• 回答数

    4

  • 浏览数

    279

0921缘分
首页 > 职称论文 > 北京数学竞赛论文题目

4个回答 默认排序
  • 默认排序
  • 按时间排序

妞妞们要健康

已采纳

NBA赛程的制定和评价【摘要】一个合理的赛程表是NBA能够精彩上演的保证。在问题一评价07—08赛季赛程的合理性和公平性时,本文首先将赛程表的信息存放于矩阵中,然后通过设计算法从矩阵中求取所需信息,得到了各队的客场比赛数,背靠背比赛数等一系列影响合理性和公平性的因素。同时将球迷对赛程表的评价作为评价赛程表合理性的一部分,并且通过定义赛季主客场满意度,比赛精彩系数等指标将赛程的合理性和公平性量化。利用MATLAB软件计算出07—08赛季的各指标值:公平性系数为,精彩系数,07—08赛季赛程的综合评定为,该赛程符合NBA的比赛规定。在问题二中,首先我们将 定义为一种比赛双方的对阵组合, 表示队客场挑战 队。通过函数将对阵的情况数值化。在问题一的基础上,考虑了各队主客场数的平衡,背靠背比赛数的范围,各区各联盟间各队比赛场数的约束及精彩系数的最大化,综合各项指标设计出了算法排出了08—09赛季的赛程表,并用问题一中所建立的评价赛程表合理性和公平性的数学模型对设计出的08—09赛季的赛程表作出评价,得到了结论。公平性系数为,精彩系数,08—09赛季赛程的综合评定为。关键词:量化分析 赛表生成算法 合理性和公平性NBA赛程的制定和评价一、问题的重述一个合理的赛程表是NBA能够精彩上演的保证。维尼克主要负责每支球队的具体赛程的制定,但是无论维尼克如何做,总有一些球队在抱抱怨,他只能尽量使得赛程安排公平合理。维尼克每个赛季给一支球队定的背靠背上限是24对,下限是15对。另外,考虑到比赛的观赏性等其他一些因素,由于历史原因,有些球队之间的比赛会格外引人注目,同样的,球队内的球星也可能成为影响赛程安排的因素,此外,一些节日比赛安排会有所不同,很明显周末比赛相对紧密,而每个星期天似乎都会有一场精彩的比赛,再比如每年的圣诞大战。所有这些都在一定程度上增加了比赛安排的复杂性。要求:对NBA 2007-2008赛季常规赛赛程的安排,讨论其合理性和公平性。根据问题(1)得出的模型与结论,给出NBA常规赛赛程安排模型,并制定NBA 2008-2009 赛季的常规赛赛程,并给出评价。二、模型的基本假设1、假设考察一个赛程安排是否合理主要考虑下面这三个因素:是否满足赛制的要求,球队的满意度,球迷的满意度。2、假设个球队的排名情况和拥有的球星数能够说明该队的受关注程度。3、假设各球队对赛程的满意度仅取决于对“主客场数”和“背靠背数”的满意度。4、假设球迷对赛程的满意程度主要取决于重要比赛的安排时间。5、假设08—09季度的比赛每个周末比赛日的比赛场数固定,非周末比赛日比赛场数大体相等。6、假设在对08—09赛季的赛程安排时,只考虑节假日里不安排比赛,不考虑其他因素的比赛的影响。 三、符号说明符号表示的意义 记录2007—2008赛季各场比赛信息的 的矩阵 存储个球队在2007—2008赛季客场比赛数的数组 存储各球队在2007—2008赛季背靠背比赛数的数组 记录30支球队再2007—2008赛季排名信息的 的矩阵第 队与第 队到第 天为止,队为主场, 队为客场的两队的交锋次数 和的不分主客场的交锋次数 描述对阵形势及对应对阵形势下比赛场数的矩阵 队客场挑战队的对阵形式 队和 队在这种对阵形式下进行的对赛场数 队和队比赛的精彩系数 每个赛季的比赛观赏系数与每场比赛观赏性系数的和球队对主客场数的满意度 球队对背靠背数的满意度 第支球队的整体实力系数 第支球队的打比赛时的精彩系数 将 队客场挑战队这场比赛映射为一个数值的函数 四、问题的分析和模型的建立问题一模型建立对于每个赛程的合理性和公平性,可由下面3个主要因素来衡量:l 四条硬性的要求1)每个分区的球队在常规赛中要与在同一个分的球队比赛四场2)分区的每支球队要与分区以外,但是在同在一个大赛区的每个球队相遇三到四次3)小赛区的每支球队要与不同大赛区的每支球队比赛两场4)共用同一个比赛场馆的球队的主场比赛不能在同一天进行。l 球队从自身利益出发对赛程的满意程度l 观众对赛程的满意程度,尤其表现在对某些重要比赛的时间安排上1、对2007—2008赛季的赛程安排关于四条硬性要求的检验各球队的分区情况如表一所示:东部赛区 西部赛区 大西洋分赛区 太平洋分赛区 波士顿凯尔特人 1 洛杉矶湖人 16 新泽西网 2 萨克拉门托国王 17 纽约尼克斯 3 菲尼克斯太阳 18 费城76人 4 金州勇士 19 多伦多猛龙 5 洛杉矶快船 20 中央分赛区 西北分赛区 底特律活塞 6 明尼苏达森林狼 21印第安纳步行者 7 犹他爵士 22 密尔沃基雄鹿 8 丹佛掘金 23芝加哥公牛 9 波特兰开拓者 24 克里夫兰骑士 10 西雅图超音速 25 东南分赛区 西南分赛区 迈阿密热火 11 新奥尔良黄蜂 26 奥兰多魔术 12 达拉斯小牛 27华盛顿奇才 13 圣安东尼奥马刺 28亚特兰大老鹰 14 休斯敦火箭 29 夏洛特山猫 15 孟菲斯灰熊 30 题目中给出的常规赛赛制为:1)每个小赛区的球队在常规赛中要与在同一个小赛区的球队比赛四场。