• 回答数

    2

  • 浏览数

    268

迷路的小花猫。
首页 > 期刊论文 > 四甲氧基甲基甘脲固化研究论文

2个回答 默认排序
  • 默认排序
  • 按时间排序

小肚巨肥

已采纳

热固性粉末涂料由于其独特的应用条件,通常表现出较高固化温度(120C以上)、较厚的涂膜厚度(50u以上)、较短的固化时间(20min以内),以及较高的初始熔融黏度(无溶剂稀释)等特点。实践表明,正是由于上述特点,使得粉末涂料,在固化过程中比初始黏度较低的溶剂型涂料更容易出现针孔。值得一提的是,热塑性粉末涂料由于体系黏度并不增加,出现针孔的几率相对较小。

针孔作为涂膜缺陷的一种,在高光泽粉末涂料中尤为明显,低光泽粉末涂料,尤其是无光砂纹粉末涂料则通常不明显。如何预防和消除中、高光泽粉末涂料的针孔,成为粉末涂料技术人员必须面对的课题(以下的研究仅针对热固性高光粉末涂料体系)。

粉末涂料涂膜针孔产生的原因及其解决方法:

粉末涂料涂膜针孔的形成与其独特的熔融固化过程是密切相关的,因此,研究粉末涂料涂膜针孔的形成机理,必须弄清楚粉末涂料的熔融固化过程。

粉末涂料,顾名思义是一种粉状的涂料,在涂装过程中首先是通过静电喷涂方式,以一种松散的结构吸附或堆积在底材表面。喷涂完成后,工件进入炽热的烘道,底材及涂料受热熔融流动,原有的松散结构或堆积模式随着粉末颗粒的熔融流动而破坏。需要特别提到的是,在成膜过程中液体流动产生的一种局部涡流效应,称为贝纳德漩涡。贝纳德漩涡产生的本质,则是粉末涂料熔融固化过程中伴随着的黏度变化而导致表面张力的变化,使高黏度低表面张力的流体下沉到涡流的中间(凹部),而低黏度高表面张力的流体则上升至漩涡的周边(凸部),直至固化完成。在此过程中,涂装后原有松散堆积空隙内的气体(空气)会在粉末熔融塌陷的过程中聚集形成气泡被排出,来自于涂层内部或者底材的小分子气体也会聚集形成气泡并被排出。随着固化进行体系黏度的不断加大,那些被裹挟于贝纳德漩涡的气泡在排出过程中最终形成针孔。因此,要预防和消除粉末涂料的针孔,就是要分析涂层内小分子(气泡)产生的根源,然后对症下药,预防和解决涂膜针孔缺陷。

在粉末涂料熔融固化过程中,被裹挟于粉末涂层的挥发性小分子主要可分为以下几种情形:

(1) 粉末涂料原生性针孔:被裹挟在涂层内的空气

粉末涂料经喷涂后以疏松的结构堆积在工件上,这种疏松的结构使得粉末颗粒与粉末颗粒之间存在大量的空隙被空气所填充,随着环境温度的升高,粉末涂料颗粒熔融导致这种疏松的结构塌陷,由于粉末涂料涂膜厚度一般大于50μ(喷涂后的疏松结构则远大于这个厚度),处于中间位置而升温较慢的粉末颗粒熔融较慢,使得其颗粒间的空气被熔融的涂料所裹挟,随着固化的进行,体系黏度逐渐增大,被裹挟在涂层中的空气导致形成了涂膜针孔。这种涂膜针孔是热固型粉末涂料因自身的特点而必然具有的,因此,严格来讲,针孔是粉末涂料的原生性缺陷。为了消除上述因素而导致原生性针孔,去气剂是高光粉末涂料配方中必须使用的原料,而安息香(苯偶姻)则是消除上述针孔的一种高效去气剂。安息香的消泡机理非常复杂,除了可消除上述针孔以外,苯偶姻还对其它因素所造成的针孔的消除有一定的作用。

需要说明的,尽管安息香是一种非常有效的粉末涂料消泡去气剂,它也无法解决所有粉末涂料针孔的问题。即便是粉末涂料原生性的去气问题,仍然需要注意:

