• 回答数

    4

  • 浏览数

    99

仁义小红累不爱
首页 > 期刊论文 > 无机材料合成论文

4个回答 默认排序
  • 默认排序
  • 按时间排序

毛的惊喜

已采纳

上中国知网,或者豆丁上下..很多的...智能无机非金属材料摘 要 结构材料所处的环境极为复杂,材料损坏引起事故的危险性不断增加,研究与开发对损坏能自行诊断并具有自修复能力的结构材料是十分重要而急迫的任务。本文对智能材料的发展、构思、无机非金属智能材料进行了综述,对智能材料进一步研究进行了展望。 关键词 智能;无机非金属;材料 智能材料是指对环境具有可感知、可响应并具有功能发现能力的新材料。日本高木俊宜教授[1]将信息科学融于材料的物性和功能,于1989年提出了智能材料(Intelligent materials)概念。至此智能材料与结构的研究也开始由航空航天及军事部门[2,3]逐渐扩展到土木工程[4]、医药、体育和日常用品[5,6]等其他领域。 同时,美国的R•E•Newnham教授围绕具有传感和执行功能的材料提出了灵巧材料(Smart materials)概念,又有人称之为机敏材料。他将灵巧材料分为三类: 被动灵巧材料——仅能响应外界变化的材料; 主动灵巧材料——不仅能识别外界的变化,经执行线路能诱发反馈回路,而且响应环境变化的材料; 很灵巧材料——有感知、执行功能,并能响应环境变化,从而改变性能系数的材料。 R•E•Newnham的灵巧材料和高木俊宜的智能材料概念的共同之处是:材料对环境的响应性。 自l989年以来,先是在日本、美国,尔后是西欧,进而世界各国的材料界均开始研究智能材料。科学家们研究将必要的仿生(biominetic)功能引入材料,使材料和系统达到更高的层次,成为具有自检测、自判断、自结论、自指令和执行功能的新材料。智能结构常常把高技术传感器或敏感元件与传统结构材料和功能材料结合在一起,赋予材料崭新的性能,使无生命的材料变得有了“感觉”和“知觉”,能适应环境的变化,不仅能发现问题,而且还能自行解决问题。 由于智能材料和系统的性能可随环境而变化,其应用前景十分广泛[7]。例如飞机的机翼引入智能系统后,能响应空气压力和飞行速度而改变其形状;进入太空的灵巧结构上设置了消震系统,能补偿失重,防止金属疲劳;潜水艇能改变形状,消除湍流,使流动的噪声不易被测出而便于隐蔽;金属智能结构材料能自行检测损伤和抑制裂缝扩展,具有自修复功能,确保了结构物的可靠性;高技术汽车中采用了许多灵巧系统,如空气-燃料氧传感器和压电雨滴传感器等,增加了使用功能。其它还有智能水净化装置可感知而且能除去有害污染物;电致变色灵巧窗可响应气候的变化和人的活动,调节热流和采光;智能卫生间能分析尿样,作出早期诊断;智能药物释放体系能响应血糖浓度,释放胰岛素,维持血糖浓度在正常水平。 国外对智能材料研究与开发的趋势是:把智能性材料发展为智能材料系统与结构。这是当前工程学科发展的国际前沿,将给工程材料与结构的发展带来一场革命。国外的城市基础建设中正构思如何应用智能材料构筑对环境变化能作出灵敏反应的楼层、桥梁和大厦等。这是一个系统综合过程,需将新的特性和功能引入现有的结构中。 美国科学家们正在设计各种方法,试图使桥梁、机翼和其它关键结构具有自己的“神经系统”、“肌肉”和“大脑”,使它们能感觉到即将出现的故障并能自行解决。例如在飞机发生故障之前向飞行员发出警报,或在桥梁出现裂痕时能自动修复。他们的方法之一是,在高性能的复合材料中嵌入细小的光纤材料,由于在复合材料中布满了纵横交错的光纤,它们就能像“神经”那样感受到机翼上受到的不同压力,在极端严重的情况下,光纤会断裂,光传输就会中断,于是发出即将出现事故的警告。 1、 智能材料的构思[8] 一种新的概念往往是各种不同观点、概念的综合。智能材料设计的思路与以下几种因素有关:(1)材料开发的历史,结构材料→功能材料→智能材料。(2)人工智能计算机的影响,也就是生物计算机的未来模式、学习计算机、三维识别计算机对材料提出的新要求。(3)从材料设计的角度考虑智能材料的制造。(4)软件功能引入材料。(5)对材料的期望。(6)能量的传递。(7)材料具有时间轴的观点,如寿命预告功能、自修复功能,甚至自学习、自增殖和自净化功能,因外部刺激时间轴可对应作出积极自变的动态响应,即仿照生物体所具有的功能。例如,智能人工骨不仅与生物体相容性良好,而且能依据生物体骨的生长、治愈状况而分解,最后消失。 1.1 仿生与智能材料 智能材料的性能是组成、结构、形态与环境的函数,它具有环境响应性。生物体的最大特点是对环境的适应,从植物、动物到人类均如此。细胞是生物体的基础,可视为具有传感、处理和执行三种功能的融合材料,因而细胞可作为智能材料的蓝本。 