• 回答数

    7

  • 浏览数

    284

山东指纹锁
首页 > 职称论文 > 毕业论文中的回归分析方法

7个回答 默认排序
  • 默认排序
  • 按时间排序

减肥大胃王

已采纳

回归分析是数学上一种统计分析法,主要用于研究变量之间是否具有某种确定或近似关系

101 评论

小也安安

科普中国·科学百科:回归分析

144 评论

草莓宝宝2006

回归分析(regression analysis)是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。

运用十分广泛,回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且自变量之间存在线性相关,则称为多重线性回归分析。

扩展资料:

回归分析步骤

1、确定变量

明确预测的具体目标,也就确定了因变量。如预测具体目标是下一年度的销售量,那么销售量Y就是因变量。通过市场调查和查阅资料,寻找与预测目标的相关影响因素,即自变量,并从中选出主要的影响因素。

2、建立预测模型

依据自变量和因变量的历史统计资料进行计算,在此基础上建立回归分析方程,即回归分析预测模型。

3、进行相关分析

回归分析是对具有因果关系的影响因素(自变量)和预测对象(因变量)所进行的数理统计分析处理。只有当自变量与因变量确实存在某种关系时,建立的回归方程才有意义。因此,作为自变量的因素与作为因变量的预测对象是否有关,相关程度如何,以及判断这种相关程度的把握性多大,就成为进行回归分析必须要解决的问题。进行相关分析,一般要求出相关关系,以相关系数的大小来判断自变量和因变量的相关的程度。

4、计算预测误差

回归预测模型是否可用于实际预测,取决于对回归预测模型的检验和对预测误差的计算。回归方程只有通过各种检验,且预测误差较小,才能将回归方程作为预测模型进行预测。

5、确定预测值

利用回归预测模型计算预测值,并对预测值进行综合分析,确定最后的预测值。

参考资料来源:百度百科-回归分析

262 评论

彩衣girl

从纯数据运算的角度解释线性回归分析运算的原理不太容易懂,因此我考虑用图解的方法解释回归分析的运算原理,如下图:

对于图中那些散点,想探寻一根直线,使得所有点到该直线的距离的总和是最小,这就是回归分析。

换句话说,以上图为例,回归分析的本质就是探寻height和weight之间最准确的关系,这个“最准确”就是指所有点到该直线的距离的总和是最小,即偏差最小。

你们常听说的“最小二乘估计”就是探寻究竟是哪一根线与所有点的距离总和最小。以上图为例,图中的虚线(表达式为weight=*height)就是所求直线,也就是我们常说的线性回归方程。

更多数据分析答疑、文章、视频教程,请到谦瑞数据官方网站观看。

268 评论

猪猪钕神

来看看SPSSAU的分析结果,格式规范并且更易解读。

第一步:首先对模型整体情况进行分析

包括模型拟合情况(R²),是否通过F检验等。

由上图可知,模型R²值为,意味着平台交互性,教学资源,课程设计,课程实施可以解释学生在线学习课程满意度的变化原因。回归模型通过F检验(F=,P<),说明至少一个变量会对满意度产生影响关系。

第二步:分析X的显著性

分析X的显著性(P值),如果呈现出显著性,则说明X对Y有影响关系。如果不显著,则应剔除该变量。

可以看到,四个解释变量对满意度的显著性分析P值均小于,说明X对Y均有显著性影响关系。

第三步:判断X对Y的影响关系方向及影响程度

结合回归系数B值,对比分析X对Y的影响程度。B值为正数则说明X对Y有正向影响,为负数则说明有负向影响。

通过回归系数来看,模型中四个解释变量的B值分别为、、、。说明平台交互性,教学资源,课程设计,课程实施对满意度均呈现出显著的正向影响关系。

第四步:写出模型公式

模型公式为:满意度= + *平台交互性 + *教学资源 + *课程设计 + *课程实施

第五步:对分析进行总结

SPSSAU也会提供智能分析建议,方便分析人员快速得出分析结果,具体分析如下:

