• 回答数

    4

  • 浏览数

    329

hua爱美食
首页 > 期刊论文 > mixer毕业论文终版

4个回答 默认排序
  • 默认排序
  • 按时间排序

飞雪樱子

已采纳

Abstract: In the modern construction of concrete plays an important role, but the concrete cracks are more common. This article analyzes the causes of concrete cracks is proposed measures to control and prevent the cracks, and curing of the concrete problems early. Key words: concrete crack; cracks; Cracks; conservation First, micro-cracks in concrete Cracks in reinforced concrete structures is to work with. Rather, the hardening process of concrete in the condensation, there exist micro-cracks, because the concrete in the cement and aggregate changes in temperature and humidity conditions to produce the volume of non-uniform deformation, and they bonded together and can not free-form deformation, so the formation of mutual restraint stress; Once the cement and aggregate constraint between the stress is greater than the bond strength and tensile strength of cement itself, will produce micro-cracks. Second, the causes of concrete cracks Concrete cracks are the result of the development of micro-cracks. Concrete cracks for many reasons, for its part, considered to be bound by the deformation of concrete due to tensile stress than the material's sake. 1. Optional inappropriate material defects and the formation of cracks. Expired cement, aggregate excess mud, with active SiO 2 , high alkali cement, limestone aggregate, cement hydration heat and so on. 2. Construction of mishandling the formation of defects and cracks. Plastic concrete sink, was the top bar of the resistance, the formation of cracks along the reinforcement; concrete vibration is not dense, there cellular, easy to form the starting point for a variety of stress fractures; concrete mixer, transit time is too long, so that water evaporation, causing low slump concrete pouring, making the concrete volume in the mesh irregular cracks; rapid drying of concrete made when the initial curing of concrete contact with the atmosphere in the irregular mesh surface cracks; early form removal, concrete not yet established sufficient strength to impose its own components in the actual gravity load, prone to all kinds of stress cracks. 3. Because of the force components, deformation and crack formation of defects. Center tension; center compression; bending; shear; by punching; beam concrete shrinkage and temperature deformation; plate of concrete shrinkage and temperature deformation; in reinforced concrete, the tensile stress is mainly borne by the reinforced concrete is exposed stress. In plain concrete or reinforced concrete on the edges if the tensile stress within the structure there shall be to rely on concrete to bear. General design requirements in both the tensile stress does not appear or appear only very small tensile stress. However, the maximum temperature of concrete in construction to the operation of the cooling period of steady temperature, often caused by a large concrete internal tensile stress. 4. Because of environmental factors affect the formation of defects and cracks. Mainly temperature and humidity changes, the brittleness of concrete and uneven, as well as unreasonable structure, failure of raw materials (such as alkali-aggregate reaction), template deformation, differential settlement of foundation. Concrete dissolution cycles many times by the freeze, the stress generated in the concrete, and promote the development of existing cracks, loose structure, surface cracks, surface spalling or overall collapse. Third, measures to control and prevent the cracks 1. Of cement, water, aggregate, admixtures, reinforcement materials, the improper selection of the formation of cracks on the entry of raw materials must be in accordance with national standards for strict inspection and acceptance of the approach to prevention, where the unqualified use of defective materials shall be , or reduce the level of test use; of these have occurred due to improper selection of materials defects or cracks in concrete produced must be observed in detail for the long term (due to some problems take a while to find), carefully identify its causes and Quality of the problem, study and formulate their treatment and reinforcement. This is because once occurred due to improper material selection, quality problems, often with the universal reason. 2. As long transport time of concrete mixing, pouring too fast, the vibration is not real, it is improper construction joint, move the template the formation of cracks and other reasons can follow the "concrete order" strict implementation of concrete mixing, transport, pouring, vibration pound set and the old concrete construction joint connection. Templates, and form removal, and conservation requirements to prevent, the occurrence of such cracks in the component have been, but also distinguish the type of component, component of the force characteristics of the site where the cracks and the extent of serious cracks were commonly used in concrete cracks reinforcement measures or by filling concrete, steel anchor reinforcement, and even stick steel reinforcement, prestressed reinforcement remedial measures. 