2)分赛区的每支球队要与分赛区以外,但是在同在一个大赛区的每个球队相遇三到四次。3)小赛区的每支球队要与不同大赛区的每支球队比赛两场。因此我们可以得到:每个球队的比赛场数为: 1 .1分区内赛程安排检验一共有6个赛区,各赛区内球队的编号分别为:大西洋分赛区:1—5 中央分赛区: 6—10 东南分赛区: 11—15 太平洋分赛区:16—20 西北分赛区: 21—25 西南分赛区: 26—30在讨论赛程的合理性和公平性时,必须要对每支球队在分赛区的赛程安排进行检验。要求每个分赛区的球队在常规赛中要与在同一个分赛区的球队比赛四场。同赛区不同分区的赛程安排检验在讨论赛程的合理性和公平性时,必须要对每支球队在同一赛区不同分区的赛程安排进行检验。要求分赛区的每支球队要与分赛区以外,但是在同在一个大赛区的每支球队相遇三到四次。如:编号为1—5的球队与编号为6—10的球队就属于同赛区不同分区的情况。则编号为1—5内的每个球队需要与编号为6—10内的每个球队比赛3—4场。不同赛区内的赛程安排检验在讨论赛程的合理性和公平性时,还需要对每支球队在不同赛区的赛程安排进行检验。要求小赛区的每支球队要与不同大赛区的每支球队比赛两场。如:编号为1—15的球队与编号为16—30的球队就属于不同大赛区的情况。编号为1—15内的球队需要与编号为16—30的球队比赛两场。只有当一个赛程的安排同时满足上面的三个条件时,该赛程才符合了赛程安排的基本要求,才能够进一步进行合理性和公平性的分析。2、球队对赛程的满意程度的评价对于一个确定的赛程,球队就有确定的主客场数、背靠背数、连续客场作战数等,而球队会从自身利益出发对自己的赛程做出评价,一个合理公平的赛程能够最大程度减少各球队的抱怨。也就是使各球队的主客场数、背靠背数、连续客场作战数都大致相等。为了对球队的满意程度进行量化分析,我们首先需要对给出的附录(07—08赛季赛程安排)进行处理和记录。对题目已知信息的处理:1) 对比赛日期的处理:对日期进行编号。将07—08赛季10月31日作为第一天,记为“1”,以后每天的编号为前一天的编号加1。比如:11月1日则应该记为“2”,11月2日记为“3”……依次类推。2) 对球队队名进行编号,其编号如表一3) 对比赛对应的北京时间的处理:将比赛时间在北京时间上午的记为:1将比赛时间在北京时间凌晨的记为:0根据前面对比赛日期、球队队名、对应北京时间的处理,可以建立描述每场比赛信息的线性数据结构如图一:d k z t (图一): NBA常规赛日期(d ): 客队队名的编号(k ): 主队队名的编号(z ): 对应的北京时间(t )例如有这样一个数据单元:8 26 16 1 它提供的比赛信息为:11月7日(周三)进行的比赛一场NBA比赛,客队为新奥尔良黄蜂,主队为洛杉矶湖人,北京时间为上午。按照上面的方法,我们将NBA常规赛10月赛程的1230场比赛全部列出,可以得到一个 的矩阵(全部矩阵见附录1)。该矩阵能反映赛程的全部信息。 各球队对赛程安排满意度的分析通过给出的材料,我们知道“每支球队的主客场数”、“背靠背数”、“连续客场数”这几个因素是衡量球队满意度的主要因素。 各球队主客场数的讨论用数组 [30]存储各球队客场比赛数。可用MATLAB计算出数组中各元素的值(程序见附录2)。其中 表示第 个球队的客场比赛数。由于每支球队在2007--2008赛季一共要进行82场比赛,所以在绝对公平的情况下,每支球队在该赛季的客场数与主场数应该相等,各为41场。考虑到球队对主客场数抱怨是因为自己比别队的客场数多,为了定量的说明球队对主客场数的满意程度我们定义 (其中为整个赛季30支球队,客场比赛数最大值与最小值之差)为主客场数的满意度指数。即 表示球队对安排的主客场数的满意度。【注】: 时(即:各队都有41场客场和41场主场),,表示对安排的主客场数完全满意。时(即:第 队有82场客场,而第 队有0场客场),,表示对安排的主客场数完全不满意。 各队背靠背比赛场数的讨论用数组 来存储每个球队背靠背比赛的场数。可用MATLAB计算出数组中各元素的值(程序见附录2)。 表示第 支球队参加的背靠背比赛数。球队都希望自己的背靠背比赛数尽量少,但是竞赛委员会为了公平公正,应该尽量照顾到每支球队,因此竞赛委员会在每个赛季给一支球队定的背靠背上限是24对,下限是15对。为了定量的说明球队对背靠背数的满意程度,我们定义(其中表示:整个赛季30支球队里背靠背比赛数最大值和最小值之差)为球队对背靠背数的满意指数即 表示各球队对安排的背靠背数的满意度。【注】: 时(即:各球队的背靠背数相等),,表示对安排的背靠背数完全满意。时(即:第 球队的背靠背数为0),,表示对安排的背靠背数完全不满意。