对于从单纯物质到复杂物质的研究,可以通过建立模型实现。模型使复杂的生物材料得解,从而创造出仿生智能材料。例如,高分子材料是人工设计的合成材料,在研究时曾借鉴于天然丝的大分子结构,然后合成出了强度更高的尼龙。目前,已根据模拟信息接受功能蛋白质和执行功能蛋白质,创造出由超微观到宏观的各种层次的智能材料。 1.2 智能材料设计 用现有材料组合,并引入多重功能,特别是软件功能,可以得到智能材料。随着信息科学的迅速发展,自动装置(Automaton)不仅用于机器人和计算机这类人工机械,更可用于能条件反射的生物机械。 此自动装置在输入信号(信息)时,能依据过去的输入信号(信息)产生输出信号(信息)。过去输入的信息则能作为内部状态存贮于系统内。因此,自动装置由输入、内部状态、输出三部分组成。将智能材料与自动装置类比,两者的概念是相似的。 自动装置M可用以下6个参数描绘: M=(θ,X,Y,f,g,θ0) 式中θ为内部状态的集;X和Y分别代表输入和输出信息的集;f表示现在的内部状态因输入信息转变为下一时间内部状态的状态转变系数;g是现在的内部状态因输入信息而输出信息的输出系数;θ0为初期状态的集。 为使材料智能化,可控制其内部状态θ、状态转变系数f及输出系数g。例如对于陶瓷,其θ、f、g的关系,即是材料结构、组成与功能性的关系。设计材料时应考虑这些参数。若使陶瓷的功能提高至智能化,需要控制f和g。 一般陶瓷是微小晶粒聚集成的多晶体,常通过添加微量第二组分控制其特性。此第二组分的本体和微晶粒界两者的性能均影响所得材料特性。 实际上,第二组分的离子引入系统时,其自由能(G=H-TS)发生变化,为使材料的自由能(G)最小,有必要控制焓(H),使熵(S)达最适合的数值。而熵与添加物的分布有关,因此陶瓷的功能性控制可通过优化熵来实现。熵由材料本身的焓调控。故为使陶瓷具有高功能进而达到智能化的目的,应使材料处于非平衡态、拟平衡态和亚稳定状态。 对于智能材料而言,材料与信息概念具有同一性。而某一L符号的平均信息量Φ与几率P状态的信息量logP有关,即 此式类同于热力学的熵,但符号相反,故称负熵(negcntropy)。因熵为无序性的量度,负熵则是有序性的量度。 1.3 智能材料的创制方法 基于智能材料具有传感、处理和执行的功能,因而其创制实际上是将此类软件功能(信息)引入材料。这类似于身体的信息处理单元——神经原,可融各种功能于一体(图1(a)),将多种软件功能寓于几纳米到数十纳米厚的不同层次结构(图1(b)),使材料智能化。此时材料的性能不仅与其组成、结构、形态有关,更是环境的函数。智能材料的研究与开发涉及金属系、陶瓷系、高分子系和生物系智能材料和系统。 2、 智能无机非金属材料 智能无机非金属材料很多,在此介绍几种较为典型的智能无机非金属材料。 2.1 智能陶瓷 2.1.1 氧化锆增韧陶瓷 氧化锆晶体一般有三种晶型: 其中t-ZrO2转化为m-ZrO2相变具有马氏体相变的特征,并且相变伴随有3%~5%的体积膨胀。不加稳定剂的ZrO2陶瓷在烧结温度冷却的过程中,就会由于发生相变而严重开裂。解决的办法是添加离子半径比Zr小的Ca、Mg、Y等金属的氧化物。 氧化锆相变可分为烧成冷却过程中相变和使用过程中相变。造成相变的原因,前者是温度诱导,后者是应力诱导。两类相变的结果都可使陶瓷增韧。增韧机制主要有相变增韧、微裂纹增韧、表面增韧、裂纹弯曲和偏转增韧等[9]。 当ZrO2晶粒尺寸比较大而稳定剂含量比较小时,陶瓷中的t-ZrO2晶粒在烧成后冷却至室温的过程中发生相变,相变所伴随的体积膨胀在陶瓷内部产生压应力,并在一些区域形成微裂纹。当主裂纹在这样的材料中扩展时,一方面受到上述压应力的作用,裂纹扩展受到阻碍;同时由于原有微裂纹的延伸使主裂纹受阻改向,也吸收了裂纹扩展的能量,提高了材料的强度和韧性。这就是微裂纹增韧。 由于ZrO2相变温度很高,借助温度变化来设计智能材料是不可行的,需要研究应力诱导下的相变增韧,应力诱导下的相变增韧在ZrO2增韧陶瓷中是最主要的一种增韧机制。 材料中的t-ZrO2晶粒在烧成后冷却至室温的过程中仍保持四方相形态,当材料受到外应力的作用时,受应力诱导发生相变,由t相转变为m相。由于ZrO2晶粒相变吸收能量而阻碍裂纹的继续扩展,从而提高了材料的强度和韧性。相转变发生之处的材料组成一般不均匀,因结晶结构的变化,导热和导电率等性能随之而变,这种变化就是材料受到外应力的信号,从而实现了材料的自诊断。 对氧化锆材料压裂而产生裂纹,在300℃热处理50h后,因为t相转变为m相过程中产生的体积膨胀补偿了裂纹空隙,可以再弥合,实现了材料的自修复。 