3. Due to dry weather, the initial maintenance is not good, the early cold concrete and large changes in temperature and humidity of the cracks were used to enhance the natural hardening process of concrete Results conservation, conservation of heat storage, the use of air-entraining agent to uniform distribution of air bubbles inside the concrete, measures such as temperature expansion joint repair reserved. Severe cold components, some should be removed, some should be reinforced before being used. 4. Because the components have to withstand loads too wide cracks, reasonably designed to prevent the emergence of these cracks; cracks have been too broad component appears to be reinforced by strengthening measures. 5. The foundation of unequal settlement of large cracks too broad and reasonably in the design of the building when checking in the use phase of the settlement to prevent the emergence of these cracks, these cracks have occurred on the structure, to use ground-based control measures proper handling of the foundation, then building the structure reinforcement measures adopted to solve. 6. On the environmental conditions and changes in the use of the crack occurred, according to different properties to different control measures, such as: (1) the use of temperature and humidity changes during the formation of cracks, usually difficult to eradicate, to adopt the protection of reinforced concrete measures to reduce atmospheric humidity changes of the component is appropriate; (2) The cracks resulting from repeated freezing and thawing, in addition to defects and damage has been formed in part to be reinforced or reinforced, but should add insulation on the cold concrete measures; (3) The corrosive medium in the resulting defects and damage a large area, in addition to corrosion and damage should be removed by the site to be reinforced or reinforced, shall use the acid water glass slag cement concrete or concrete overlay to protect; (4) damage due to earthquake seismic structural measures should be adopted to prevent; have been generated by the earthquake damage is not severe earthquake damaged buildings may refer to repair and reinforcement of the solution to the problem. In addition, temperature control and improved from the constraints of the two aspects. Used to improve the aggregate gradation, with a dry hard concrete, mixed with mixture, add air-entraining agent or a plasticizing agent measures to reduce the amount of cement in concrete; water when mixing concrete or gravel with water cooling to reduce the concrete pouring temperature; hot days when the pouring of concrete pouring to reduce the thickness of heat by pouring level; in the concrete laying pipes, pass into the cold water temperature; set reasonable removal time, the surface heat when temperatures plunged to avoid dramatic concrete surface temperature gradient ; Construction of Concrete Blocks and long-term exposure to surface or thin-walled structure, insulation measures taken in the cold season. Measures to improve the constraints are: a reasonable parting block; to avoid excessive fluctuations basis; reasonable arrangements for the construction process, to avoid the excessive height and long-term exposure to the side. In addition, to improve the performance of concrete and improve the crack resistance, enhance conservation, to prevent surface shrinkage, in particular, to ensure the quality of concrete is very important to prevent fractures, special attention should be avoided through the cracks, appears to restore its structural integrity is difficulties, so the construction should be to prevent the occurrence of cracks in the main cross-cutting. Fourth, early curing of concrete Practice shows that cracks in concrete common, most of the surface cracks of different depth, mainly because of the temperature gradient caused by the sudden drop in temperature in cold areas are also easy to form cracks. Therefore, the concrete surface of the insulation to prevent early cracking is particularly important. From the viewpoint of thermal stress, thermal insulation should meet the following requirements: (1) prevent the concrete and the concrete surface temperature difference between inside and outside the gradient, to prevent surface cracks; (2) to prevent the concrete super cool, should try to try to make concrete the construction period of not less than the minimum temperature on the stability of the temperature of concrete used; (3) to prevent cold and old concrete to reduce the constraints between the new and old concrete. Early curing of concrete, the main purpose is to maintain proper temperature and humidity conditions in order to achieve the effect of two aspects, one of the concrete from adverse temperature and humidity deformation of the invasion, to prevent the harmful shrinkage and shrinkage. On the one hand to smooth the cement hydration in order to meet the design strength and crack resistance. V. Conclusion Cracks in concrete above the relationship between the various effects of the theory and practice discussed, although the academic cracks in the concrete and calculation methods are different theories, but for specific advice for prevention and improvement measures more unified, but in practice of effects are good, concrete construction depends on our seeing much comparison, more analysis after problems, and more sum up, with a variety of preventive treatment measures, concrete cracks are completely avoidable.

