 (2)对CO完全没有限制。CO参加到电化学反应过程并像H2一样被氧化。 (3)对燃料表现出高度灵活性。可以给这类燃料电池发电设备供应天然气,天然气在设备内部被转换成H2和CO。这意味着无需任何外部燃料,从而大大简化了发电设备的平衡问题。 (4)高温可以将燃气轮机连接到该系统上,在这种情况下,燃料电池发电设备是在300kPa压力下运行,并在不考虑燃气轮机输出的情况下将燃料电池的功率密度提高约20%,因此使总的电效率提高10%,可成倍地降低使用期限成本。 (5)较高的运行温度也为排热提供了更多的灵活性。在电效率达60%或更高水平的联合循环系统中可限制废热排放,而在单循环下则会排放出更多的热量。 MCFC和SOFC是这类高温型燃料电池的2种技术。它们使用的材料不同。MCFC是在一只陶瓷容器中放入液态的金属碳酸盐作为电解液,如果没有采取防止电极老化的措施,燃料电他的使用寿命会受到影响。 在MCFC中电化学反应是由CO3离子引发的。MCFC采用的是颊型电池,和SOFC型的管形设计方案相比,这种颊型电他的功率密度要稍微高一些。这在成本上要比SOFC型装置优越。但在另一方面,由于SOFC所用的陶瓷材料非常稳定,可以用在950-1000℃范围内,所以SOFC装置在抗老化性能上更具优越性。到目前为止,所有的长期电池试验和正在运行的试验性机组都表明SOFC型装置的使用寿命可以达到70 000-80 000h,是MCFC型的2倍。 MCFC和SOFC 2种技术在进行100-250kW功率范围的单循环现场试验中,成本都有大幅度的下降。目前在MCFC开发上占有主导地位的是美国的Fuel Cell Energy公司及其在德国的授权单位MTU,日本的Ishikawajima-Harima重工(IHI)和三菱公司等。而Siemens Westinghouse在SOFC开发上处于领先水平。3 中温型燃料电池 目前磷酸类燃料电池(PAFC)是具有最先进技术的燃料电池。80年代,IFC(国际燃料电池公司)决定对其前期商业化生产线进行投资,制造和销售200kW的PAFC装置,并将其投入市场。东芝公司在80年代末就已经努力使PAFC技术进入商用市场。从此,PAFC技术就一直在静止燃料电池的市场中占据着显赫的位置。迄今为止,全球已经安装了150多套PAFC燃料电池装置。 研究表明,这种燃料电池未能实现市场商业化的原因大致有以下几方面: (1)电效率最高为40%,超过维修期限后会降到35%甚至更低水平。通常情况下设备的使用期限不超过20 000运行h。 (2)有些试验性的设备(如东芝公司管理的1套11MW设备未能达到顶期的性能水平。 (3)美国和日本政府大幅度削缩用于PAFC技术研究和开发的投资。 (4)从迄今积累的经验及在改善设计参数和降低产品成本方面的潜力来看,让PAFC技术成功地跻身于当今的市场中的可能性是极低的。4 SOFC在配电市场方面的潜力 Siemens Westinghouse公司根据对市场的分析,决定采取必要的措施加快SOFC技术进入市场的步伐。预计在2003-2004年提供第l批产品,进入商业性生产前的试验阶段,装置容量从目前的2MW扩大到15MW。 北美和欧洲被认为是SOFC燃料电池技术最有希望的市场。Hagler Bailly公司和西门子公司对功率范围为250 kW-l MW的市场进行了调查,结果表明到2005年SOFC燃料电池的市场容量为每年10000MW。北美和欧洲几乎各占50%。考虑到北美洲用户的结构和他们的需求,在北美洲各类小型发电机组的总容量在2010年可能达到每年约1000MW,其中600MW可能是燃料电池发电装置。在各种类型的燃料电池中,SOFC的市场份额约占40%,到2010年在北美洲SOFC的全年销售额将达到亿美元。 在竞争日益激烈的配电市场中的另一个获胜者是微型燃气轮机,主要是作为备用电源或辅助电源。由于SOFC和微型燃气轮机的特性适于不同的应用场所,SOFC效率高但投资成本也高,而微型燃气轮机成本低但效率也低,因而这2种技术不会产生市场上竞争。而往复式发动机会逐渐失去其在市场中的份额。 欧洲电网要比北美洲电网强大得多,欧洲电网强化了集中的大型发电厂的作用。因此在北美洲经常出现的分散式电热设备和动力装置的供电质量和供电可靠性问题在欧洲是不突出的。但另一方面,在欧洲对能量储存更为敏感。 此外,一些国家政府将颁布新的规程和法律及新的能源价格,预计欧洲各国之间市场份额会有重大差异。在有些情况下这个过程会给SOFC用于配电装置起到一定的促进作用。此外,欧洲的自由化近程落后于北美洲。因此,市场预测结果会有很大程度的不确定性。5 SOFC技术应用的扩展 使用天然气作为燃料的SOFC是车载式装置,其扩展应用可有以下几种形式:(1)家庭应用:新一代燃料电池将是扁平管型的,其功率密度是目前所用圆柱型燃料电池技术的2倍,因而将制造出5kW的燃料电池装置。这种设计方案是可行的,在配电市场中可以替代圆柱型燃料电池。(2)l0MW以上的系统装置:很显然,只要SOFC技术占有了功率范围在250-10MW的市场,那么下一步最必然的是要争取占有l0MW以上更大规模发电设备的市场。通过把更多SOFC链接起来便能实现这个目标,也满足了高效率低成本的要求。20MW级规模燃料电池的电效率已经接近甚至超过70%。(3)用液态燃料运行:使用天然气作为燃料将SOFC的应用局限在靠近天然气供气网的区域内,从而使这项新技术的应用受到限制。因此存在着让SOFC使用液态燃料的迫切要求。因此,应与大型石油公司合作进行该课题的研究开发,选择一种适宜的液体燃料并设计出最适于使用这种新燃料的SOFC发电装置,以便为边远的用户服务。 (4)C02的分离:Shell公司和 Siemens Westinghouse公司正在共同研制一种能将CO2从完全反应后的燃料中分离的SOFC设飞方案。例如,当把其装在用于回收油的平台上时,可以把CO2用泵压到地下储层中,这不但可省去CO2的排放税,还可提高原油的产出量。 (5)综合性应用:CO2分离装置可能是点火的火花装置,它使得SOFC在一种封闭且可再生的能量循环中成为关键性部件。经过-段时间,SOFC能产生出热量和电力,例如用于大型暖房的设施中,SOFC装置产生的C02可用来加快植物的生长。而任何一种农作物收获后的剩余有机物都可以转化为气体供给SOFC作燃料。