3、观众对赛程安排的满意程度观众想要观看一场比赛,主要会考虑到比赛的精彩度。而对于观众来说,一场比赛是否精彩,一方面是看对抗的两个球队的实力是否强大,一般来说,实力越强的两个球队进行比赛,观看的人将会越多;另一方面,观众都有自己喜欢的球星,因此,比赛中两队的球星越多越能吸引观众。因此,影响观众对赛程满意程度的两个主要因素就是:“各球队的实力”和“球星的影响力”。l 各队的实力对参加NBA常规赛的这30支球队进行编号,其编号如表一所示。根据07—08赛季对这30支球队的排名情况,我们可以得到一个关于这30支球队排名信息的的矩阵 :=[1,20,27,14,12,3,18,25,22,8,30,6,10,16,23,2,21,11,17,24,26,7,15,19,29,4,13,5,9,28]为了定量的描述球队的实力,我们定义 ()(其中 表示第 支球队在07—08赛季的排名)为球队的整体实力系数。【注】: 时(即第 支球队排名为第1)。,表示该球队实力最强。时(即第 支球队排名为第30)。,表示该球队实力最弱l 球星的影响力我们将参加上赛季全明星的队员设定为具有个人影响力的球星。其名单为:姚明(火箭) 科比(湖人) 邓肯(马刺) 艾弗森(掘金) 安东尼(掘金) 勒布朗-詹姆斯(骑士) 德怀特-霍华德(魔术) 波什(猛龙) 韦德(热火) 基德(篮网) 纳什(太阳) 保罗(黄蜂) 斯塔德迈尔(太阳) 诺维茨基(小牛) 布泽尔(爵士) 大卫-韦斯特(黄蜂) 罗伊(开拓者) 雷-阿伦(凯尔特人) 比卢普斯(活塞) 贾米森(奇才) 乔-约翰逊(老鹰) 汉密尔顿(活塞) 保罗-皮尔斯(凯尔特人) 拉希德-华莱士(活塞)为了对球星的影响力进行定量描述,我们可以做如下处理:将首发的影响力记为:2;替补的影响力记为:1。则由07—08赛季的全明星名单可得到:=[2,2,0,0,2,2,0,0,0,2,2,2,1,1,0,2,0,2,0,0,0,1,4,1,0,2,1,2,2,0]为各队的球星影响力系数矩阵(按1到30的球队编号)则:假设:综合实力和球星效应对球队的影响力有相同的权重,则有:第队对观众的吸引系数,亦即第 支球队的比赛的精彩系数:问题一的结果分析1. 对2007—2008赛季的赛程安排关于四条硬性要求的检验结果分析利用MATLAB软件我们可以求得记录第 支球队与第支球队()在2007—2008赛季中比赛场数的矩阵 。= [0 4 4 4 4 3 3 4 4 4 4 3 4 3 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 24 0 4 4 4 3 4 4 3 4 3 4 3 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 24 4 0 4 4 4 4 3 4 3 4 4 3 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 24 4 4 0 4 4 3 4 4 3 3 4 4 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 24 4 4 4 0 4 4 3 3 4 4 3 4 3 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 23 3 4 4 4 0 4 4 4 4 4 4 3 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 23 4 4 3 4 4 0 4 4 4 4 3 4 3 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 24 4 3 4 3 4 4 0 4 4 4 3 4 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 24 3 4 4 3 4 4 4 0 4 3 4 3 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 24 4 3 3 4 4 4 4 4 0 3 4 4 3 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 24 3 4 3 4 4 4 4 3 3 0 4 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 23 4 4 4 3 4 3 3 4 4 4 0 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 24 3 3 4 4 3 4 4 3 4 4 4 0 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 