食遍金陵
在一篇数学 教育 论文中,题目是论文的要件之首,它不同于一般 文章 的题目,我们要重视题目的重要性。以下是我为大家精心准备的数学教育论文题目,欢迎阅读!数学教育论文题目(一) 1、浅谈中学数学中的反证法 2、数学选择题的利和弊 3、浅谈计算机辅助数学教学 4、数学研究性学习 5、谈发展数学思维的 学习 方法 6、关于整系数多项式有理根的几个定理及求解方法 7、数学教学中课堂提问的误区与对策 8、中学数学教学中的创造性思维的培养 9、浅谈数学教学中的“问题情境” 0、市场经济中的蛛网模型 11、中学数学教学设计前期分析的研究 12、数学课堂差异教学 13、浅谈线性变换的对角化问题 14、圆锥曲线的性质及推广应用 15、经济问题中的概率统计模型及应用 数学教育论文题目(二) 1、二阶变系数齐次微分方程的求解问题 2、一种函数方程的解法 3、微分中值定理的再讨论 4、学生数学学习的障碍研究; 5、中学数学教育中的素质教育的内涵; 6、数学中的美; 7、数学的和谐和统一----谈论数学中的美; 8、推测和猜想在数学中的应用; 9、款买房问题的决策; 10、线性回归在经济中的应用; 11、数学规划在管理中的应用; 12、初等数学解题策略; 13、浅谈数学CAI中的不足与对策; 14、数学创新教育的课堂设计; 15、中学数学教学与学生应用意识培养; 16、关于培养和提高中学生数学学习能力的探究; 17、运用多媒体培养学生 18、高等数学课件的开发 19、 广告 效益预测模型; 数学教育论文题目(三) 1、浅谈菲波纳契数列的内涵和应用价值 2、一道排列组合题的解法探讨及延伸 3、整除与竞赛 4、足彩优化 5、向量的几件法宝在几何中的应用 6、递推关系的应用 7、坐标方法在中学数学中的应用 8、小议问题情境的创设 9、数学概念探索启发式教学 10、柯西不等式的推广与应用 11、关于几个特殊不等式的几种巧妙证法及其推广应用 12、一道高考题的 反思 13、数学中的研究性学习 15、数字危机 16、数学中的化归方法 17、高斯分布的启示 18、 的变形推广及应用 19、网络优化 20、泰勒公式及其应用 猜你喜欢: 1. 数学教育教学论文参考范文 2. 关于数学专业毕业论文题目参考 3. 数学教育专业毕业论文 4. 有关数学教育的论文范文 5. 数学教育专业毕业论文参考
五十岚零
我来回答:显然f(x)为基本初等函数,即多项式函数,它在任意区间[a,b]属于(+∞,-∞)都满足[a,b]连续,(a,b)内可导的条件,又f(0)=f(1)=f(2)=f(3)=0,所以f(x)在[0,1][,1,2][2,3]上满足罗尔定理的全部条件,所以ξ1∈(0,1),ξ2∈(1,2),ξ3∈(2,3),有f'(ξ1)=f'(ξ2)=f'(ξ3)=0,即至少有三个实数根ξ1,ξ2,ξ3.又因为f'(x)=0是三次方程,它至多也只有三个不同实数根哪,而ξ1<ξ2<ξ3不等。综上,f'(x)=0有三个不同实数根且位于(0,1)(1,2)(2,3)内;第二题比较简单;因为f(X)在实数范围内可导,则在实数范围内有,f(X)=∫f'(X)dx+a,即f(X)为f'(X)的一个原函数,即f(X)=cx+a,当c=0时,f(X)=a(a为任意常数),f(X)表示平行于x轴的直线;当c≠0,显然f(X)为一直线。所以f(X)一定是线性函数第三题:(这是你思考的过程:通过观察,有函数和导数的乘积和加减=0的问题,想都罗尔定理,进而构造函数,如下思考:原式化为:f'(C)=-f(C)/C,cf'(C)+f(C)=0,用观察可以得出(cf(C))'=0,即我们要求的辅助函数F(x))解:设函数F(x)=xf(x),又由题知,f(X)在[0,1]上连续,(0,1)内可导,则F(x)=xf(x),也满足在[0,1]上连续,(0,1)内可导,又F(0)=0f(0)=0,F(1)=1f(1)=0,F(x)=xf(x)在(0,1)满足罗尔定理,所以在(0,1)内至少存在一点C,使得F'(c)=(cf(C))'=cf'(C)+f(C)=0,C∈(0,1),即f'(C)=-f(C)/C我还要补充的就是构造辅助函数是技巧、熟练程度,如果不熟悉就把式子移项两边积分也行,就是解微分方程了,虽麻烦,但可算万能公式啊!