对于材料使用中产生的疲劳强度及膨胀状况等,可通过材料的尺寸、声波传播速度、导热和导电率的变化进行在位观测。 2.1.2灵巧陶瓷 灵巧陶瓷是灵巧材料的一种,它能够感知环境的变化,并通过反馈系统作出相应的反应。用若干多层锆钛酸铅(PZT)可制成录像磁头的自动定位跟踪系统,日本利用PZT压电陶瓷块制成了Pachinko游戏机。 录像磁头的自动定位跟踪系统的原理是:在PZT陶瓷双层悬臂弯曲片上,通过布设的电极将其分为位置感受部分和驱动定位部分。位置感受部分即为传感器,感受电极上所获得的电压通过反馈系统施加到定位电极上,使层片发生弯曲,跟踪录像带上的磁迹,见图2。 Pachinko游戏机也应用了类似的原理。 利用灵巧陶瓷制成的灵巧蒙皮,可以降低飞行器和潜水器高速运动时的噪声,防止发生紊流,以提高运行速度,减少红外辐射达到隐形目的。 根据上述原则,完全有可能获得很灵巧材料。这种材料能够感知环境的多方面变化并能在时间和空间两方面调整材料的一种或多种性能参数,取得最优化响应。因此,传感、执行和反馈是灵巧材料工作的关键功能。 压电仿生陶瓷 材料仿生是材料发展的方向之一。日本研究人员正在研究鲸鱼和海豚的尾鳍和飞鸟的鸟翼,希望能研究出象尾鳍和鸟翼那样柔软、能折叠、又很结实的材料。 图3为模拟鱼类泳泡运动的弯曲应力传感器。传感器中两个金属电极之间有一很小的空气室,PZT压电陶瓷起覆盖泳泡肌肉的作用。因空气室的形状类似于新月,故称为“Moonie”复合物。此压电水声器应用特殊形状的电极,通过改变应力方向,使压电应变常数dh增至极大值。当厚的金属电极因声波而承受静水压力时,一部分纵向应力转变为符号相反的径向和切向应力,使压电常数d3l由负值变为正值,它与d33叠加,使dh值增加。这类复合材料的dh•gh值比纯PZT材料的大250倍。 应用PZT纤维复合材料和“Moonie”型复合物设计开发的执行器元件,可以消除因声波造成的稳流。 2.2 智能水泥基材料 在现代社会中,水泥作为基础建筑材料应用极为广泛,使水泥基材料智能化具有良好的应用前景。 智能水泥基材料包括:应力、应变及损伤自检水泥基材料[10~12];自测温水泥基材料[13];自动调节环境湿度的水泥基材料[14];仿生自愈合水泥基材料[15、16]及仿生自生水泥材料[17]等。 水泥基材料中掺加一定形状、尺寸和掺量的短切碳纤维后,材料的电阻变化与其内部结构变化是相对应的。因此,该材料可以监测拉、弯、压等工况及静态和动态载荷作用下材料内部情况。在水泥净浆中(体积)的碳纤维用做传感器,其灵敏度远远高于一般的电阻应变片。 将一定长度的PAN基短切碳纤维掺入水泥净浆中,材料产生了热电效应。这种材料可以对建筑物内部和周围环境温度的变化实时监测。基于该材料的热电效应,还可能利用太阳能和室内外温差为建筑物供电。如果进一步使该材料具有Seebeck效应的逆效应——Peltier效应,那么就可能制得具有制冷制热材料。 在水泥净浆中掺加多孔材料,利用多孔材料吸湿量与温度的关系,能够使材料具有调湿功能。 一些科学家目前在研制一种能自行愈合的混凝土。设想把大量的空心纤维埋入混凝土中,当混凝土开裂时,事先装有“裂纹修补剂”的空心纤维会裂开,释放出粘结修补剂把裂纹牢牢地粘在一起,防止混凝土断裂。这是一种被动智能材料,即在材科中没有埋入传感器监测裂痕,也没有在材料中埋入电子芯片来“指导”粘接裂开的裂痕。与此原理相同,美国根据动物骨骼的结构和形成机理,尝试仿生水泥基材料的制备。该材料在使用过程中如果发生损伤,多孔有机纤维回释放高聚物愈合损伤。 美国科学家正在研究一种主动智能材料,能使桥梁出现问题时自动加固。他们设计的一种方式是:如果桥梁的某些局部出现问题,桥梁的另一部分就自行加固予以弥补。这一设想在技术上是可行的。随着电脑技术的发展,完全可以制造出极微小的信号传感器和微电子芯片及计算机把这些传感器、微型计算机芯片埋入桥梁材料中。桥梁材料可以用各种神奇的材料构成,例如用形状记忆材料。埋在桥梁材料中的传感器得到某部分材料出现问题的信号,计算机就会发出指令,使事先埋入桥梁材料中的微小液演变成固体而自动加固。 3、结语 目前,智能材料尚处在研究发展阶段,它的发展和社会效应息息相关。飞机失事和重要建筑等结构的损坏,激励着人们对具有自预警、自修复功能的灵巧飞机和材料结构的研究。以材料本身的智能性开发来满足人们对材料、系统和结构的期望,使材料结构能“刚”“柔”结合,以自适应环境的变化。在未来的研究中,应以以下几个方面为重点。 (1)如何利用飞速发展的信息技术成果,将软件功能引入材料、系统和结构中; (2)进一步加强探索型理论研究及材料复合智能化的机理研究,加速发展智能材料科学; (3)加强应用基础研究。