(A)安息香在加热情况下容易分解并导致涂膜发黄,过多的安息香的加入会给浅色粉末涂料带来变色的问题。

(B)随着涂膜厚度的增加,尤其是超过120μ以上时,即使加入较大量的安息香,通常涂膜表面仍然会出现明显的针孔(厚膜针孔)。此类厚膜针孔就需要加入其它类型的消泡剂与安息香复配使用来消除。

(C)安息香无法完全消除某些低温固化粉末涂料中的针孔:

为降低固化温度,通常会在聚酯/TGIC体系或聚酯/环氧混合型粉末涂料体系内加入固化促进剂,导致加热固化时体系的熔融黏度会快速增加,使得大量的气体被裹挟在涂层内无法完全释放出来,导致产生针孔。实践表明,安息香无法完全解决这个问题,也需要配合其它消泡剂来解决。

(2)粉末涂料固化反应所产生的挥发性小分子

粉末涂料固化反应可分两类,一类是直接反应无小分子释放型,如羧基与环氧基反应,以及羟基与未封闭的异氰酸酯基反应。目前市场所大量使用的聚酯/环氧混合型室内粉末涂料、聚酯/TGIC型户外粉末涂料、GMA型丙烯酸树脂/DDDA型透明粉末涂料、纯环氧粉末涂料等在固化过程中,固化反应并不产生额外的小分子。另一类固化反应则释放出小分子,如聚酯/β-羟烷基酰胺户外粉末涂料、羟基聚酯/四甲氧基甲基甘脲粉末涂料,以及羟基/封闭异氰酸酯粉末涂料体系,在固化过程中分别释放出水、甲醇及异氰酸酯封闭剂。固化反应所释放的小分子会聚集成气泡并被排出涂膜,但由于粉末体系的黏度增加及膜厚的问题,使得部分小分子来不及释放,被裹挟在涂层内,导致针孔的产生。因此,这类粉末涂料,不仅有原生性的针孔要解决,还有额外产生并聚集的小分子气泡需要消除。当然,值得一提的是,由于B1530封闭剂的解封温度较高,约为160℃,在解封之前体系有足够的时间、低黏度来流平及释放所裹挟的气体,B1530固化体系的针孔问题反而并不是特别明显。

实践表明,单独安息香并不能够显著解决这种针孔问题。此类粉末涂料针孔的消除,除了安息香的使用,还需要配合其它消泡去气剂一起使用。

(3)底材的因素

底材是导致粉末涂料涂膜针孔的又一重要原因,多孔底材,如铸铝、铸铁,是粉末涂料针孔问题的高发区。

究其原因,多孔底材本身存在大量的空气,或者空隙内存在大量可挥发性物质(如未烘干的水分等),粉末涂装完成后,空隙内的空气或可挥发行物质在加热过程中被熔融的粉末涂料所封闭,随着涂料固化过程中体系黏度快速增大,使得空隙内的气体来不及从涂层内释放,造成针孔。

消除此类针孔,首先,喷涂前可将多孔底材预热温度高一些、时间久一些,尽可能烘干底材,并且使得粉末涂料由于底材温度高而有一个较低的初始熔融黏度,有助于底材内气体的排出。在粉末制造时,一方面可在粉末涂料配方中加入某些能够提高粉末涂料底材的润湿性能的物质,使得熔融的涂料能够快速渗透进多孔的底材,趁体系初始熔融黏度低时尽早逼出空隙内的气体。另一方面,应当选择熔融黏度低一些的树脂(成膜物质),或者在制粉配方中加入某些可显著降低涂料熔融黏度的物质。

为了提高粉末涂料对底材的润湿性能,可在体系中加入某些含极性基团(如酰胺基、羟基等)的化合物,这些化合物不但可以有助于润湿底材,而且可以帮助降低体系的熔融黏度,类似于液体涂料中的溶剂或者稀释剂,由于在粉末涂料中它们表现出固体的特点,姑且可称之为“固体溶剂”。“固体溶剂”是解决此类问题的一个非常有益的尝试,当然,为了不影响体系的防腐蚀性能, 这类“固体溶剂”不能为非反应且溶于水的化合物,添加量也不可以太大。

