威达天下
金融类毕业论文参考文献
参考文献就是写论文的时候参考过的书籍或网站,直接关系到论文的分数和质量高低。以下是我为您整理的金融类毕业论文参考文献,希望能提供帮助。
篇一 :参考文献
[1] 母宇.中国股票市场与全球主要股票市场联动性研究,[C].西南民族大学:2011.
[2] 于会鹏.中国股票市场板块及其与国外主要市场间的联动性实证研究,[C].理工大学:2009
[3] 陈志宁.中外股票市场的联动分析,[C].农业大学:2009.
[4] 汪波.股票市场波动性网络及其应用[C]华南理工,2012
[5] 徐晓萍. 金融危机下证券网络的复杂性特征研究[C]华东师范大学,2013
[6] 陈俊华.中国股票市场网络模型动态研究[C]浙江工业大学,2012
[7] 兰旺森,赵国浩. 应用复杂网络研究板块内股票的强相关性,[J].中山大学学报:2010(6).20-23
[8] 李耀华,姚洪兴.股票市场网络的稳定性研究,[M].江苏省系统工程学会第十一届学会:2012.
[9] 陈花.基于复杂网络的股票之间有向相关性研究,[C].北京邮电大学:2012.
[10] 陈辉煌,高岩,基于复杂网络理论的证券市场网抗毁性分析[J],金融理论与实:2008(6)154-156
[11] 万阳松,陈忠基. 加权股票网络模型[J].复杂系统与复杂性科学,2005,1(5) :21-27
[12] 李平,汪秉宏.证券指数的网络动力学模型[J].系统工程,2006,24(3):73-77
[13] TianQiu, Bo Zheng,Guang Chen. Financial networks with static anddynamic thresholds,[J]. New Journal of Physics:2010(12).136-138
[14] Nicola Cetorelli, Stavros Peristiani. Prestigious stock exchanges: A network analysis of international financial centers,[J]. Journal of Banking & Finance:2013(37).21-24
[15] Ram Babu Roy, Uttam Kumar Sarkar. Identifying influential stock indices from global stockmarkets: A social network analysis approach,[J].Procedia Computer Science:2011(5).10-13
[16] Xiao fan Liu, Chi k. Complex Network Perspective to Volatility in Stock Markets [J]. International Symposium on Nonlinear Theory and its Applications:2010(9).12-15
[17] Simutis R, stock trading systems using fuzzy-neural networks andevolutionary programming methods[J]. Self Formation Theory And ,(97).59-63
[18] Dong-Ming Song, Michele Tumminello, Wei-Xing Zhou, Rosario N. Mantegna. Evolution of worldwide stock markets, correlation structure and correlation basedgraphs,[J]. PACS:2011(3).90-92
[19] Xiangyun Gao, Haizhong An, Weiqiong Zhong. Features of the Correlation Structure of Price Indices,[J]. PLOS ONE:2013(4).34-36
[20] MarekGa??zka. Characteristics of the Polish Stock Market correlations,[J]. International Review of Financial Analysis:2011(1-5).
[21] 杨治辉,贾寒梅.股票收益率相关性的网络结构分析,[M].中国控制学会:2011.
[22] 周艳波,蔡世民,周佩玲.金融市场的无标度特征研究,[J].中国科学技术大学学报:2009(8).19-22
[23] Barabasia L, Albert R, Jeong H. Mean-field theory for scale-freerandom networks[J].Physica A, 1999( 272).173-187
[24] 李辉,赵海,徐久强,李博,李鹏,王家亮. 基于k-核的大规模软件核心框架结构抽取与度量,[J].东北大学学报:2010(11).345-347
[25] 李辉,赵海.基于k-核的大规模软件宏观拓扑结构层次性研究,[J].电子学报:2010(6).134-136
[26] 李备友,刘思峰. 网络化市场结构下证券市场传闻的扩散规律研究,[J].华东经济管理:2012(12).90-92
篇二:参考文献:
[1]袁申国,陈平,刘兰凤,. 汇率制度、金融加速器和经济波动[J]. 经济研究,2011,(1).
[2]黄志刚,. 货币政策与贸易不平衡的调整[J]. 经济研究,2011,(3).