23 4 4 4 3 4 3 4 4 3 4 4 4 0 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 24 4 3 3 4 3 4 3 4 4 4 4 4 4 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 4 4 4 4 3 4 3 4 4 4 4 4 3 32 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 0 4 4 4 3 4 3 4 4 4 3 4 4 42 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 0 4 4 4 3 4 3 4 3 3 4 4 32 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 0 4 4 3 4 4 3 3 4 3 4 42 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 0 4 4 4 3 3 4 4 3 3 42 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 4 4 4 0 4 4 4 4 4 3 4 3 42 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 3 3 4 4 0 4 4 4 4 4 4 3 32 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 4 4 4 4 4 0 4 4 3 3 3 4 42 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 3 4 3 4 4 4 0 4 4 4 4 4 32 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 3 3 4 4 4 4 0 3 4 3 4 42 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 3 3 4 4 4 3 4 3 0 4 4 4 42 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 3 3 4 4 3 4 3 4 4 4 0 4 4 42 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 3 3 4 4 3 4 3 4 4 0 4 42 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 4 4 4 3 3 3 4 4 4 4 4 4 0 42 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 4 3 4 4 4 3 4 3 4 4 4 4 4 0]中的元素 表示2007—2008赛季编号为的球队与编号为的球队所进行的比赛场数。 是一个完全对称的矩阵,其对角线上的元素为 ,表示球队不能与自身进行比赛。()的取值为3或者4,这满足了“分区的每支球队要与分区以外,但是在同在一个大赛区的每个球队相遇三到四次”和“每个小赛区的球队在常规赛中要与在同一个小赛区的球队比赛四场”。()的取值为2,这满足了“小赛区的每支球队要与不同大赛区的每支球队比赛两场”。所以我们可以得到结论:NBA 2007-2008赛季常规赛赛程的安排是合理且公平的。2、球队对赛程的满意程度的评价结果分析利用MATLAB软件,我们可以得到存储各球队在2007—2008赛季客场比赛场数的数组的值。B = [41 41 41 41 41 41 41 41 41 41 41 41 41 41 4141 41 41 41 41 41 41 40 42 41 41 41 41 41 41]可以看到,这30只球队,其中有28支球队在2007—2008赛季的客场数有41场,只有一支球队(丹佛掘金)的客场数有40场,一支球队(波特兰开拓者)的客场数有42场。而我们已经分析了,一个合理公平的赛程安排,对于每支球队来说:应该使每支球队的主客场数尽量相等。因此,NBA组委会在对2007—2008赛季赛程安排关于各队主客场的安排是合理、公平的。3、观众对赛程安排的满意程度评价结果分析由MATLAB计算出:各球队综合实力系数向量为: [1,,,,,,,,,,,,,,,,,,,,,,,,,,,,];各球队球星影响力向量为: [,,,,,,, ,,,,,,,,,,,,,,1,,,,,,,];各球队的综合实力和球星影响的平均系数向量为: [,,,,,,,,,,,,,,,,,,,,,,,,,,,,,];由假设可知,观众对于赛程安排的满意程度与各球队的综合实力和球星影响力的平均系数向量有关。