值得一提的是,某些反应型的“固体溶剂”的发现可能会表现非常出彩。此类“固体溶剂”主要表现出两个特点:第一,分子量较低的固体物质,并且初始熔融黏度较低;第二,能够参与化学反应,但它不一定与原有粉末涂料体系反应,而是某种自洽的反应体系。典型代表,如封闭型或未封闭的异氰酸酯固化剂(如B1530、B1540),它们的引入可以参与体系中的残余羟基进行反应可延长体系胶化时间,降低熔体黏度,提高交联密度。此类物质对消除针孔也是有帮助的。

(4)粉末受潮

除非条件异常恶劣,正常情况下粉末涂料是不容易受潮的。容易发生粉末受潮的情况,往往是由于粉末长期处于低温储存条件,突然进入高温潮湿的环境中。开箱后的粉末涂料由于温度较低,很容易使得空气中的水分凝结而受潮。

严重受潮后的粉末涂料,体系中引入了大量的水分,这些水分在烘烤过程被排出涂层,部分来不及排出的气体,则以非常细小的针孔形式,通常是以雾影的形式表现出来。

此类问题,只有预防。首先是确保粉末正常的储存条件,其次是尽可能避免超低温存放,如果实在需要低温存放,应当在开箱使用前让粉末有足够的时间恢复到正常温度,以免受潮。

(5)粉末原材料的因素

原材料小分子含量太高,也是造成涂膜针孔的一个重要因素。一方面,粉末树脂本身挥发份太高,尤其是高沸点小分子含量过高;另一方面,粉末原材料受潮,吸收了大量的水分。

以上因素所导致的针孔一般非常细小,其主要表现为涂膜表面的雾影。

(6)消泡剂的选择

安息香是高光泽粉末涂料最为有效的消泡去气剂,可有效消除正常膜厚( 60-90μ)下的原生性针孔。对其它原因引发的针孔,安息香也有一定的协同作用,但往往作用有限。大量的安息香使用也会带来涂膜黄变得问题,同时安息香本身也是加热分解及升华的物质,过多的使用会带来负面影响。

含酰胺基团、羟基基团的消泡剂可有效提高涂料对底材润湿性能,也可以改善树脂对颜料,尤其是无机颜填料的润湿性,降低涂料的熔融黏度,可有效消除各种原因所产生的泡孔。当然,选择低黏度、胶化时间的树脂对泡孔发生严重的情形,也是必要的。

透明粉消泡剂:作为粉末涂料的一个特殊品种,透明粉的针孔产生的原理与消泡方法与普通粉末涂料相同。特别的一点在于,透明粉是一个高度透明的体系,整个系统在光学上是各向同性的,不存在严重的相分离。因此,在消泡的过程中,所添加的消泡去气剂,必须与体系是完全相容的。在这个意义上,此类消泡剂需要精挑细选。

需要注意的是,大量非反应型消泡剂的加入对涂料性能是有害的,需要谨慎添加的使用量。

总之,粉末涂料针孔(泡孔)的形成原因是多方面的,究其根本原因,是随着固化时体系黏度的增加,被裹挟(Entrapped)在涂层内的小分子气体聚集且来不及释放而形成。被裹挟在涂层内的小分子来源包括:粉末涂料涂装时所疏松堆积的空气(粉末涂料原生性的)、某些固化反应所产生的水、甲醇等小分子、来自多孔底材内部的小分子气体,以及粉末原料或粉末成品存储不当而引入的小分子气体等。可以针对不同的原因,采取相应的解决方法。