[3]George J. Gilboy,钟宁桦,. 度量中国经济:购买力平价的适当应用[J]. 经济研究,2010,(1).
[4]万晓莉,霍德明,陈斌开,. 中国货币需求长期是否稳定?[J]. 经济研究,2010,(1).
[5]裘骏峰,. 投机资本流入、升值预期和最优升值路径[J]. 经济研究,2010,(2).
[6]张屹山,孔灵柱,. 基于权力范式的汇率决定研究[J]. 经济研究,2010,(3).
[7]李成,王彬,马文涛,. 资产价格、汇率波动与最优利率规则[J]. 经济研究,2010,(3).
[8]刘尧成,周继忠,徐晓萍,. 人民币汇率变动对我国贸易差额的动态影响[J]. 经济研究,2010,(5).
[9]黄志刚,陈晓杰,. 人民币汇率波动弹性空间评估[J]. 经济研究,2010,(5).
[10]路继业,杜两省,. 货币政策可信性与汇率制度选择:基于新政治经济学的分析[J]. 经济研究,2010,(8).
[11]卞世博,贾德奎,. 后金融危机背景下的中国经济运行风险管理——第四届中国立信风险管理论坛综述[J]. 经济研究,2010,(12).
[12]赵志君,陈增敬,. 大国模型与人民币对美元汇率的评估[J]. 经济研究,2009,(3).
[13]伍戈,. 中国的货币需求与资产替代:1994—2008[J]. 经济研究,2009,(3).
[14]王晋斌,李南,. 中国汇率传递效应的实证分析[J]. 经济研究,2009,(4).
[15]张瀛,. 汇率制度、经济开放度与中国需求政策的有效性[J]. 经济研究,2008,(3).
[16]中国经济增长与宏观稳定课题组,张平,刘霞辉,张晓晶,汪红驹,. 外部冲击与中国的通货膨胀[J]. 经济研究,2008,(5).
[17]唐翔,. “富人社区效应”还是巴拉萨-萨缪尔森效应?——一个基于外生收入的实际汇率理论[J]. 经济研究,2008,(5).
[18]龚刚,高坚,何学中,. 汇率制度与货币政策——发展中国家和小国经济的思考[J]. 经济研究,2008,(6).
[19]管汉晖,. 浮动本位兑换、双重汇率与中国经济:1870—1900[J]. 经济研究,2008,(8).
[20]施建淮,傅雄广,许伟,. 人民币汇率变动对我国价格水平的传递[J]. 经济研究,2008,(7).
篇三:参考文献:
[1] 方毅,桂鹏. 亚太地区股票市场的联动程度—基于次级贷冲击的`研究[J]世界经济研究,2010(8).27-30
[2] BarabásiA L, Albert R. Emergence of scaling in random networks[J].Science, 1999(286). 509-512
[3] Kim H I network in stock market[J].J KorPhys Soc,2002,40(6):105-108.
[4] Newman M E structure and function of complex networks[J].SIAM Review,2003(3).167-256
[5] Jukka-Pekka Onnela, Jari Saram?ki, Kimmo Kaski. A comparative study of social network models: Network evolution models and nodal attribute models[J]. Social Networks:2009(4)13-16
[6] 汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京:清华大学出版社,2006(1).9-14.