306 评论

廖小可可

百度文库 好多。 百度嗖,百度文库

116 评论

薰衣草恋人

洁净新能源有绿色能源之称,它的最大特点是燃烧或使用后不造成环境污染,有利于维持生态平衡。发展洁净新能源是未来能源业建设的发展方向。这里着重介绍生物技术特别是微生物技术在开发洁净新能源方面的应用研究所取得的成果。一、发展新型燃料电池燃料电池使用气体燃料(如氢、甲烷等)与氧气直接反应产生电能,其效率高、污染低,是一种很有前途的能源利用方式。传统燃料电池使用氢为燃料,而氢气不易制取又难以储存,致使燃料电池成本居高不下,美国宾夕法尼亚大学研究人员设计出以甲烷等碳氢化合物为燃料的新型电池,其成本大大低于以氢为燃料的传统燃料电池。研究人员曾尝试用便宜的有关碳氢化合物为燃料,但化学反应的“残渣”很容易积聚在镍制的电池正极上导致断路,而使用铜和陶瓷的混合物制造电池正极,解决了“残渣”积聚问题。新研制的燃料电池可用甲烷、乙烷、甲苯、丁烯、丁烷等5种碳氢化合物做燃料源,可以通过微生物发酵途径生产甲烷等碳氢化合物,成为研制新型燃料电池较为丰富而广泛的原料来源。目前这种新型燃料电池的能量转换效率还较低,有待进一步研究改进提高。二、开发军民两用的生物能源不论军用的兵器如机动装备大部分,或是民用的汽车等交通工具均以汽油、柴油为燃料、若用氢气作燃料更为理想,其特点:(1)洁净,不污染环境;(2)热效率高,约是汽油的3倍;(3)生物制取氢气有潜力。正因为如此,充分利用生物技术生产氢气将大有可为。如用一种红假单胞菌(Rhodopseudomonassp)为生产菌,以淀粉为原料生产氢气取得良好效果,每消耗1克淀粉可产氢气1毫升。用氢和其他少量燃料混合可替代汽油、柴油。乙醇也是一种洁净生物燃料,用途广泛,可用来替代汽油和柴油。日本、加拿大等国家用基因技术建构的“工程酵母”以其高产酶的活力,酶解纤维素制取乙醇;也有建构的“工程大肠杆菌”能将葡萄糖有效地转化成乙醇;这类乙醇均可替代汽油或柴油使用,随时为机动装备提供大量生物燃料。其实,产氢、产乙醇的生物不仅有细菌或“工程菌”,而且某些藻类或其他微生物均有生产氢或乙醇的能力。美国加州大学等研究人员发现一种叫莱因哈德衣藻(Chlamydomonasreinhadtii)的绿藻(真核生物)具有持续大量产氢能力。关键在于控制其生长环境,从生长营养液中去除硫素,在此情况下藻体停止了光合作用、不产氧;在无氧条件下藻体必须以其它途径产生腺茸三磷酸酯维所需要的能量,利用所贮存的能源以实现其最终产氢的目的。一般说,这种天然藻产氢量很低,为此,一方面控制其生长所必需的或障碍生长的关键因素;另一方面,采用分子遗传技术改造藻的特性,以提高其产氢能力。由此可见,充分利用各种生物开发军民两用的洁净生物能源是有潜力的。三、微型绿藻是索取氢能的最廉价途径上面已提到绿藻和微生物产氢途径,这里强调微型绿藻制取氢气的前景,科学家预测,当石油和天然气耗尽时,氢气也许是一种较为理想的能源。关键在于找到一种廉价产氢的方法。有专家认为,利用普通池塘绿藻的产氢能力或许是个最实际的选择---经济实用,分布广。绿藻这种微型低等植物繁殖快,全世界到处都有它的分布,它在有水、阳光的条件下具有制造氢气的能力。在人工控制下可迫使绿藻按要求生产氢气,有实验研究报告指出,一升绿藻培养液每小时可产氢3毫升,还需进一步提高产氢效率。