梁小姐12
1. 因为条件只有一点可导, 所以不适用中值定理, 直接用定义证明.由f(x)在x = 0处可导, 有lim{x → 0} (f(x)-f(0))/x = f'(0).对任意ε > 0, 存在δ > 0, 使得|x| < δ时恒有|(f(x)-f(0))/x-f'(0)| < ε.而由a[n] → 0-, b[n] → 0+, 存在N, 使得n > N时成立-δ < a[n] < 0 < b[n] < δ.此时|(f(b[n])-f(a[n]))/(b[n]-a[n])-f'(0)|= |(f(b[n])-f(a[n]))-f'(0)(b[n]-a[n])|/(b[n]-a[n])= |(f(b[n])-f(0)-f'(0)·b[n])-(f(a[n])-f(0)-f'(0)·a[n])|/(b[n]-a[n])≤ |f(b[n])-f(0)-f'(0)·b[n]|/(b[n]-a[n])+|f(a[n])-f(0)-f'(0)·a[n]|/(b[n]-a[n]) (绝对值不等式)= |(f(b[n])-f(0))/b[n]-f'(0)|·b[n]/(b[n]-a[n])-|(f(a[n])-f(0))/a[n]-f'(0)|·a[n]/(b[n]-a[n]) (a[n] < 0 < b[n])< ε·b[n]/(b[n]-a[n])-ε·a[n]/(b[n]-a[n]) (由|a[n]|, |b[n]| < δ)= ε.即得lim{n → ∞} (f(b[n])-f(a[n]))/(b[n]-a[n]) = f'(0).9. 设g(x) = f(x)².则g(x)在[0,1]连续, 在(0,1)可导, 且g(0) = f(0)² = 0.又由f(x)在(0,1)不恒为0, 存在c ∈ (0,1)使f(c) ≠ 0, 于是g(c) = f(c)² > 0.根据Lagrange中值定理, 存在ξ ∈ (0,c)使g'(ξ) = (g(c)-g(0))/(c-0) = g(c)/c > 0.于是f(ξ)f'(ξ) = g'(ξ)/2 > . (1) 不妨设f'(a) > 0, 则有f'(b) > 0.由lim{x → a+} (f(x)-f(a))/(x-a) = f'(a) > 0, 在a的右邻域内存在c使f(c) > f(a) = 0.同理, 在b的左邻域内存在d使f(d) < f(b) = 0.由f(x)连续, 根据介值定理, 在c, d之间存在ξ使得f(ξ) = 0.(2) 设g(x) = f(x)·e^(-x), 则g(x)在[a,b]连续, 在(a,b)可导, 且g(a) = g(ξ) = g(b) = 0.由Rolle定理, 存在α ∈ (a,ξ), 使得g'(α) = 0, 即f'(α)·e^(-α)-f(α)·e^(-α) = 0.而e^(-α) ≠ 0, 故f'(α)-f(α) = 0. 同理, 存在β ∈ (ξ,b)使得f'(β)-f(β) = 0.再设h(x) = (f'(x)-f(x))·e^x, 则h(x)在[α,β]连续, 在(α,β)可导, 且h(α) = h(β) = 0.由Rolle定理, 存在η ∈ (α,β), 使得h'(η) = 0.而h'(x) = (f"(x)-f'(x))·e^x+(f'(x)-f(x))·e^x = (f"(x)-f(x))·e^x,即得(f"(η)-f(η))·e^η = 0, 又e^η ≠ 0, 故f"(η)-f(η) = 0, 也即f(η) = f"(η).
拉格朗日定理是微分学中的基本定理之一,它反映了可导函数在闭区间上的整体的平均变化率与区间内某点的局部变化率的关系。 定理的现代形式如下:如果函数f(x)在闭区间
微积分的基本公式共有四大公式: 1、牛顿-莱布尼茨公式,又称为微积分基本公式。 2、格林公式,把封闭的曲线积分化为区域内的二重积分,它是平面向量场散度的二重积分
毕业论文答辩是一种有组织、有准备、有计划、有鉴定的比较正规的审查论文的重要形式。为了搞好毕业论文答辩,在举行答辩会前,校方、答辩委员会、答辩者(撰写毕业论文的作
简析高等数学中的数学结构与数学理解【摘要】文章从分析高等数学的内容结构出发,代写论文 对数学结构与数学理解所起的作用,作了简单的剖析。【关键词】高等数学;数学结
去万方,中国知网下点相关的资料,看看能不能对你有些启发,要抓住一些小的方面仔细研究,范围太大不好写