[7] 任卓明,刘建国,邵凤,胡兆龙,郭强. 复杂网络中最小K-核节点的传播能力分析,[J].物理学报:2011(7).90-93
[8] 韩定定,复杂网络的拓扑、动力学行为及其实证研究,华东师范大学无线电物理博士论文[C],2007
[9] Simutis R, stock trading systems using fuzzy-neural networks andevolutionary programming methods[J].Self Formation Theory And (97)59-63
[10] Xiao fan Liu, Chi k. Network Perspective of World Stock Markets:synchronization and volatility,[J]. International Journal of Bifurcation and Chaos:2012(6).62-66
[11] Ram Babu Roy, Uttam Kumar Sarkar. Capturing Early Warning Signal for Financial Crisis from the Dynamics of Stock Market Networks: Evidence from North American and Asian Stock Markets[J].Journal of Indian Institute of Management Calcutta:2009(8).57-59
[12] 李耀华,姚洪兴.金融危机下股票市场网络的结构特性研究[J].信息工程学院学报,2010(1).23-26
[13] Benjamin M. Tabak, Thiago R. Serra, Daniel O. Cajueiro. Topological properties of stockmarket networks:The case of Brazil[J]. Physica ,2010(389).3240-3249
[14] Chi ,JingLiu,Francis C, M. Lau. A network perspective of stock market[J].Journal ofEmpirica ,4(17).659-667
[15] 闵志锋.上海证券市场的复杂网络特性分析 [J].东北大学学报 (自然科学版).2007 (7).1053-1056
[16] 黄玮强,姚爽,中国股票关联网络拓扑性质与聚类结构分析[J],管理科学:2008(3).92-95
[17] 高雅纯,魏宗文,汪秉宏.Dynamic Evolution of Financial Network and Its Relation to Economic Crises,[J].World Scientific:2013(2).142-141
[18] 陈守东,韩广哲,荆伟.主要股票市场指数与我国股票市场指数间的协整分析,[J].数量经济技术经济研究:2003(5).35-37
[19] 文圭炫,洪正孝.太平洋地区国家的联动性,[J].商务管理研究:2003(2).111-113
[20] ,Who moves the Malaysian stock market-the Japan[J],International Journal of Business,2006(8)367-406
[21]Terence,Tai-Leung Chong,Ying-Chiu Wong,Isabel,Kit-Ming Yan,Internationallinkagesof the Japanese stock market,Japan and the World Economy,2007(20)773-786
[22] 周珺. 我国大陆股票市场与周边主要股票市场的联动分析[J]企业经济,2007(1).77-79
[23] Woo-Sung Jung ,SeungbyungChae, Jae-Suk Yang,Hie-Tae Moon. Characteristics of the Korean stock marketcorrelations,[J]. Elsevier Science:2008(2).90-93
[24] Sunil Kumar, NiveditaDeo. Correlation and network analysis of global financial indices,[J]. American Physical Society:2012(8).21-23
篇四:参考文献
