papapaopao
催化剂定义:又叫触媒。根据国际纯粹与应用化学联合会(IUPAC)于1981年提出的定义,催化剂是一种物质,它能够改变反应的速率而不改变该反应的标准Gibbs自由焓变化。这种作用称为催化作用。涉及催化剂的反应为催化反应。催化剂(catalyst)会诱导化学反应发生改变,而使化学反应变快或减慢或者在较低的温度环境下进行化学反应。催化剂在工业上也称为触媒。初中书上定义:在化学反应里能改变其他物质的化学反应速率,而本身的质量和化学性质在反应前后都没有发生变化的物质叫做催化剂,又叫触媒。催化剂在化学反应中所起的作用叫催化作用。我们可在波兹曼分布(Boltzmann distribution)与能量关系图(energy profile diagram)中观察到,催化剂可使化学反应物在不改变的情形下,经由只需较少活化能(activation energy)的路径来进行化学反应。而通常在这种能量下,分子不是无法完成化学反应,不然就是需要较长时间来完成化学反应。但在有催化剂的环境下,分子只需较少的能量即可完成化学反应。催化剂有三种类型,它们是:均相催化剂、多相催化剂和生物催化剂。均相催化剂和它们催化的反应物处于同一种物态(固态、液态、或者气态)。例如:如果反应物是气体,那么催化剂也会是一种气体。笑气(一氧化二氮)是一种惰性气体,被用来作为麻醉剂。然而,当它与氯气和日光发生反应时,就会分解成氮气和氧气。这时,氯气就是一种均相催化剂,它把本来很稳定的笑气分解成了组成元素。多相催化剂和它们催化的反应物处于不同的状态。例如:在生产人造黄油时,通过固态镍(催化剂),能够把不饱和的植物油和氢气转变成饱和的脂肪。固态镍是一种多相催化剂,被它催化的反应物则是液态(植物油)和气态(氢气)。酶是生物催化剂。活的生物体利用它们来加速体内的化学反应。如果没有酶,生物体内的许多化学反应就会进行得很慢,难以维持生命。大约在37℃的温度中(人体的温度),酶的工作状态是最佳的。如果温度高于50℃或60℃,酶就会被破坏掉而不能再发生作用。因此,利用酶来分解衣物上的污渍的生物洗涤剂,在低温下使用最有效。催化剂分均相催化剂与非均相催化剂。非均相催化剂呈现在不同相(Phase)的反应中(例如:固态催化剂在液态混合反应),而均相催化剂则是呈现在同一相的反应(例如:液态催化剂在液态混合反应)。一个简易的非均相催化反应包含了反应物(或zh-ch:底物;zh-tw:受质)吸附在催化剂的表面,反应物内的键因十分的脆弱而导致新的键产生,但又因产物与催化剂间的键并不牢固,而使产物出现。目前已知许多表反应发生吸附反应的不同可能性的结构位置。仅仅由于本身的存在就能加快或减慢化学反应速率,而本身的组成和质量并不改变的物质就叫催化剂。催化剂跟反应物同处于均匀的气相或液相时,叫做单相催化作用;催化剂跟反应物属不同相时,叫做多相催化作用。人们利用催化剂,可以提高化学反应的速度,这被称为催化反应。大多数催化剂都只能加速某一种化学反应,或者某一类化学反应,而不能被用来加速所有的化学反应。催化剂并不会在化学反应中被消耗掉。不管是反应前还是反应后,它们都能够从反应物中被分离出来。不过,它们有可能会在反应的某一个阶段中被消耗,然后在整个反应结束之前又重新产生。使化学反应加快的催化剂,叫做正催化剂;使化学反应减慢的催化剂,叫做负催化剂。例如,酯和多糖的水解,常用无机酸作正催化剂;二氧化硫氧化为三氧化硫,常用五氧化二钒作正催化剂,这种催化剂是固体,反应物为气体,形成多相的催化作用,因此,五氧化二钒也叫做触媒或接触剂;食用油脂里加入~没食子酸正丙酯,就可以有效地防止酸败,在这里,没食子酸正丙酯是一种负催化剂(也叫做缓化剂或抑制剂)。
光影碎片
如下:
【摘要】:综述了分子氧氧化环己烷制取环己酮的催化剂的研究进展,重点介绍了光催化剂、纳米催化剂、仿生催化剂、分子筛催化剂和复合催化剂在环己烷催化氧化方面的应用,其中,负载在分子筛上的纳米金催化剂具有较高的催化活性、选择性及稳定性。
【关键词】:环己烷氧化,环己酮,催化剂的认识。