观察“各球队的综合实力和球星影响的平均系数向量”可知各球队让观众满意的能力有大有小,且差异比较明显。故此我们可以在不违反赛程公平和合理的前提下,多安排影响力大的球队进行比赛。问题二的数据分析和模型求解1. 对比赛对阵组合的描述用 来表示一场比赛的对阵形势,其中 的意义是: 队客场挑战 队。用表示2007—2008赛季 队和 队在这种对阵形式下进行的比赛场数。因为有30支球队,所以共有900种对阵形势。而按照NBA比赛场数的规定,每个球队的比赛场数为:根据的关系及每个球队和不同球队比赛场数要求可以将900种对阵形势可分为以下四类:1)、,表示球队和自身进行比赛,事实上,比赛不会进行。2)、“ ”或“ ”等六种情况,表示同一分区内两个球队进行比赛。根据NBA比赛场数的规定,两队需进行4场比赛。3)、“ 且 ”或“ ”等六种情况表示同一赛区不同分区间两个球队进行比赛。根据NBA比赛场数的规定,两队将进行 场比赛;4)、 且,表示不同赛区间两个球队进行比赛。根据NBA比赛场数的规定,两队将进行两场比赛。2.对比赛对阵组合的处理 建立对阵形势的转化函数及转换关系为了方便描述和处理数据,我们建立了对阵形势 和自然数的线性对应关系,其函数关系为:容易知道: 和自然数 形成一一对应的关系。用 作为 的代号,数字 和的对应关系为: ( 为取余符号)这样就建立了对阵形势 和自然数的相互转换关系。 建立描述对阵形势及对应对阵形势下比赛场数的矩阵矩阵的大小为 。表示: 队客场挑战 队这种对阵形式表示: 队和 队在这种对阵形式下进行的总的比赛场数考虑到球队的主客场数的平衡,所以尽量使 与相等。根据的关系及各队间比赛场数的要求有下面四条结论:1)、 比赛不会进行,2)、“ ”或“ ”等六种情况,两队将进行4场比赛,分别两场主场、两场客场,则3)、“ 且 ”或“ ”等六种情况,两队将进行3—4场比赛。若进行3场比赛,则一个球队打一个主场两个客场或是一个客场两个主场,;若进行4场比赛,则一个球队打两场主场两个场客场,4)、 且,两队将进行两场比赛,每个队打一场主场一场客场,根据以上原则用MATLAB软件编制程序得到描述对阵形势及对应对阵形势下比赛场数的矩阵。【注】:其中 已经考虑到了比赛主客场数的平衡。3.由矩阵生成比赛表的算法准备工作首先确定下赛季可用的比赛日参照08—09年的日历和美国法定节假日的基本信息,设定2008年11月1日(周六)到2009年04月17日(周五)为比赛日区间。其中周末比赛日有48天,非周末比赛日有116天。比赛日共计164天。下面介绍比赛日生成的过程。为了方便,假设每个周末比赛日有 场比赛,每个非周末比赛日有场比赛。考虑到周末比赛的收视率一般高于非周末比赛的收视率,规定 。则 、 应该满足约束方程: 。用线性规划解方程可得 为5,为3或4,即每个周末比赛日进行5场比赛,每个非周末比赛日进行3或4场比赛。 算法的设计算法要求:1)、每支球队需要满足背靠背比赛场数在范围的要求2)、每支球队主客场数的平衡及满足NBA规定的各队间的比赛场数(由生成的矩阵已经满足该要求)。3)、在1)和2)的前提下尽量通过赛程的安排提高比赛的观赏性。算法设计:1)、处理背靠背比赛场数由对阵形势 知道:对于 队 ( )都表示 队的客场比赛。所以对队的背靠背比赛的安排转换为在 ( )中任选两种对阵形势,然后将两种对阵形势分别安排在相邻的两天,即形成队的1个背靠背。然后通过重复执行该操作可以安排任意球队的背靠背比赛数,使满足背靠背比赛数在 之间。2)、处理主客场数及各队间比赛场数事实上,在生成矩阵 时已经考虑了该要求,所以矩阵满足主客场数和各队间比赛场数的要求。3)、 提高比赛的观赏性由问题一已经知道,各队间比赛的观赏的精彩系数 , 表示 队与队进行比赛时的精彩系数。由 将各队间的比赛转化成序列。并且由于每一场比赛发生的时间不同,所以比赛的影响系数不同。(比如周末和非周末)系数序列为 ,并且 。设每个赛季的比赛观赏性系数与每场比赛观赏性系数的和为:【引理】 对于序列 及 如果满足:,则两个序列的乘积有不等式: 并且 为所有序列相乘和的最大值。(证明略)五、模型评价和改进方向 1.模型的优缺点 1)模型的优点:考虑了球队,球迷对赛程公平性的影响,考虑的因素比较全面;自定义了各种评价赛程公平性和合理性的各种系数,量化了赛程的合理性和公平性;2)模型的缺点:在求取赛程的算法中,赛程的表述只是用数字表述,未能用具体球队的对阵形势给出,不方便查阅;未能实现数据的完全自动化处理。2.改进方向应该尝试实现数据的自动化处理;做大量的调查获取数据对自定义的各种系数做修正,使其更好的反映赛程表的各项指标。六、参考文献[1]左孝凌等 《离散数学》上海 上海科学技术文献出版社 1981年 [2]刘琼荪 龚劬等《数学实验》北京 高等教育出版社 2004年 [3]NBA数据库 08年07月24日