120 评论

enjoyduola

无机非金属非常有前景 不错

353 评论

sevenweish

用高温固相反应由锆矿石粉制备锆质颜料锆质颜料是陶瓷、搪瓷、玻璃工业应用较广泛的高温无机颜料 因为它具有非常稳定的晶型结构,所以具有耐高温,物化性能稳定、着色力强等优点。我国锆质颜料主要是用品位较高的氧化锫,二氧化硅与着色元素人工合成的。用这种方怯生产的锫质颜料,成本太高。据《日本特许公报》昭47—8699报道,锆质颜料可用锆英石矿粉按特定的工艺条件直接合成。实验结果表明, 用锆英石矿粉直接合成的无机锆质颜料质置达到国内外同类产品水平。而其生产成本比用原法生产的产品成倍降低。用锆英石矿粉直接合成无机锆质颜料采用的工艺流程如图---------高温固相反应由锆矿石粉制备锆质颜料的工艺流程 主要原料有(1)锫英石: ZrO:≥60 ,工业级,广东等地产。 (2)纯碱I Na 2CO 3/>95 ,工业级,大连等地产。(3) 硫酸2 H 2SO‘/>90% , 工业级,全国各地产。(4)氧化镨2 Pr日OI1>/90%,工业级内蒙、上海等地产。(5)五氧化二钒: V O ≥96 ,工业级, 湖南等地产。(6)铁红;Fe O。≥96 , 工业级, 湖南等地产。(7)铬绿:Cr O。≥96 , 工业级, 湖南等地产。(8)氧化铺:C0~70 , 工业级, 广东, 湖南等地产。锆质颜料的色域非常广泛, 在氧化锆,二氧化硅形成锆英石晶型结构的同时,5【入上述原料(4)一(8)中的一种,则可制备黄、蓝、红、绿、青等不同色调的锆质颜料。本方法的不同之处在于:所用的基术原料锆英石矿粉本身就具有稳定的晶型结构,简单地加入着色离子是不能制备锆质颜料的。也就是说巳具有稳定晶型结构的锆英石不能再着色,所以, 首先必须破坏其晶型结构。具体做法是,在锆英石矿粉中加入一定量的纯碱,在高温下使混台物发生固相反应生成一种易被无机酸分解的中间物质,然后加入一定量的无机酸处理之, 使之分解并生成一种能与着色离子发生固相反应的混合物。此种混合物巳不具有锆英石晶型,在此种混合物中加入着色元素错、钒、铁、铬、钻等的氧化物或盐类及一定量的矿化剂, 高温下物料发生固相反应生成着色的锆英石固溶体。采用APD一10全自动x射线衍射仪对合成的锫质颜料颗粒进行晶型结构分析,测定条件为工作电压40kVt,工作电流20mAt步选扫描20,20。一80℃铜靶。测定结果表明 锫质颜料试样为锆英石晶型结构,无杂质相生成, 纯度较高。将小样与其他样品进行了质量对比,数据表明, 锆质颜料的各项技术指标已达到国内同类产品水平,其中耐温性高于国内水平。锆英石是一种非常稳定的矿物质, 只有在1530~高温下才能分解。考虑到工业化生产,宜尽量在较低的温度下破坏其晶型结构, 我们在锆英石中加入一定量的纯碱, 以使其在850"C~1IO0~C温度下发生固相反应。通过大量的实验证明, 锆英石与纯碱的比例不同,其反应温度亦不相同合成无机颜料时,加入矿化剂的作用主要是使颜料的晶型结构在较低的温度下形成。不仅如此,加入相应的矿化。剂能使着色离子的价态发生变化,使所需要的颜色离子顺利进入颜料晶格。在一定范围内着色离子加入量与颜料的颜色深浅成正比。合成锆质颜料时, 着色元素的加入量是有一定范围的。在此范围内,着色离子加入量与颜料颜色的深浅成正比。但着色离子不能无限量增加, 不同的着色离子对锆离子和硅离子有一定的取代份数, 超过了这个取代份数,就会产生过剩的着色离子,从而影响颜料质量。