[1] Michael Grahama,JarnoKiviahob,JussiNikkinenb, Mohammed Omranc. Global and regional co-movement of the MENA stockmarkets,[J]. Journal of Economics and Business:2013(1). 165-167
[2] 高莹,靳莉莉.沪深300指数与世界主要股票指数的关联性分析[J].金融管理,2008(2). 3-8.
[3] Hwahsin Cheng, John L. Glascock. Stock Market Linkages Before and After the AsianFinancial Crisis: Evidence from Three Greater ChinaEconomic Area Stock Markets and the US,[J]. Pacific Basin Financial Markets and Policies:2006(2).125-127
[4] market linkages and the global financial crisis,[J].Journal of University of Santo Tomas:2009(8).278-280
[5] Ugur Ergun. How does Turkish stock market respond to the externalshocks Pre- and post- crises analyses,[J]. African Journal of Business Management:2012(2).34-37
[6] 赵勇. 金融危机背景下中美欧股票市场联动性研究[C]上海社会科学院,2012(5).76-79
[7] 洪天国. 欧洲股票市场与中国股票市场之间的波动溢出效应研究[C]江西财经大学,2013(1).29-34
[8] 金融市场稳定性的判别与度量[C]山西大学,2012(2).192-196
[9] 陈守东,陈雷,刘艳武.中国沪深股票市场收益率及波动性相关分析,[J].金融研究:2003(7).230-235
[10] 刘存绪.论中国股票市场的国际化,[J].资本市场:2000(4).30-32
芦苇薇薇
【通向金融王国的自由之路】[美]范·K·撒普(著)【投资错觉】[美]马丁·福利德森(著)【我如何在股市赚了200万】[美]尼古拉斯·达瓦斯(著)【不战而胜—价值投资法】[美]提摩西·维克(著)【一次读完25本投资经典】[美]里奥·高夫 (著)【战胜华尔街-审慎投资者指南】[美]小约翰·J·鲍恩&丹尼尔·C·戈尔迪(著)【专业投机原理】[美]维克多·斯波朗迪(著)【短线交易大师-工具和策略】[美]奥利弗·瓦莱士&格雷格·卡普拉(著)【股票技术分析新思维—来自大师的交易模式】[美]瑞克·本塞诺(著)【股市趋势技术分析】[美]罗伯特·D·爱德华(著)【股市无敌】[美]小理查德·阿姆斯(著)【操作生涯不是梦】[美]Dr·Alexander·Elder(著)【股市智慧投资66则】[美]约翰·斯普纳(著)【乱中之乱—股市三人谈】[美]约瑟夫·德拉维加(著)【证券混沌操作法—低风险获利指南】[美]比尔·威廉姆(著)【逆向思考的艺术】[美]汉弗莱·B·尼尔(著)【傻钱—一个股市当冲交易员的冒险经历】[美]乔伊·安纳夫&加里·沃尔夫(著)【投资心理规则—锤炼赢者心态】[美]罗伯特·库佩尔&霍华德·阿贝尔(著)【与天为敌—风险探索传奇】[美]彼得·伯恩斯坦(著)
tastebytaste
摘 要 研究了沪深300指数日收益率时间序列,经检验其具有马氏性,并建立了马尔可夫链模型。取交易日分时数据,根据分时数据确定状态初始概率分布,通过一步转移概率矩阵对下一交易日的日收益率进行了预测。对该模型分析和计算,得出其为有限状态的不可约、非周期马尔可夫链,求解其平稳分布,从而得到沪深300指数日收益率概率分布。并预测了沪深300指数上涨或下跌的概率,可为投资管理提供参考。关键词 马尔可夫链模型 沪深300指数 日收益率概率分布 平稳分布1 引言沪深300指数于2005年4月正式发布,其成份股为市场中市场代表性好,流动性高,交易活跃的主流投资股票,能够反映市场主流投资的收益情况。众多证券投资基金以沪深300指数为业绩基准,因此对沪深300指数收益情况研究显得尤为重要,可为投资管理提供参考。取沪深300指数交易日收盘价计算日收益率,可按区间将日收益率分为不同的状态,则日收益率时间序列可视为状态的变化序列,从而可以尝试采用马尔可夫链模型进行处理。马尔可夫链模型在证券市场的应用已取得了不少成果。