247 评论

绿萝丝藤

。表征 粉末X -射线衍射( XRD )数据收集 X射线和飞利浦diffractometers利用衍射仪?辐射。 谱之前和之后焙烧(图1 )可 索引的六角晶格如预期的MCM - 41的[ 20 ] 并显示出一些收缩的结构经焙烧, 所指出的减少,晶胞参数, 的A0 (表1 ) 。氮吸附和解吸等温线 测量的煅烧样品77K下使用BELSORP 28SA和麦克ASAP的2000系统。那个 样品被加热到约200 ◦ c根据在真空 至少2小时删除任何水吸附等温前 被记录在案。的形状等温线,图所示。 2 , 也如预期的MCM - 41的一个步骤一个相对 压力约 [ 20 ] 。表面积( SBET )的计算模型的比表面积[ 21,22 ]和大于 800平方米/克的所有样品。孔径和孔体积 估计使用多利莫尔和治疗(卫生署)方法 [ 23,24 ] 。 元素分析的MCM - 41的是用 一个电感耦合等离子体原子发射光谱仪 (精工仪器,千叶,日本) 。数额 硅被确定为 % (宽/ w )和钠这是 % (瓦特/瓦特) 。数额的碳被确定为 % (瓦特/ W型)使用总碳分析仪(瑞格,美国) ,这表明 该煅烧过程中有效地消除了 表面活性剂。 。氨基酸吸附 该程度的赖氨酸吸附到MCM - 41的下 一系列的解决方案浓度, pH值,离子强度 和接触时间确定一批利用吸附 测试在25 ± 1 ◦ C和解决枯竭的分析。多芯片组件, 41个样品( 〜 40毫克)和解决方案的消旋盐酸赖氨酸 在水( 10毫升)混合装在密封的塑料 小瓶使用旋转混合器( Heto Rotamix公园)操作系统 在40转。 pH值的解决办法进行了调整之前 混合使用氢氧化钠或盐酸。经过选择 接触时间的溶液pH值是衡量和禁赛 被离心分离之前分析 上清使用总有机碳( TOC )分析仪 (岛津总有机碳- 5000A ) 。标准曲线产生 赖氨酸超过适当的浓度范围为每一套 样本和标准的解决方案是用来检查 分析仪的性能定期在分析。 确定的浓度,纠正的(小) 影响残炭的MCM - 41上的目录分析, 确定一个控制一批试运行在同一 实验条件,但没有办法赖氨酸存在于溶液中。(仅供参考)