116 评论

依玛语录

中文名称:回归分析 英文名称:regression analysis 定义:研究一个随机变量Y对另一个(X)或一组(X1,X2,…,Xk)变量的相依关系的统计分析方法。 应用学科:遗传学(一级学科);群体、数量遗传学(二级学科) 回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

132 评论

渴望丰收

一、回归分析主要内容:

1、从一组数据出发,确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。

2、对这些关系式的可信程度进行检验。

3、在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些)自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著的自变量加入模型中,而剔除影响不显著的变量,通常用逐步回归、向前回归和向后回归等方法。

4、利用所求的关系式对某一生产过程进行预测或控制。回归分析的应用是非常广泛的,统计软件包使各种回归方法计算十分方便。

二、回归分析的步骤:

1、确定变量

明确预测的具体目标,也就确定了因变量。如预测具体目标是下一年度的销售量,那么销售量Y就是因变量。通过市场调查和查阅资料,寻找与预测目标的相关影响因素,即自变量,并从中选出主要的影响因素。

2、建立预测模型

依据自变量和因变量的历史统计资料进行计算,在此基础上建立回归分析方程,即回归分析预测模型。

3、进行相关分析

回归分析是对具有因果关系的影响因素(自变量)和预测对象(因变量)所进行的数理统计分析处理。只有当自变量与因变量确实存在某种关系时,建立的回归方程才有意义。

因此,作为自变量的因素与作为因变量的预测对象是否有关,相关程度如何,以及判断这种相关程度的把握性多大,就成为进行回归分析必须要解决的问题。进行相关分析,一般要求出相关关系,以相关系数的大小来判断自变量和因变量的相关的程度。

4、计算预测误差

回归预测模型是否可用于实际预测,取决于对回归预测模型的检验和对预测误差的计算。回归方程只有通过各种检验,且预测误差较小,才能将回归方程作为预测模型进行预测。

5、确定预测值

利用回归预测模型计算预测值,并对预测值进行综合分析,确定最后的预测值。

扩展资料:

回归分析法的有效性和注意事项:

1、有效性:

用回归分析法进行预测首先要对各个自变量做出预测。若各个自变量可以由人工控制或易于预测,而且回归方程也较为符合实际,则应用回归预测是有效的,否则就很难应用;

2、注意事项:

为使回归方程较能符合实际,首先应尽可能定性判断自变量的可能种类和个数,并在观察事物发展规律的基础上定性判断回归方程的可能类型;其次,力求掌握较充分的高质量统计数据,再运用统计方法,利用数学工具和相关软件从定量方面计算或改进定性判断。

参考资料来源:百度百科——回归分析

299 评论

相关问答

  • 毕业论文中的分析方法

    毕业论文采用的研究方法有哪些 毕业论文采用的研究方法有哪些,在写论文的时候需要用到研究方法,研究的方法有很多种,不同的研究方法使用的方式也是不一样的,以下就是我

    Simena1943 2人参与回答 2023-12-07
  • 毕业论文可以不用回归分析吗

    论文数据里必须有多元线性回归。 在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。 事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共

    张小小晴晴 3人参与回答 2023-12-09
  • 毕业论文中回归分析表格制作

    excel中点 工具 ,里面的加载宏,勾上分析工具库,加载好后,工具里面会有一个数据分析找到分析工具库,做回归分析,在x值的选择上,选取多区域的就是多元回归

    zeeleemoon 7人参与回答 2023-12-12
  • 毕业论文回归分析表格格式

    方法如下:选择成对的数据列,将使用“X、Y散点图”制成散点图。在数据点上单击右键,选择“添加趋势线”-“线性”,并在选项标签中要求给出公式和相关系数等,可以得到

    enjoyduola 6人参与回答 2023-12-06
  • 统计学毕业论文回归分析

    【摘要】相关分析和回归分析是数理统计中两种重要的统计分析方法,在实际生活中应用非常广泛。两种方法从本质上来讲有许多共同点,均是对具有相关关系的变量,从数据内在逻

    等等等二爷de22 4人参与回答 2023-12-08