参考文献[1]、[2]、[3]和[4]的研究比较类似,均以上证综合指数的日收盘价为对象,按涨、平和跌划分状态,取得了一定的成果。但只取了40~45个交易日的数据进行分析,历史数据过少且状态划分较为粗糙。参考文献[5]和[6]以上证综合指数周价格为对象,考察指数在的所定义区间(状态)的概率,然其状态偏少(分别只有6个和5个状态),区间跨度较大,所得结果实际参考价值有限。参考文献[7]对单只股票按股票价格划分状态,也取得了一定成果。然而收益率是证券市场研究得更多的对象。本文以沪深300指数日收益率为对考察对象进行深入研究,采用作为计算工具,对较多状态和历史数据进行了处理,得出了沪深300指数日收益率概率分布,并对日收益率的变化进行了预测。2 马尔可夫链模型方法 马尔可夫链的定义设有随机过程{Xt,t∈T},T是离散的时间集合,即T={0,1,2,L},其相应Xt可能取值的全体组成状态空间是离散的状态集I={i0,i1,i2,L},若对于任意的整数t∈T和任意的i0,i1,L,it+1∈I,条件概率则称{Xt,t∈T}为马尔可夫链,简称马氏链。马尔可夫链的马氏性的数学表达式如下:P{Xn+1=in+1|X0=i0,X1=i1,L,Xn=in}=P{Xn+1=in+1|Xn=in} (1) 系统状态概率矩阵估计马尔可夫链模型方法的基本内容之一是系统状态的转移概率矩阵估算。估算系统状态的概率转移矩阵一般有主观概率法和统计估算法两种方法。主观概率法一般是在缺乏历史统计资料或资料不全的情况下使用。本文采用统计估算法,其主要过程如下:假定系统有m种状态S1,S2,L,Sm根据系统的状态转移的历史记录,可得到表1的统计表格。其中nij表示在考察的历史数据范围内系统由状态i一步转移到状态j的次数,以■ij表示系统由状态i一步转移到状态的转移概率估计量,则由表1的历史统计数据得到■ij的估计值和状态的转移概率矩阵P如下:■ij=nij■nik,P=p11 K p1mM O Mpm1 L pmn(2) 马氏性检验随机过程{Xt,t∈T}是否为马尔可夫链关键是检验其马氏性,可采用χ2统计量来检验。其步骤如下:(nij)m×m的第j列之和除以各行各列的总和所得到的值记为■.j,即:■.j=■nij■■nik,且■ij=nij■nik(3)当m较大时,统计量服从自由度为(m-1)2的χ2分布。选定置信度α,查表得χ2α((m-1)2),如果■2>χ2α((m-1)2),则可认为{Xt,t∈T}符合马氏性,否则认为不是马尔可夫链。■2=2■■nijlog■ij■.j(4) 马尔可夫链性质定义了状态空间和状态的转移概率矩阵P,也就构建了马尔可夫链模型。记Pt(0)为初始概率向量,PT(n)为马尔可夫链时刻的绝对概率向量,P(n)为马尔可夫链的n步转移概率矩阵,则有如下定理:P(n)=PnPT(n)=PT(0)P(n)(5)可对马尔可夫链的状态进行分类和状态空间分解,从而考察该马尔可夫链模型的不可约闭集、周期性和遍历性。马尔可夫链的平稳分布有定理不可约、非周期马尔可夫链是正常返的充要条件是存在平稳分布;有限状态的不可约、非周期马尔可夫链必定存在平稳过程。3 马尔可夫链模型方法应用 观测值的描述和状态划分取沪深300指数从2005年1月4日~2007年4月20日共555个交易日收盘价计算日收益率(未考虑分红),将日收益率乘以100并记为Ri,仍称为日收益率。计算公式为:Ri=(Pi-Pi-1)×100/Pi-1(6)其中,Pi为日收盘价。沪深300指数运行比较平稳,在考察的历史数据范围内日收益率有%在[,]。可将此范围按的间距分为18个区间,将小于和大于各记1区间,共得到20个区间。根据日收益率所在区间划分为各个状态空间,即可得20个状态(见表2)。 马氏性检验采用χ2统计量检验随机过程{Xt,t∈T}是否具有马氏性。用前述统计估算法得到频率矩阵(nij)20×20。由(3)式和(4)式可得:■.j=■nij■■nik,且■ij=nij■nik,■2=2■■nijlog■ij■.j=,令自由度为k=(m-1)2即k=361,取置信度α=。由于k>45,χ2α(k)不能直接查表获得,当k充分大时,有:χ2α(k)≈■(zα+■)2(7)其中,zα是标准正态分布的上α分位点。查表得,故可由(1)、(7)式得,即统计量,随机过程{Xt,t∈T}符合马氏性,所得模型是马尔可夫链模型。 计算转移概率矩阵及状态一步转移由频率矩阵(nij)20×20和(1)、(2)式得转移概率矩阵为P=(Pij)20×20。