注意两点:(1)运用基因工程技术改进这种产氢系统,有可能使氢气产量增加10倍或更高些;(2)细胞固定化技术的应用,有可能提高微型绿藻持续产氢能力。在德国、加拿大、日本等国家为实现“洁净氢能源”的开发计划,积极建立“产氢藻类农场”,为实现氢能源规模生产做出巨大努力。加拿大已建成每天生产液态氢10吨的工厂;日本把产氢藻和光合细菌的高效产氢列为研究重点,将研制用于火箭发动机使用的冰糕状“脂膏氢”,以提高火箭发射推力。美国期望到2030年把氢能源作为美国一种主要能源。看来,微型绿藻和光合微生物生产氢能源将大有开发之势。四、充分利用有机垃圾或有机废水为原料生产氢能源日本北里大学研究人员用生活垃圾制取氢气取得良好效果,产率颇高,可将氢气不仅直接作洁净能源使用,而且为燃料电池的开发提供优质原料,更为经济实用,具有潜在的开发优势。研究人员选用一种厌氧性细菌即一种“梭菌”AM21B菌株,与加水研碎的剩菜、鱼骨等生活垃圾混合在一起,于37℃下发酵生产氢气,所得实验结果表明,每1公斤生活垃圾可获49升氢气;制氢后所余下的生活垃圾呈糊状,无臭味,可进一步实现资源化,使之成为农田有机肥料如堆肥。据称,日本研究人员为制取氢气的生活垃圾可循环利用,还研制新型“发酵设备”更有利于提高生活垃圾制氢效力。我国哈尔滨建筑大学研究人员已建立以厌气活性污泥为原料的有机废水经微生物发酵法生产氢的技术。有几个特点:(1)发酵法未采用纯菌种;(2)未用细胞固定化技术可持续产氢;(3)制氢系统工艺运行稳定;(4)所获氢的纯度高;(5)制取氢的产率比国外同类小试验高几十倍。目前已进入中试规模的连续产氢,其量可达每立方米产氢立方米,纯度达到99%。有望进入工业化生产,为氢能源的开发提供一条可行的生物途径。五、以CO2废气为原料开发新能源来源广泛的CO2既是重要温室气体之一,也是化工原料,当CO2的释放与吸收未达到动态平衡时必然给生态环境产生不良后果。为此,CO2作为一类废气如何进一步转化,实现资源化的研究有着重要意义。其中将其实现能源化是值得注意的研究课题。至少可采用化学方法和生物方法使CO2转化能源。(一)、化学方法利用催化剂:用高效催化剂沸石,约99%的活性铝颗粒表面吸附铑、锰,按CO2与氧的比例为1∶4,300℃、1个大气压条件下,至少90%的CO2可转化为甲烷,若10个大气压时,其转化率可达100%。当然也有一个降低氢、铑的成本问题。所获得的甲烷不仅提供能源和化工原料,同时包括CO2在内减轻温室效应发生带来好处。(二)、生物方法利用藻类:前面已提到藻类特别是那些微型单胞藻不论是原核的或是真核的,它们是吸收CO2进行光合作用生产绿色新能源最有效途径。大量微型藻增殖过程中充分利用CO2,在光照条件下合成有机物将太阳能储存起来,其藻体生物量称得上是个巨大的“储能库”,因此,将其制作固体燃料或者说干燥燃料是可行的,英国将它用于发电;也可用各类藻体包括海藻在内的生物量为原料,通过发酵途径制取甲烷及其它能源;微型藻细胞固定化连续产氢能也是可取的。正因为各种藻类所表现特定功能,既是“储能库”,又是“供能库”,从中可获取所需要的洁净能源。因此有专家预计,利用CO2制造生物能源特别是氢能将是本世纪大有希望而较为理想的能源供应。