359 评论

听雨蘑菇

纳米材料技术作为一门高新科学技术,纳米技术具有极大的价值和作用。下面我给大家分享一些纳米材料与技术3000字论文, 希望能对大家有所帮助!纳米材料与技术3000字论文篇一:《试谈纳米复合材料技术发展及前景》 [摘要]纳米材料是指材料显微结构中至少有一相的一维尺度在100nm以内的材料。纳米材料由于平均粒径微小、表面原子多、比表面积大、表面能高,因而其性质显示出独特的小尺寸效应、表面效应等特性,具有许多常规材料不可能具有的性能。纳米材料由于其超凡的特性,引起了人们越来越广泛的关注,不少学者认为纳米材料将是21世纪最有前途的材料之一,纳米技术将成为21世纪的主导技术。 [关键词]高聚物纳米复合材料 一、 纳米材料的特性 当材料的尺寸进入纳米级,材料便会出现以下奇异的物理性能: 1、尺寸效应 当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或投射深度等物理特征尺寸相当或更小时,晶体的边界条件将被破坏,非晶态纳米微粒的颗粒表面附近原子密度减小,导致声、光电、磁、热、力学等特性呈现出新的小尺寸效应。如当颗粒的粒径降到纳米级时,材料的磁性就会发生很大变化,如一般铁的矫顽力约为80A/m,而直径小于20nm的铁,其矫顽力却增加了1000倍。若将纳米粒子添加到聚合物中,不但可以改善聚合物的力学性能,甚至还可以赋予其新性能。 2、表面效应 一般随着微粒尺寸的减小,微粒中表面原子与原子总数之比将会增加,表面积也将会增大,从而引起材料性能的变化,这就是纳米粒子的表面效应。 纳米微粒尺寸d(nm) 包含总原子表面原子所占比例(%)103×1042044××1028013099从表1中可以看出,随着纳米粒子粒径的减小,表面原子所占比例急剧增加。由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,很容易与 其它 原子结合。若将纳米粒子添加到高聚物中,这些具有不饱和性质的表面原子就很容易同高聚物分子链段发生物理化学作用。 3、量子隧道效应 微观粒子贯穿势垒的能力称为隧道效应。纳米粒子的磁化强度等也具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,这称为纳米粒子的宏观量子隧道效应。它的研究对基础研究及实际 应用,如导电、导磁高聚物、微波吸收高聚物等,都具有重要意义。 二、高聚物/纳米复合材料的技术进展 对于高聚物/纳米复合材料的研究十分广泛,按纳米粒子种类的不同可把高聚物/纳米复合材料分为以下几类: 1、高聚物/粘土纳米复合材料 由于层状无机物在一定驱动力作用下能碎裂成纳米尺寸的结构微区,其片层间距一般为纳米级,它不仅可让聚合物嵌入夹层,形成“嵌入纳米复合材料”,还可使片层均匀分散于聚合物中形成“层离纳米复合材料”。其中粘土易与有机阳离子发生交换反应,具有的亲油性甚至可引入与聚合物发生反应的官能团来提高其粘结。其制备的技术有插层法和剥离法,插层法是预先对粘土片层间进行插层处理后,制成“嵌入纳米复合材料”,而剥离法则是采用一些手段对粘土片层直接进行剥离,形成“层离纳米复合材料”。 2、高聚物/刚性纳米粒子复合材料 用刚性纳米粒子对力学性能有一定脆性的聚合物增韧是改善其力学性能的另一种可行性 方法 。随着无机粒子微细化技术和粒子表面处理技术的 发展 ,特别是近年来纳米级无机粒子的出现,塑料的增韧彻底冲破了以往在塑料中加入橡胶类弹性体的做法。采用纳米刚性粒子填充不仅会使韧性、强度得到提高,而且其性价比也将是不能比拟的。 3、高聚物/碳纳米管复合材料 碳纳米管于1991年由 发现,其直径比碳纤维小数千倍,其主要用途之一是作为聚合物复合材料的增强材料。 碳纳米管的力学性能相当突出。现已测出碳纳米管的强度实验值为30-50GPa。尽管碳纳米管的强度高,脆性却不象碳纤维那样高。碳纤维在约1%变形时就会断裂,而碳纳米管要到约18%变形时才断裂。碳纳米管的层间剪切强度高达500MPa,比传统碳纤维增强环氧树脂复合材料高一个数量级。 在电性能方面,碳纳米管作聚合物的填料具有独特的优势。加入少量碳纳米管即可大幅度提高材料的导电性。与以往为提高导电性而向树脂中加入的碳黑相比,碳纳米管有高的长径比,因此其体积含量可比球状碳黑减少很多。同时,由于纳米管的本身长度极短而且柔曲性好,填入聚合物基体时不会断裂,因而能保持其高长径比。爱尔兰都柏林Trinity学院进行的研究表明,在塑料中含2%-3%的多壁碳纳米管使电导率提高了14个数量级,从10-12s/m提高到了102s/m。 三、前景与展望 在高聚物/纳米复合材料的研究中存在的主要问题是:高聚物与纳米材料的分散缺乏专业设备,用传统的设备往往不能使纳米粒子很好的分散,同时高聚物表面处理还不够理想。我国纳米材料研究起步虽晚但 发展 很快,对于有些方面的研究 工作与国外相比还处于较先进水平。如:漆宗能等对聚合物基粘土纳米复合材料的研究;黄锐等利用刚性粒子对聚合物改性的研究都在学术界很有影响;另外,四川大学高分子 科学 与工程国家重点实验室发明的磨盘法、超声波法制备聚合物基纳米复合材料也是一种很有前景的手段。尽管如此,在总体水平上我国与先进国家相比尚有一定差距。