238 评论

0921缘分

Receiver (radio)A radio receiver is an electronic circuit that receives its input from an antenna, uses electronic filters to separate a wanted radio signal from all other signals picked up by this antenna, amplifies it to a level suitable for further processing, and finally converts through demodulation and decoding the signal into a form usable for the consumer, such as sound, pictures, digital data, measurement values, navigational positions, consumer electronics, the terms radio and radio receiver are often used specifically for receivers designed for the sound signals transmitted by radio broadcasting services – historically the first mass-market radio types of radio receivers may include:Consumer audio and high fidelity audio receivers and AV receivers used by home stereo listeners and audio and home theatre system enthusiasts. Communications receivers, used as a component of a radio communication link, characterized by high stability and reliability of performance. Simple crystal radio receivers (also known as a crystal set) which operate using the power received from radio waves. Satellite television receivers, used to receive television programming from communication satellites in geosynchronous orbit. Specialized-use receivers such as telemetry receivers that allow the remote measurement and reporting of information. Measuring receivers (also: measurement receivers) are calibrated laboratory-grade devices that are used to measure the signal strength of broadcasting stations, the electromagnetic interference radiation emitted by electrical products, as well as to calibrate RF attenuators and signal generators. Scanners are specialized receivers that can automatically scan two or more discrete frequencies, stopping when they find a signal on one of them and then continuing to scan other frequencies when the initial transmission ceases. They are mainly used for monitoring VHF and UHF radio systems. In the context of home audio systems, the term "receiver" often refers to a combination of a tuner, a preamplifier, and a power amplifier all on the same chassis. Audiophiles will refer to such a device as an integrated receiver, while a single chassis that implements only one of the three component functions is called a discrete component. Some audio purists still prefer three discreet units - tuner, preamplifier and power amplifier - but the integrated receiver has, for some years, been the mainstream choice for music listening. The first integrated stereo receiver was made by the Harman Kardon company, and came onto the market in 1958. It had undistinguished performance, but it represented a breakthrough to the "all in one" concept of a receiver, and rapidly improving designs gradually made the receiver the mainstay of the marketplace. Many radio receivers also include a / Home theaterToday AV receivers are a common component in a high-fidelity or home-theatre system. The receiver is generally the nerve centre of a sophisticated home-theatre system providing selectable inputs for a number of different audio components like turntables, compact-disc players and recorders, and tape decks ( like video-cassette recorders) and video components (DVD players and recorders, video-game systems, and televisions).With the decline of vinyl discs, modern receivers tend to omit inputs for turntables, which have separate requirements of their own. All other common audio/visual components can use any of the identical line-level inputs on the receiver for playback, regardless of how they are marked (the "name" on each input is mostly for the convenience of the user.) For instance, a second CD player can be plugged into an "Aux" input, and will work the same as it will in the "CD" input receivers can also provide signal processors to give a more realistic illusion of listening in a concert hall. Digital audio S/PDIF and USB connections are also common today. The home theater receiver, in the vocabulary of consumer electronics, comprises both the 'radio receiver' and other functions, such as control, sound processing, and power amplification. The standalone radio receiver is usually known in consumer electronics as a modern integrated receivers can send audio out to seven loudspeakers and an additional channel for a subwoofer and often include connections for headphones. Receivers vary greatly in price, and support stereophonic or surround sound. A high-quality receiver for dedicated audio-only listening (two channel stereo) can be relatively inexpensive; excellent ones can be purchased for $300 US or less. Because modern receivers are purely electronic devices with no moving parts unlike electromechanical devices like turntables and cassette decks, they tend to offer many years of trouble-free service. In recent years, the home theater in a box has become common, which often integrates a surround-capable receiver with a DVD player. The user simply connects it to a television, perhaps other components, and a set of radiosPortable radios include simple transistor radios that are typically monoaural and receive the AM, FM, and/or short wave broadcast bands. FM, and often AM, radios are sometimes included as a feature of portable DVD/CD, MP3 CD, and USB key players, as well as cassette player/ stereo car radios can be a separate dashboard mounted component or a feature of in car entertainment Boombox (or Boom-box)—also sometimes known as a Ghettoblaster or a Jambox, or (in parts of Europe) as a "radio-cassette"—is a name given to larger portable stereo systems capable of playing radio stations and recorded music, often at a high level of portable radios, such as clockwork radios are used in developing nations or as part of an emergency preparedness of radio receiversEarly developmentWhile James Clerk Maxwell was the first person to prove electromagnetic waves existed, in 1887 a German named Heinrich Hertz demonstrated these new waves by using spark gap equipment to transmit and receive radio or "Hertzian waves", as they were first world’s first radio receiver (thunderstorm register) was designed by Alexander Stepanovich Popov, and it was first seen at the All-Russia exhibition in 1896. He was the first to demonstrate the practical application of electromagnetic (radio) waves,although he did not care to apply for a patent for his device called a coherer became the basis for receiving radio signals. The first person to use the device to detect radio waves was a Frenchman named Edouard Branly, and Oliver Lodge popularised it when he gave a lecture in 1898 in honour of Hertz. Lodge also made improvements to the coherer. Guglielmo Marconi believed that these new waves could be used to communicate over great distances and made significant improvements to both radio receiving and transmitting apparatus. In 1895 Marconi demonstrated the first viable radio system, leading to transatlantic radio communication in December Ambrose Fleming's development of an early thermionic valve to help detect radio waves was based upon a discovery of Thomas Edison's (called "The Edison effect", which essentially modified an early light bulb). Fleming called it his "oscillation valve" because it acted in the same way as water valve in only allowing flow in one direction. While Fleming's valve was a great stride forward it would take some years before thermionic, or vacuum tube technology was fully