六、微生物发酵生产乙醇大有可为乙醇俗称酒精,既用于医药、化工,又是未来要发展的一类无污染的洁净能源,也是重要再生能源之一,具有燃料完全、效率高、无污染等特点。用它稀释汽油所配制成“乙醇汽油”,替代含铅汽油,功效可提高15%左右。据报道,巴西已改装“乙醇汽油”或酒精为燃料的汽车达几十万辆,大大减少大气污染。既然乙醇用于汽车燃料显示其优越性,那么如何采用最佳途径来生产乙醇呢?其中采用最经济而实用的办法制取乙醇有两方面值得认真考虑:一是利用废弃的农业秸秆为原料生产燃料乙醇;二是培植绿藻生产乙醇。就前者而言,秸秆在全球是一类量大面广的作物废弃物,我国每年有亿吨秸秆的产出,直接燃烧污染环境,如果利用这些秸秆哪怕是一部分生产燃料乙醇的话,那是一件利国利民的事,有利于保护生态环境。如果利用乙醇作为汽油添加剂来代替现用的含铅汽油添加剂---甲基叔丁基醚(MTBE)的话,那么不论是改造汽油提高效率或是保护生态环境是非常有益的,很有商业潜力。2年前在美国燃料用乙醇达413万--586万吨,约占美国乙醇消费量的83%-87%;目前我国燃料乙醇生产及市场都是空白。然而,乙醇作为一种有效的汽油含氧添加成分是有其优越性的,在美国,有8%的含氧物汽油中所添加的含氧物是乙醇,而现在MTBE的替代物只有乙醇。有报道指出,美国加州至少有1万处地下水受到渗漏的MTBE污染,全美国则有14%的饮水井被污染,而MTBE是动物的致癌物,对人体健康也有潜在的危害。政府一方面禁止汽油中使用MTBE添加剂;另一方面积极发展乙醇作为其替代物的生产。美国加州一个州今后2年每天需要乙醇达万桶(注:美制1桶=31.5加仑),5年后需求量将为万桶。为此,美国的乙醇生产商已在扩大乙醇的生产能力;无疑,MTBE的禁用给乙醇工业带来无限商机。从此也可以看出,把握开发燃料乙醇的商机正是发展绿色新能源的必需。在我国,有条件,有能力,也有技术充分利用废弃的各类秸秆实现资源化或能源化是完全可能的。每年只要从亿吨秸秆中利用1亿吨来生产燃料乙醇的话,那么乙醇产量可达2000万吨。据有关专家对其经济评估,认为以秸秆为原料生产乙醇的成本低于用粮食发酵生产乙醇的成本;而高于炼油厂生产汽油的成本,但与汽油添加剂MTBE相比更显示其竞争力。尽管秸秆生产燃料乙醇有它一定特色和优越性,但对其生产工艺和效力尚需作进一步探究。至于绿藻制取乙醇与传统微生物发醇途径生产乙醇是大不相同的。绿藻是一类自养型真核生物,其中如单细胞小球藻用来开发新能源很有潜力。日本一家公司的研究小组从表层海水中获得一种叫Tit-1的海藻新品种,类似小球藻(直径约10μm),白天它与普通植物一样在光照条件下将CO2转化为淀粉贮藏起来,还能在弱光或厌氧条件下将淀粉转化为乙醇,有其特点:不会造成环境污染,能吸收大气中CO2,大大减轻温室效应,并获得乙醇产品。这种自养型与异养型的有机结合生产乙醇是个典型实例,具有独特的优越性。总之,上面提到的六个方面不论以何种形式获得各种不同的燃料或能源,作为一类不污染环境的一代洁净生物燃料或生物能源均有“绿色能源”之称,是未来能源建设的发展方向。现代文明进步,人类的生存与发展,迫切需要洁净新能源和无污染的生态环境,它们彼此之间是紧紧联系在一起的。可以预料,21世纪随着各项建设的需要和科技进步,绿色能源必将得到进一步发展。