但无可否认,纳米材料由于独特的性能,使其在增强聚合物 应用中有着广泛的前景,纳米材料的应用对开发研究高性能聚合物复合材料有重大意义。特别是随着廉价纳米材料不断开发应用,粒子表面处理技术的不断进步,纳米材料增强、增韧聚合物机理的研究不断完善,纳米材料改性的聚合物将逐步向 工业 化方向发展,其应用前景会更加诱人。 参考 文献 : [1] 李见主编.新型材料导论.北京:冶金工业出版社,1987. [2]都有为.第三期工程科技 论坛 ——‘纳米材料与技术’ 报告 会. [3]rohlich J,Kautz H,Thomann R[J].Polymer,2004,45(7):2155-2164. 纳米材料与技术3000字论文篇二:《试论纳米技术在新型包装材料中的应用》 【摘 要】作为一门高新科学技术,纳米技术具有极大的价值和作用。进入20世纪90年代,纳米科学得到迅速的发展,产生了纳米材料学、纳米化工学、纳米机械学及纳米生物学等,由此产生的纳米技术产品也层出不穷,并开始涉及汽车行业。 【关键词】纳米技术 包装材料 1 纳米技术促进了汽车材料技术的发展 纳米技术可应用在汽车的任何部位,包括发动机、底盘、车身、内饰、车胎、传动系统、排气系统等。例如,在汽车车身部分,利用纳米技术可强化钢板结构,提高车体的碰撞安全性。另外,利用纳米涂料烤漆,可使车身外观色泽更为鲜亮、更耐蚀、耐磨。内装部分,利用纳米材料良好的吸附能力、杀菌能力、除臭能力使室内空气更加清洁、安全。在排气系统方面,利用纳米金属做为触媒,具有较高的转换效果。 由于纳米技术具有奇特功效,它在汽车上得到了广泛的应用,提升汽车性能的同时延长使用寿命。 2 现代汽车上的纳米材料 (1)纳米面漆。汽车面漆是对汽车质量的直观评价,它不但决定着汽车的美观与否,而且直接影响着汽车的市场竞争力。所以汽车面漆除要求具有高装饰性外,还要求有优良的耐久性,包括抵抗紫外线、水分、化学物质及酸雨的侵蚀和抗划痕的性能。纳米涂料可以满足上述要求。纳米颗粒分散在有机聚合物骨架中,作承受负载的填料,与骨架材料相互作用,有助于提高材料的韧性和其它机械性能。研究表明,将10%的纳米级TiO2粒子完全分散于树脂中,可提高其机械性能,尤其可使抗划痕性能大大提高,而且外观好,利于制造汽车面漆涂料;将改性纳米CaCO3以质量分数15%加入聚氨酯清漆涂料中,可提高清漆涂料的光泽、流平性、柔韧性及涂层硬度等。 纳米TiO2是一种抗紫外线辐射材料,加之其极微小颗粒的比表面积大,能在涂料干燥时很快形成网络结构,可同时增强涂料的强度、光洁度和抗老化性;以纳米高岭土作填料,制得的聚甲基丙烯酸甲酯纳米复合材料不仅透明,而且吸收紫外线,同时也可提高热稳定性,适合于制造汽车面漆涂料。 (2)纳米塑料。纳米塑料可以改变传统塑料的特性,呈现出优异的物理性能:强度高,耐热性强,比重更小。随着汽车应用塑料数量越来越多,纳米塑料会普遍应用在汽车上。主要有阻燃塑料、增强塑料、抗紫外线老化塑料、抗菌塑料等。阻燃塑料是燃烧时,超细的纳米材料颗粒能覆盖在被燃材料表面并生成一层均匀的碳化层,起到隔热、隔氧、抑烟和防熔滴的作用,从而起到阻燃作用。 目前汽车设计要求规定,凡通过乘客座舱的线路、管路和设备材料必须要符合阻燃标准,例如内饰和电气部分的面板、包裹导线的胶套,包裹线束的波纹管、胶管等,使用阻燃塑料比较容易达到要求。增强塑料是在塑料中填充经表面处理的纳米级无机材料蒙脱土、CaCO3、SiO2等,这些材料对聚丙烯的分子结晶有明显的聚敛作用,可以使聚丙烯等塑料的抗拉强度、抗冲击韧性和弹性模量上升,使塑料的物理性能得到明显改善。 抗紫外线老化塑料是将纳米级的TiO2、ZnO等无机抗紫外线粉体混炼填充到塑料基材中。这些填充粉体对紫外线具有极好的吸收能力和反射能力,因此这种塑料能够吸收和反射紫外线,比普通塑料的抗紫外线能力提高20倍以上。据报道这类材料经过连续700小时热光照射后,其扩张强度损失仅为10%,如果作为暴露在外的车身塑料构件材料,能有效延长其使用寿命。抗菌塑料是将无机的纳米级抗菌剂利用纳米技术充分地分散于塑料制品中,可将附着在塑料上的细菌杀死或抑制生长。这些纳米级抗菌剂是以银、锌、铜等金属离子包裹纳米TiO2、CaCO3等制成,可以破坏细菌生长环境。据介绍无机纳米抗菌塑料加工简单,广谱抗菌,24小时接触杀菌率达90%,无副作用。 (3)纳米润滑剂。纳米润滑剂是采用纳米技术改善润滑油分子结构的纯石油产品,它不会对润滑油添加剂、稳定剂、处理剂、发动机增润剂和减磨剂等产品产生不良作用,只是在零件金属表面自动形成纯烃类单个原子厚度的一层薄膜。由于这些微小烃类分子间的相互吸附作用,能够完全填充金属表面的微孔,最大可能地减小金属与金属间微孔的摩擦。与高级润滑油或固定添加剂相比,其极压可增加3倍-4倍,磨损面减小16倍。由于金属表面得到了保护,减小了磨损,使用寿命成倍增加。 另外,由于纳米粒子尺寸小,经过纳米技术处理的部分材料耐磨性是黄铜的27倍、钢铁的7倍。目前纳米陶瓷轴承已经应用在奔驰等高级轿车上,使机械转速加快、质量减小、稳定性增强,使用寿命延长。 (4)纳米汽油。纳米汽油最大优点是节约能源和减少污染,目前已经开始研制。