this time work on other types of detectors started to be undertaken and it resulted in what was later known as the cat's whisker. It consisted of a crystal of a material such as galena with a small springy piece of wire brought up against it. The detector was constructed so that the wire contact could be moved to different points on the crystal, and thereby obtain the best point for rectifying the signal and the best detection. They were never very reliable as the "whisker" needed to be moved periodically to enable it to detect the signal American named Lee de Forest, a competitor to Marconi, set about to develop receiver technology that did not infringe any patents to which Marconi had access. He took out a number of patents in the period between 1905 and 1907 covering a variety of developments that culminated in the form of the triode valve in which there was a third electrode called a grid. He called this an audion tube. One of the first areas in which valves were used was in the manufacture of telephone repeaters, and although the performance was poor, they gave significant improvement in long distance telephone receiving the discovery that triode valves could amplify signals it was soon noticed that they would also oscillate, a fact that was exploited in generating signals. Once the triode was established as an amplifier it made a tremendous difference to radio receiver performance as it allowed the incoming signals to be amplified. One way that proved very successful was introduced in 1913 and involved the use of positive feedback in the form of a regenerative detector. This gave significant improvements in the levels of gain that could be achieved, greatly increasing selectivity, enabling this type of receiver to outperform all other types of the era. With the outbreak of the First World War, there was a great impetus to develop radio receiving technology further. An American named Irving Langmuir helped introduce a new generation of totally air-evacuated "hard" valves. H. J. Round undertook some work on this and in 1916 he produced a number of valves with the grid connection taken out of the top of the envelope away from the anode and superheterodyneBy the 1920s, the tuned radio frequency receiver (TRF) represented a major improvement in performance over what had been available before, it still fell short of the needs for some of the new applications. To enable receiver technology to meet the needs placed upon it a number of new ideas started to surface. One of these was a new form of direct conversion receiver. Here an internal or local oscillator was used to beat with the incoming signal to produce an audible signal that could be amplified by an audio . J. Round developed a receiver he called an autodyne in which the same valve was used as a mixer and an oscillator, Whilst the set used fewer valves it was difficult to optimise the circuit for both the mixer and oscillator next leap forward in receiver technology was a new type of receiver known as the superheterodyne, or supersonic heterodyne receiver. A Frenchman named Lucien Levy was investigating ways in which receiver selectivity could be improved and in doing this he devised a system whereby the signals were converted down to a lower frequency where the filter bandwidths could be made narrower. A further advantage was that the gain of valves was considerably greater at the lower frequencies used after the frequency conversion, and there were fewer problems with the circuits bursting into idea for developing a receiver with a fixed intermediate frequency amplifier and filter is credited to Edwin Armstrong. Working for the American Expeditionary Force in Europe in 1918, Armstrong thought that if the incoming signals were mixed with a variable frequency oscillator, a low frequency fix tuned amplifier could be used. Armstrong's original receiver consisted of a total of eight valves. Several tuned circuits could be cascaded to improve selectivity, and being on a fixed frequency they did not all need to be changed in line with one another. The filters could be preset and left correctly tuned. Armstrong was not the only person working on the idea of a superhet. Alexander Meissner in Germany took out a patent for the idea six months before Armstrong, but as Meissner did not prove the idea in practice and did not build a superhet radio, the idea is credited to need for the increased performance of the superhet receiver was first felt in America, and by the late 1920s most sets were superhets. However in Europe the number of broadcast stations did not start to rise as rapidly until later. Even so by the mid 1930s virtually all receiving sets in Europe as well were using the superhet principle. In 1926 the tetrode valve was introduced, and enabled further improvements in and postwar developmentsIn 1939 the outbreak of war gave a new impetus to receiver development. During this time a number of classic communications receivers were designed. Some like the National HRO are still sought by enthusiasts today and although they are relatively large by today's standards, they can still give a good account of themselves under current crowded band conditions. In the late 1940s the transistor was discovered. Initially the devices were not widely used because of their expense, and the fact that valves were being made smaller, and performed better. However by the early 1960s portable transistor broadcast receivers (transistor radios) were hitting the market place. These radios were ideal for broadcast reception on the long and medium wave bands. They were much smaller than their valve equivalents, they were portable and could be powered from batteries. Although some valve portable receivers were available, batteries for these were expensive and did not last for long. The power requirements for transistor radios were very much less, resulting in batteries lasting for much longer and being considerably developments in semiconductor technology led to the introduction of the integrated circuit in the late 1950s. This enabled radio receiver technology to move forward even further. Integrated circuits enabled high performance circuits to be built for less cost, and significant amounts of space could be a result of these developments new techniques could be introduced. One of these was the frequency synthesizer that was used to generate the local oscillator signal for the receiver. By using a synthesizer it was possible to generate a very accurate and stable local oscillator signal. Also the ability of synthesizers to be controlled by microprocessors meant that many new facilities could be introduced apart from the significant performance improvements offered by technologiesReceiver technology is still moving forward. Digital signal processing where many of the functions performed by an analog intermediate frequency stage can be performed digitally by converting the signal to a digital stream that is manipulated mathematically is now widespread. The new digital audio broadcasting standard being introduced can only be used when the receiver can manipulate the signal today's radios are miracles of modern technology, filled with low power high performance integrated circuits crammed into the smallest spaces, the basic principle of the radio is usually the superhet, the same idea which was developed by Edwin Armstrong back in 1918.