环己酮是重要的有机化工原料和工业溶剂,广泛应用于医药、油漆、涂料、橡胶、农药行业、印刷和塑料回收方面。目前,工业上制取环己醇和环己酮的方法主要为苯酚加氢法、苯部分加氢法和环己烷液相氧化法,环己烷氧化法的应用最为普遍,占90%以上。
由于环己醇和环己酮比环己烷更易于被氧化,为获得适宜的环已醇和环已酮的选择性,工业上环己烷氧化转化率通常控制在,氧化选择性为90%左右。
但环己烷的大量循环造成能耗上的巨大浪费。目前,环己烷氧化工艺研究的热点主要集中在对传统工艺的改造优化、氧化剂的选择及高效催化剂的开发。开发高性能和环境友好的催化剂成为研究热点,近年来开发的一些氧化催化剂在改善环己烷转化率和产物选择性方面表现出较好的性能。
本文主要综述分子氧氧化环己烷制环己酮催化剂的研究进展。
沙土花生
负载在g‑C3N4纳米片的PtCo合金和周围Co单原子的协同作用促进整体水分解
研究背景
太阳能驱动的全分解水可大规模生产氢气和氧气,是满足清洁能源需求和解决化石燃料危机的理想策略。然而,在不消除牺牲试剂或不需要施加外部偏压的情况下,水分解需要协同活性位点,以连接空间分离的析氢和析氧反应。具有最高原子利用效率的原子分散催化剂已成为催化领域的前沿。然而,单组分单原子催化剂在整个光催化水分解反应(OWS)中的应用却鲜有报道。
内容简介
基于此,近日华东师范大学姚叶锋和王雪璐团队设计了一种双组分协同光催化剂,其包含单原子Co(CoSAs)中心和PtCo合金纳米颗粒(Nps)的分散体负载在C3N4纳米片上。CoSAs中心是析氢反应(HER)的高活性位点,PtCo合金是析氧反应(OER)的高活性位点。当两个不同的反应中心结合时,它们之间会产生协同效应,这表明CoSAs中心和PtCo合金Nps之间可能存在质子或羟基溢出现象。CoSAs中心和PtCo合金的协同促进了OWS反应实现最大原子利用率和最佳双功能活性之间的协同。这种结合为开发OWS原子分散催化剂提供了一个很有前景的模型。相关论文以” Synergistic Promotionof Single-Atom Co Surrounding a PtCo Alloy Based On a g‑C3N4 Nanosheet for Overall Water Splitting”发表在ACS Catal.
本文亮点
1. 设计了一种新型的双组分协同光催化剂CoSAs/PtCo@CNN,由负载在纳米片g-C3N4上的CoSAs和PtCo合金纳米颗粒组成。该催化剂有效地促进了光催化整体水分解反应。
2. 纳米片C3N4具有大的比表面积和高的孔容,为CoSAs的形成提供了丰富的N配位。CoSAs和PtCo合金的协同活性在最大原子利用率和析氢析氧双功能反应性之间架起了一座桥梁。
3. CoSAs/PtCo@CNN在可见光照射下,三乙醇胺(TEOA)存在下,催化剂在整个水裂解反应中的产氢活性高达μmol/h·g,产氢活性为 mmol/h·g。
4. 这项研究不仅为构建协同合金位点开发高效的单原子光催化剂提供了一种有希望的策略,而且还提供了对结构的深入了解 通过光催化过程进行的整体水分解反应的活性关系。
图文解析
TEM,FT-IR
CN样品由膨胀和连续结构中的大波浪层组成。负载金属后,金属颗粒聚集在大块CN的表面或次表面。经过两步煅烧后,所得CNN样品转变为薄、松散、柔软的丝状纳米片结构。煅烧方法导致了CN层的卷曲,使金属颗粒更均匀、更稳定地负载在表面上。红外光谱结果表明CNN样品的C-NH-C键的振动明显强于CN样品中的振动,表明CNN具有高浓度的-NH-缺陷位点,可能会增强水分子的光催化活性。
NMR
在D2O 处理(表示为 CNN-D)之前和之后获得的 CNN 样品的1D 1H MAS 核磁结果表明当 CNN 样品中残留水通过 D2O 处理被氘化时,CNN-D 的 Hw 信号显著减弱。这表明CNN样品具有易于吸附和解吸水分子的双重优势。相反,在 D2O 处理后,普通 CN 样品的Hw 信号强度或其位置没有显著变化,表明由于氢交换没有明显的结构变化。氘交换后, CNN-D 样品的 CN3, Ha 峰的相关性显著降低, 表明边缘氨基(Ha) 和 d 氘化水之间存在强烈的质子交换。相比之下, CN-中的质子交换的证据Ha和氘化水之间的D样品几乎没有氘处理前后的变化。