该技术是一种利用现代最新纳米技术开发的汽油微乳化剂。它能对汽油品质进行改造,最大限度地促进汽油燃烧,使用时只要将微乳化剂以适当比例加入汽油便可。交通部汽车运输节能技术检测中心的专家经试验后认为,汽车在使用加入该微乳化剂的汽油后,可降低其油耗10%~20%,增加动力性能25%,并使尾气中的污染物(浮碳、碳氢化合物和氮氧化合物等)排放降低50%~80%。它还可以清除积碳,提高汽油的综合性能。更令人注意的是,纳米技术应用在燃料电池上,可以节省大量成本。因为纳米材料在室温条件下具有优异的储氢能力。根据实验结果,在室温常压下,约2/3的氢能可以从这些纳米材料中得以释放,故其能替代昂贵的超低温液氢储存装置。 (5)纳米橡胶。汽车中橡胶材料的应用以轮胎的用量最大。在轮胎橡胶的生产中,橡胶助剂大部分成粉体状,如炭黑、白炭黑等补强填充剂、促进剂、防老剂等。以粉体状物质而言,纳米化是现阶段橡胶的主要发展趋势。新一代纳米技术已成功运用其它纳米粒子作为助剂,而不再局限于使用炭黑或白炭黑,汽车中最大的改变即是,轮胎的颜色已不再仅限于黑色,而能有多样化的鲜艳色彩。另外无论在强度、耐磨性或抗老化等性能上,新的纳米轮胎均较传统轮胎都优异,例如轮胎侧面胶的抗裂痕性能将由10万次提高到50万次。 (6)纳米传感器。传感器是纳米技术应用的一个重要领域,随着纳米技术的进步,造价更低、功能更强的微型传感器将广泛应用在社会生活的各个方面。半导体纳米材料做成的各种传感器,可灵敏地检测温度、湿度和大气成分的变化,这在汽车尾气和大气环境保护上已得到应用。纳米材料来制作汽车尾气传感器,可以对汽车尾气中的污染气体进行吸附与过滤,并对超标的尾气排放情况进行监控与报警,从而更好地提高汽车尾气的净化程度,降低汽车尾气的排放。我国纳米压力传感器的研制已获得成功,产品整体性能超过国外的超微传感器,缩小了我国在这一技术领域与世界先进国家存在的差距。有专家认为,到2020年,纳米传感器将成为主流。 (7)纳米电池。早在1991年被人类发现的碳纳米管韧性很高,导电性极强,兼具金属性和半导体性,强度比钢高100倍, 密度只有钢的1/6。我国科学家最近已经合成高质量的碳纳米材料,使我国新型储氢材料研究一举跃入世界先进行列。此种新材料能储存和凝聚大量的氢气,并可做成燃料电池驱动汽车,储氢材料的发展还会给未来的交通工具带来新型的清洁能源。 结语 随着材料技术的发展,纳米技术已成为当今研究领域中最富有活力,对未来经济和社会发展有着十分重要影响的研究对象。纳米科技正在推动人类社会产生巨大的变革,未来汽车技术的发展,有极大部分与纳米技术密切相关,纳米材料和纳米技术将会给汽车新能源、新材料、新零部件带来深远的影响。对于汽车制造商而言,纳米技术的有效运用,有效地促进技术升级、提升附加价值。相信在不久的将来,纳米技术必将在汽车的制造领域得到更广泛的应用。 参考文献 [1]肖永清.纳米技术在汽车上的应用[J].轻型汽车技术,. [2]潘钰娴,樊琳.纳米材料的研究和应用[J].苏州大学学报(工科版),2002. [3]周李承,蒋易,周宜开,任恕,聂棱.光纤纳米生物传感器的现状及发展[J].传感器技术,2002,(1):18~21 纳米材料与技术3000字论文篇三:《试谈纳米技术及纳米材料的应用》 摘要:本文主要论述了纳米材料的兴起、纳米材料及其性质表现、纳米材料的应用示例、纳米材料的前景展望,以供与大家交流。 关键词:纳米材料;应用;前景展望 1.纳米技术引起纳米材料的兴起 1959年,著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。80年代初,德国科学家成功地采用惰性气体凝聚原位加压法制得纯物质的块状纳米材料后,纳米材料的研究及其制备技术在近年来引起了世界各国的普遍重视。由于纳料材料具有独特的纳米晶粒及高浓度晶界特征以及由此而产生的小尺寸量子效应和晶界效应,使其表现出一系列与普通多晶体和非晶态固体有本质差别的力学、磁、光、电、声等性能,使得对纳米材料的制备、结构、性能及其应用研究成为90年代材料科学研究的 热点 。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。 2.纳米材料及其性质表现 纳米材料 纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。 纳米材料的特殊性质 纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著影响,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料所表现的力、热、声、光、电磁等性质,往往不同于该物质在粗晶状态时表现出的性质。与传统晶体材料相比,纳米材料具有高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量、高电阻、高比热、高热膨胀系数、低热导率、强软磁性能。这些特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特殊导体、分子筛、超微复合材料、催化剂、热交换材料、敏感元件、烧结助剂、润滑剂等领域。 