209 评论

小雨后哒晴天

一、引言 在聚乙烯生产过程中,会产生少量的低聚物即低相对分子质量聚乙烯,又称高分子蜡简称聚乙烯蜡。因其优良的耐寒性、耐热性、耐化学性和耐磨性而得到应泛的应用。正常生产中,这部分蜡作为一种添加剂可直接加到聚烯烃加工中,它可以增加产品的光译和加工性能。高分子蜡是*良好的钝感剂,同时也可作塑料、颜料的分散润滑剂,瓦楞纸防潮剂,热熔粘合剂及地蜡,汽车美容蜡等。 二、化学性质 聚乙烯蜡R-(CH2-CH2)n-CH3,分子量1000-5000,是白色、无味、无臭的惰性物质,可在104-130℃下熔融,也可以在高温时溶解于溶剂和树脂中,但在降温时仍会析出,它的析出细度与冷却速度有关:慢速冷却得到较粗的颗粒(5-10u),快速冷却析出较细的颗粒()。在粉末涂料的成膜过程中,当涂膜冷却,聚乙烯蜡从涂液中析出,形成细微颗粒,浮在涂膜表面,起到纹理、消光、滑爽、抗擦划伤作用;适当地选择微粉蜡和涂料体系可得到各种花纹。 三、技术发展 微粉技术是近10年发展起来的一项高新技术,一般把粒径小于μm的粒子称为超微粒子20μm以下的称为微粒子,超微粒子的集合体称为超微粉体。 高分子微粒制备主要有了3种途径:一是由粗粒子出发,用机械粉碎法,蒸发凝缩法和熔融法等物理的方法;二是利用化学试剂的作用,使形成的各种分散状态的分子逐渐长成期望大小的微粒,可分为溶解和乳化两种分散方法;三是直接调节聚合或降解制备。如PMMA微粉、可控分子量PP、分散聚合制备PS微粒子、热裂解成辐射裂解制PTF微粉。我们在国内首先制备出PWEax微粉,经上海市粉体工程中试基地测定达到国外同类产品先进水平。主要工艺过程是物理方法。 (一)PEWax微粉的应用 1、涂料用聚乙烯蜡可以制备高光泽溶剂性涂料水性涂料、粉未涂料、罐头涂料、UV固化、金属装饰涂料等,还可以作为纸板等日用防潮涂料。 2、油墨、套印光油、打印油墨。PEWax可以用来制备凸版水性油墨,溶剂性凹版油墨,石印/胶印、油墨、套印光油等。 3、化妆品、个人护理品。PEWax可以作为粉饼、防汗剂/祛臭剂原材料。 4、卷材用微粉蜡。卷材用蜡有两个要求:即在提高涂膜表面滑度和硬度时,不能影响涂料的流平和对水的敏感性。 5、热熔粘合剂。PEWax微粉可以制备烫印用热熔粘合剂。 6、其它应用。PEWax还可以作铸压金属部件、发泡部件的隔离剂、橡塑片材、管材添加剂,还可以用作紫油流变改性剂和电流变体,也可以作为母料的载体和润滑剂。 (二)改性聚乙烯蜡的发展 我们在20世纪90年代初进行了低相对分子质量聚乙烯蜡的改性工作,关于羧化,接枝也有不少报道。国外申请专利的有德国、法国、波兰、日本。国内也申请了两相相关专利。 从文献调研和市场分析看,聚乙烯蜡和改性聚乙烯蜡,特别是微粉化后将会有更长足的发展。聚乙烯微粉蜡的表面效应、体积效应为在各新产品开发提供了优异的物理化学性能,为适应油墨、涂料、整理剂等各种领域要求也将有更多的系列超细微粉问世。 四、在涂料中的应用及作用机理 涂料用蜡主要以添加剂的形式加入,蜡类添加剂一般以水乳液形式存在,最初是用于改善涂膜的表面防扩性能。主要包括提高涂膜的平滑性、抗划性以及改善防水性。此外,它还可以影响涂料的流变性能,它的加入可以使金属闪光漆中铝粉这类的固体颗粒的取向变得均匀。在无光漆中它可以作为消光剂,根据其粒径和粒径分布,蜡类添加剂的消光效力也各不相同。因此,蜡添加剂即有适于有光漆的也有适用于无光漆的。微晶化改性聚乙烯蜡,可用于改善水性工业涂料的表面性质。如Ffka-906,加入后平滑性、抗粘连性、抗划伤性及消光作用都有加强,而且可以有效抑制颜料沉淀。添加量为。 (一)蜡在涂膜中所提供的特点 1、耐磨、防刮伤、防擦伤:蜡分布在涂膜中借此保护涂膜、防止刮伤、擦伤并提供耐磨损性;譬如集装箱涂料、木器涂料、装饰涂料等均需此功能。 2、控制磨擦系数:通常利用它的低摩擦系数,提供涂膜优异的滑度,同时因不同种类的蜡而有特殊丝绸柔和的触感。 3、耐化学品性:由于蜡的安定性而能赋予涂膜更佳的耐水,耐盐水喷雾等性能。 4、防止贴合:避免涂装物或被印刷物有回粘、贴合现象。 5、控制光泽度:选择适当的蜡,依不同添加量而有不同的消光效果。 6、防止二氧化硅等硬结沉积,增加涂料储存安定性。 7、防止金属刮痕(Antimetal Marking):尤其在印罐涂料,除了提供良好的加工性,更可以起到保护印罐储存物的储存安定。 (二)蜡在涂料中的特点与机理 蜡的种类繁多,而其展现在涂膜的形态我们大致可分成下列三种: 1、起霜效果:例如选用的蜡的熔点低于烘烤温度时,由于蜡在烘烤时熔融成液态,成膜冷却后,即在涂面上形成似霜的薄层。 2、球轴效果:此效应在于蜡由其本身的粒径大小与涂层膜厚相近,甚至大一些,而显露在外,使得腊的耐刮、防擦伤性能可以显现。 3、漂浮效应:不论蜡的粒子形态,蜡在成膜过程中漂移至涂膜表面均匀的分散开来,使得涂膜最上层有蜡的保护,显现蜡的特点。 (三)蜡生产方法 1、熔融法:以溶剂在密闭、高压的容器下加热熔融,然后在适当的冷却条件下出料,获得成品;缺点是质量不易控制,操作成本高且危险,同时某些蜡并不适用这种方法。 2、乳化法:可得又细又圆的粒子,适用于水性系统,但所加入的表面活性剂会对涂膜的耐水性造成影响。 3、分散法:将蜡加入树蜡/溶液中,利用球磨机、滚筒或其他分散设备分散;缺点是难获得高质量的产品,且成本高。 4、微粉化法:可采用喷射微粉机(Jet-Microniser)或微粉/分级机(Microniser/Classifier)生产工艺,即是利用粗腊在高速状态下相互间激烈碰撞后逐渐碎裂成微粒状,然后再由离心离心力作用,在失重下被吹逸出来收集而得。此为目前应用最多的制造方法。 虽然蜡的使用方法颇多,但仍以微粉化蜡为最多,而市面上微粉化腊的种类繁多,且各制造厂家生产工艺也均有差异,使得各厂微粉化蜡的粒径分布,相对分子质量、密度、熔点、硬度等性质均有些差异。 聚乙烯蜡的制造,一般有高压、低压聚合法;其中高压法的制得的聚乙烯蜡带支链,密度与熔融温度均较低,而低压法则可制得直链的低比重的腊;PE腊有各种不同的密度,例如同为低压法制得的非极性PE蜡而言,通常低密度者(低支链、高结晶度)较坚硬,有较佳的耐磨损及抗创痕性,但在滑性及降低摩擦系数上则稍差。