XANES,HAADF-STEM
为了进一步了解铂和钴金属的配位化学,测试了CoSA/PtCo@CNN催化剂的X射线吸收近边缘结构(XANES)光谱。在CoSAs中形成Co(II)Nx配位中心外,合金中的Co4s和4p轨道还通过与Pt电子结合发生杂化。EXAFS分析表明PtxCo合金和N-Co(II)连接性结构形成。Pt L3边缘的EXAFS光谱中电子的径向分布发生了Å的偏移,表明Pt Co键的形成。Co 原子分散在单金属位点,中心 Co 原子由四个 N 原子配位稳定。少量的 CoSA可以通过长距离的 Co-N-C 协调。像差校正的HAADF-STEM结果表明分离出单个纳米颗粒具有 nm 间距的晶面(Pt3Co 平面)并被许多孤立的金属原子包围。结合 XANES 分析,纳米粒子(NPs)和孤立的金属原子分别为PtxCo 合金和单个 Co 原子。CoSAs/PtCo@CNN 催化剂的组成为大多数 Pt 原子参与形成随机分布的PtCo 合金。额外的Co原子不均匀地分散在 PtCo 合金簇。很少量的Co单原子远离单纳米粒子。所有这些形式共同构成CoSAs/PtCo结构体。
EPR,UV-vis
CoSAs/PtCo@CNN 催化剂用于在紫外-可见光照射下在整个水分解反应中生成产物,而无需使用任何电子牺牲剂,通过原位 EPR 光谱观察到悬浮液中•OH(羟基自由基)的特征信号。这种强烈的•OH 信号表明该途径涉及水的单电子氧化以产生•OH。在 CoSAs@CNN 上仍然没有检测到 •OH 信号,CoSAs/PtCo@CNN表现出高活性产氢气(高达 μmol/h·g)和 μmol/h g的活性用于整个水分解反应中的 O2。在整个水分解反应中观察到 H2O2 产物。催化剂使用3次后,PtCo合金上的Co0保持稳定的结构。在单组分催化剂 CoSAs@CNN 或 PtCo@CNN 上没有检测到可测量的 H2 或 O2 物种,这表明单原子 Co 和纳米片CNN 上负载的 PtCo 合金复合材料之间存在协同。
DFT
理论计算给出了CoSAs/PtCo@CNN对 HER 的反应途径。第二步(OH* O*)为 OER 过程的决速步。对于合金表面的 Pt 位点、合金表面的 Co 位点和 CoSAs 位点,此步骤的 ΔGO* 值分别为 、和 eV。对于 PtCo 合金表面的 Co 位点,每个基元步骤都是吸热的,其决速步基本上可用于完成 OER 半电池反应。如上所述,这种协同作用是通过 CoSAs配位的 N 原子产生的,N原子充当 HER 半反应的高活性位点。同时,由纳米片 C3N4负载的 PtCo 合金纳米颗粒是OER 的高活性位点。
该研究主要计算及测试方法
做同步辐射 找易科研
做球差电镜 找易科研
做计算 找易科研
生化酶类项目室内及室间质控评价与分析目前,随着《医疗事故处理条例》举证颠倒的需要,医学检验质量控制工作显得尤其重要,检验质量的科学治理受到广泛重视。我科在做好室
由于纳米粒子的颗粒粒径小,表面的化学能更高,更容易吸收光子能力来发生电子跃迁。电学性质可以做成超导体材料,光学材料可以做成抗紫外线材料。
近日,三峡大学材料与化工学院叶立群教授团队,在共价有机框架材料(COFs材料)用于光催化合成过氧化氢(H2O2)领域取得突破。成果“分子水平工程助力COF光催化
5年来材料系在材料学科的成果统计如下:纵向/横向经费:1391/79万;材料系学科建设(985-2)经费:~1500万;省部级以上奖励:3;博士/硕士毕业生:1
认为是一种可以引起许多环境问题的一大类空气污染物。越来越多的挥发性有机化合物同它们的毒性和致癌性物质释放到大气中,这就要求研究人员找到一种有效的方法销毁它。催化