211 评论

雪野在宁

您好,建议您去相关的专业学术网站上面搜索一下。

222 评论

相关问答

  • 毕业论文最终版本要提交吗

    是的,大学生毕业论文终稿需要亲自提交,因为这是一个学术作品,而且通常需要交给学校或指定的机构,必须由自己提交。这是因为毕业论文是一项重要的学术工作,而且是一个学

    子非鱼1102 5人参与回答 2023-12-10
  • 钢结构毕业论文最终版

    这个人是直接在网上复制的!不是他写的!

    haozai4130 3人参与回答 2023-12-11
  • 毕业论文终极版那张图片

    简历|毕业论文|中国风简历PPT模板 免费下载 链接:  幻灯片模板即已定义的幻灯片格式。PowerPoint和Word、Excel等应用软件一样,都是Micr

    crystal85k 6人参与回答 2023-12-07
  • 毕业论文必须提交最终版

    学校知网第一次查重之后可以继续修改论文,如果查重超过学校要求,需要进行修改降重然后重新查重,查重合格才能提交最终版论文。 最终上传到知网的论文必须是查重合格之后

    fightingBB 5人参与回答 2023-12-09
  • 毕业论文最终版查重吗

    如今社会上的学术不端行为现象非常严重,为了创造良好的做风,大部分学校都会要求对毕业论文进行查重,也就是说,毕业论文都是会被学校查重的。毕业论文查重已经成为了毕业

    默默一个人旅行 11人参与回答 2023-12-10