160 评论

江河装饰

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

311 评论

王小虎呦

数学专业毕业论文选题方向如下:

1、并行组合数学模型方式研究及初步应用。

2、数学规划在非系统风险投资组合中的应用。

3、金融经济学中的组合数学问题。

4、竞赛数学中的组合恒等式。

5、概率方法在组合数学中的应用。

6、组合数学中的代数方法。

7、组合电器局部放电超高频信号数学模型构建和模式识别研究。

8、概率方法在组合数学中的某些应用。

9、组合投资数学模型发展的研究。

10、高炉炉温组合预报和十字测温数学建模。

11、基于数学形态学-小波分析组合算法的牵引网故障判定方法。

12、证券组合投资的灰色优化数学模型的研究。

13、一些算子在组合数学中的应用。

14、概率方法在组合数学及混合超图染色理论中的应用。

15、竞赛数学中的组合恒等式。

毕业论文(graduation study),按一门课程计,是普通中等专业学校、高等专科学校、本科院校、高等教育自学考试本科及研究生学历专业教育学业的最后一个环节,为对本专业学生集中进行科学研究训练而要求学生在毕业前总结性独立作业、撰写的论文。

339 评论

沈阳宜家装饰

数学专业毕业论文选题方向

1动态规划及其应用问题。

2计算方法中关于误差的分析。

3微分中值定理的应用。

4模糊聚类分析在学生素质评定中的应用。

5关于古典概型的几点思考。

6浅谈数形结合在数学解题中的应用。

7高校毕业生就业竞争力分析。

8最大模原理及其推广和应用。

9 最大公因式求解算法。

10行列式的计算。

161 评论

相关问答

  • 西北大学数学竞赛论文格式要求

    数学建模论文行间距一般是单倍行距。 数学建模竞赛论文格式细节如下: 摘要: “摘要”作为一级标题但不参加编号; 全国赛摘要中应包含关键词,“关键词”三字应该用黑

    马路小花 3人参与回答 2023-12-10
  • 高中数学竞赛论文题目

    考研的数学分为四种,分别是数学一、数学二、数学三、数学四 数学一是一般的理工科要考的,如计算机/材料等理工专业 数学二是对数学要求略微低一点的专业要考的,但他与

    小托0207 3人参与回答 2023-12-06
  • 中学物理竞赛论文题目

    总路程为s总=vtAB间距离为s=vt/2水速为v0时,设从A到B为顺流,则vA→B=v+v0需时间tA→B=s/vA→B=vt/[2(v+v0)];那么从B到

    风风一样的自由 5人参与回答 2023-12-09
  • 北京数学竞赛论文题目

    NBA赛程的制定和评价【摘要】一个合理的赛程表是NBA能够精彩上演的保证。在问题一评价07—08赛季赛程的合理性和公平性时,本文首先将赛程表的信息存放于矩阵中,

    0921缘分 4人参与回答 2023-12-06
  • 数学应用竞赛论文范文

    在数学领域里,应用数学占有重要的位置,理论上应用数学包括运筹学和线性代数,还有概率论及数理统计等学科。下文是我为大家整理的关于数学与应用数学 毕业 论文的内

    ellalikesyou 3人参与回答 2023-12-05