3.纳米材料的应用示例 目前纳米材料主要用于下列方面: 高硬度、耐磨WC-Co纳米复合材料 纳米结构的WC-Co已经用作保护涂层和切削工具。这是因为纳米结构的WC-Co在硬度、耐磨性和韧性等方面明显优于普通的粗晶材料。其中,力学性能提高约一个量级,还可能进一步提高。高能球磨或者化学合成WC-Co纳米合金已经工业化。化学合成包括三个主要步骤:起始溶液的制备与混和;喷雾干燥形成化学性均匀的原粉末;再经流床热化学转化成为纳米晶WC-Co粉末。喷雾干燥和流床转化已经用来批量生产金属碳化物粉末。WC-Co粉末可在真空或氢气氛下液相烧结成块体材料。VC或Cr3C2等碳化物相的掺杂,可以抑制烧结过程中的晶粒长大。 纳米结构软磁材料 Finemet族合金已经由日本的Hitachi Special Metals,德国的Vacuumschmelze GmbH和法国的 Imply等公司推向市场,已制造销售许多用途特殊的小型铁芯产品。日本的 Alps Electric Co.一直在开发Nanoperm族合金,该公司与用户合作,不断扩展纳米晶Fe-Zr-B合金的应用领域。 电沉积纳米晶Ni 电沉积薄膜具有典型的柱状晶结构,但可以用脉冲电流将其破碎。精心地控制温度、pH值和镀池的成份,电沉积的Ni晶粒尺寸可达10nm。但它在350K时就发生反常的晶粒长大,添加溶质并使其偏析在晶界上,以使之产生溶质拖拽和Zener粒子打轧效应,可实现结构的稳定。例如,添加千分之几的磷、流或金属元素足以使纳米结构稳定至600K。电沉积涂层脉良好的控制晶粒尺寸分布,表现为Hall-Petch强化行为、纯Ni的耐蚀性好。这些性能以及可直接涂履的工艺特点,使管材的内涂覆,尤其是修复核蒸汽发电机非常方便。这种技术已经作为 EectrosleeveTM工艺商业化。在这项应用中,微合金化的涂层晶粒尺寸约为100nm,材料的拉伸强度约为锻造Ni的两倍,延伸率为15%。晶间开裂抗力大为改善。 基纳米复合材料 Al基纳米复合材料以其超高强度(可达到)为人们所关注。其结构特点是在非晶基体上弥散分布着纳米尺度的a-Al粒子,合金元素包括稀土(如Y、Ce)和过渡族金属(如 Fe、Ni)。通常必须用快速凝固技术(直接淬火或由初始非晶态通火)获得纳米复合结构。但这只能得到条带或雾化粉末。纳米复合材料的力学行为与晶化后的非晶合金相类似,即室温下超常的高屈服应力和加工软化(导致拉神状态下的塑性不稳定性)。这类纳米材料(或非晶)可以固结成块材。例如,在略低于非晶合金的晶化温度下温挤。加工过程中也可以完全转变为晶体,晶粒尺寸明显大干部份非晶的纳米复合材料。典型的Al基体的晶粒尺寸为100~200nm,镶嵌在基体上的金属间化合物粒子直径约50nm。强度为~1GPa,拉伸韧性得到改善。另外,这种材料具有很好的强度与模量的结合以及疲劳强度。温挤Al基纳米复合材料已经商业化,注册为Gigas TM。雾化的粉末可以固结成棒材,并加工成小尺寸高强度部件。类似的固结材料在高温下表现出很好的超塑性行为:在1s-1的高应变速率下,延伸率大于500%。 4.纳米材料的前景趋向 经过我国材料技术人员多年对纳米技术的研究探索,现在科学家已经能够在实验室操纵单个原子,纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪4大领域高速发展。可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装计算机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子器件、纳米机器人、集成生物化学传感器等将被研究制造出来。 近年来还有一些引人注目的发展趋势新动向,如:(1)纳米组装体系蓝绿光的研究出现新的苗头;(2)巨电导的发现;(3)颗粒膜巨磁电阻尚有潜力;(4)纳米组装体系设计和制造有新进展。

107 评论

相关问答

  • 无机材料合成论文

    上中国知网,或者豆丁上下..很多的...智能无机非金属材料摘 要 结构材料所处的环境极为复杂,材料损坏引起事故的危险性不断增加,研究与开发对损坏能自行诊断并具有

    仁义小红累不爱 4人参与回答 2023-12-08
  • 无机材料学报是ei吗

    是的被SCI收录的期刊有1 北京科技大学学报(MMM英文版) 2 材料科学技术(英文版) 30 无机材料学报 3 大气科学进展(英文版) 31 无机化学学报 4

    北京美克 1人参与回答 2023-12-07
  • 无机材料学报sci

    问题一:为什么知网上有的期刊查不到影响因子 5分 影响因子(Impact Factor,IF)是美国ISI(科学信息研究所)的JCR(期刊伐证报告)中的一项数据

    众有情殇 1人参与回答 2023-12-10
  • 十大无机材料学报

    功能材料在2016年被踢出EI

    慕容诗月 4人参与回答 2023-12-11
  • 无机合成方法毕业论文

    无机合成方法:高温,低温,高压,低压,溶胶凝胶,电化学,极端条件下的合成!

    小路要减肥 3人参与回答 2023-12-12