考察2007年4月20日分时交易数据(9:30~15:30共241个数据),按前述状态划分方法将分时交易数据收益率归于各状态,并记Ci为属于状态i的个数,初始概率向量PT(0)=(p1,p2,L,pt,L,p20),则:pj=Cj/241,j=1,2,K,20(8)下一交易日日收益率分布概率PT(0)={p1(1),p2(1),L,pi(1),L,p20(1)},且有PT(1)-PT(0)p,计算结果如表3所示。 马尔可夫链遍历性和平稳分布可以分析该马尔可夫链的不可约集和周期性,从而进一步考察其平稳分布,然而其分析和求解非常复杂。本文使用采用如下算法进行求解:将一步转移概率矩阵P做乘幂运算,当时Pn+1=Pn停止,若n>5 000亦停止运算,返回Pn和n。计算发现当n=48时达到稳定,即有P(∞)=P(48)=P48。考察矩阵P(48)易知:各行数据都相等,不存在数值为0的行和列,且任意一行的行和为1。故该马尔可夫链{Xt,t∈T}只有一个不可约集,具有遍历性,且存在平稳分布{πj,j∈I},平稳分布为P(48)任意一行。从以上计算和分析亦可知该马尔可夫链是不可约、非周期的马尔可夫链,存在平稳分布。计算所得平稳分布如表4所示。 计算结果分析表3、表4给出了由当日收益率统计出的初始概率向量PT(0),状态一步预测所得绝对概率向量PT(1)和日收益率平稳分布,由表3和表4综合可得图1。可以看出,虽然当日(2007年4月20日)收益率在区间(,)波动且在(,)内的概率达到了,表明在2007年4月20日,日收益率较高(实际收盘时,日收益率为),但其下一交易日和从长远来看其日收益率概率分布依然可能在每个区间。这是显然的,因为日收益率是随机波动的。对下一交易日收益率预测(PT(1)),发现在下一交易日收益率小于0的概率为,大于0的概率为,即下一交易日收益率大于0的概率相对较高,其中在区间(-2,)、(,1)和(1,)概率、和依次排前三位,也说明下一交易日收益率在(-2,)的概率会比较高,有一定的风险。从日收益率长远情况(平稳分布)来看,其分布类似正态分布但有正的偏度,说明其极具投资潜力。日收益率小于0的概率为,大于0的概率为,即日收益率大于0的概率相当的高于其小于0的概率。4 结语采用马尔可夫链模型方法可以依据某一交易日收益率情况向对下一交易日进行预测,也可得到从长远来看其日收益率的概率分布,定量描述了日收益率。通过对沪深300指数日收益率分析和计算,求得沪深300指数日收益率的概率分布,发现沪深300指数日收益率大于0的概率相对较大(从长远看,达到了,若考虑分红此概率还会变大),长期看来沪深300指数表现乐观。若以沪深300指数构建指数基金再加以调整,可望获得较好的回报。笔者亦采用范围(-5,5)、状态区间间距为1和范围(-6,6)、状态区间间距为2进行运算,其所得结果类似。当采用更大的范围(如-10,10等)和不同的区间大小进行运算,计算发现若状态划分过多,所得模型不易通过马氏性检验,如何更合理的划分状态使得到的结果更精确是下一步的研究之一。在后续的工作中,采用ANN考察所得的日收益率预测和实际日收益率的关系也是重要的研究内容。马尔可夫链模型方法也可对上证指数和深证成指数进行类似分析。参考文献1 关丽娟,赵鸣.沪综指走势的马尔可夫链模型预测[J].山东行政学院,山东省经济管理干部学院学报,2005(4)2 陈奕余.基于马尔可夫链模型的我国股票指数研究[J].商场现代化(学术研讨),2005(2)3 肖泽磊,卢悉早.基于马尔可夫链系统的上证指数探讨[J].科技创业月刊,2005(9)4 边廷亮,张洁.运用马尔可夫链模型预测沪综合指数[J].统计与决策,2004(6)5 侯永建,周浩.证券市场的随机过程方法预测[J].商业研究,2003(2)6 王新蕾.股指马氏性的检验和预测[J].统计与决策,2005(8)7 张宇山,廖芹.马尔可夫链在股市分析中的若干应用[J].华南理工大学学报(自然科学版),2003(7)8 冯文权.经济预测与决策技术[M].武汉:武汉大学出版社,20029 刘次华.随机过程[M].武汉:华中科技大学出版社,200110 盛千聚.概率论与数理统计[M].北京:高等教育出版社.1989转
去学校图书馆查学位论文
我觉得看看从业资格认证中的《证券投资分析》就够了啊。。其实书很多,关于价值分析我认为每本书都可以找到一种方法的
证券交易市场分为分散市场和集中市场(即证券交易所市场),集中市场是证券交易市场最重要的组成部分,其运行情况与发展状况直接影响整个证券市场的运行与发展,因而证交所
金融类毕业论文参考文献 参考文献就是写论文的时候参考过的书籍或网站,直接关系到论文的分数和质量高低。以下是我为您整理的金融类毕业论文参考文献,希望能提供帮助。
一、商业银行与其它金融机构系列1、浅析次贷危机对我国金融监管体制的启示2、对商业银行信贷风险管理的研究3、我国中小企业融资现状及对策研究4、关于汽车金融业的现状