121 评论

相关问答

  • 新型环保涂料的研究进展论文

    新型建筑材料的主要特点、类型及具体运用论文 从小学、初中、高中到大学乃至工作,大家都写过论文,肯定对各类论文都很熟悉吧,通过论文写作可以提高我们综合运用所学知识

    pan369247787 3人参与回答 2023-12-08
  • 最新研究进展论文怎么写

    论文中期检查表的论文进展情况如下: 一、选题质量:(主要从以下四个方面填写:选题是否符合专业培养目标,能否体现综合训练要求;题目难易程度;题目工作量;题目与生产

    chensilong812 3人参与回答 2023-12-12
  • 碳材料研究进展论文

    成果简介 本文,浙江大学王树荣教授团队在《ChemElectroChem》期刊 发表名为“Preparation of Nitrogen and Sulfur

    兜兜里有糖布布 3人参与回答 2023-12-11
  • 先进太阳能电池研究进展论文

    太阳能作为一种可再生的新能源,越来越引起人们的关注。光伏发电是太阳能利用的一种方式,因其节能和环保的效果,受到广泛的重视。最近几年光伏发电发展迅速,光伏技术不断

    鱼米芝香 3人参与回答 2023-12-08
  • 电池材料研究进展论文怎么写

    由于中国和印度的经济持续强劲增长,在2006年至2030年期间,其一次能源需求的增长将占世界一次能源总需求增长量的一半以上。中东国家占全球增长量的11%,增强了

    ysatispaco 3人参与回答 2023-12-06