319 评论

相关问答

  • 苯甲醛研究论文

    ( 1 )杂多酸催化四氢呋喃开环聚合反应《化学研究与应用》 2003,15 ( 1 ), 48 - 50( 2 )新方法合成巨豆三烯酮《有机化学》 2003,2

    韵味八足 4人参与回答 2023-12-07
  • 三氟甲基磺酸钠的研究进展论文

    三氟甲磺酸是最强的有机酸之一。由于三氟甲磺酸和它的共轭碱(三氟甲磺酸根)具有很高的热力学稳定性,对一般的氧化还原反应不敏感,所以三氟甲磺酸不能溶解溶解氯化钠。

    冲哥是个姐 4人参与回答 2023-12-07
  • 甲基叔丁基醚毕业论文

    甲基叔丁基醚(MTBE)一般是以甲醇和异丁烯为原料,借助酸性催化剂合成,其中催化剂在工业上用得最多的是树脂催化剂。其中由于异丁烯的来源不同而形成了不同的合成路线

    MyronKiven 4人参与回答 2023-12-05
  • 甲基化论文参考文献

    可以通过谷歌学术输入参考文献,检索出文献后点击篇名下方的引号,打开参考文献框会有多种格式的参考文献,大部分文献能看到年、卷、期、页码(有的文献没有页码是文章编号

    寻找美食的虫 6人参与回答 2023-12-11
  • 甲基化研究论文

    表观遗传学,包括组蛋白共价修饰(covalent histone modification)、DNA甲基化修饰(DNA methylation)、RNA甲基化修

    小仙姓朱 2人参与回答 2023-12-06