毛的惊喜
人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。以下是我整理的人工智能的毕业论文范文的相关资料,欢迎阅读!
摘要:人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。论述了人工智能的定义,分析了目前在管理、教育、工程、技术、等领域的应用,总结了人工智能研究现状,分析了其发展方向。
关键词:人工智能;计算机科学;发展方向
中图分类号:TP18
文献标识码:A
文章编号:1672-8198(2009)13-0248-02
1人工智能的定义
人工智能(Artificial Intelligence,AI),是一门综合了计算机科学、生理学、哲学的交叉学科。“人工智能”一词最初是在1956年美国计算机协会组织的达特莫斯(Dartmouth)学会上提出的。自那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。由于智能概念的不确定,人工智能的概念一直没有一个统一的标准。著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而美国麻省理工学院的温斯顿教授认为“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”童天湘在《从“人机大战”到人机共生》中这样定义人工智能:“虽然现在的机器不能思维也没有“直觉的方程式”,但可以把人处理问题的方式编入智能程序,是不能思维的机器也有智能,使机器能做那些需要人的智能才能做的事,也就是人工智能。”诸如此类的定义基本都反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。
2人工智能的应用领域
人工智能在管理及教学系统中的应用
人工智能在企业管理中的应用。刘玉然在《谈谈人工智能在企业管理中的应用》一文中提到把人工智能应用于企业管理中,认为要做的工作就是搞清楚人的智能和人工智能的关系,了解人工智能的外延和内涵,搭建人工智能的应用平台,搞好企业智能化软件的开发工作,这样,人工智能就能在企业决策中起到关键的作用。
人工智能在智能教学系统中的应用。焦加麟,徐良贤,戴克昌(2003)在总结国际上相关研究成果的基础上,结合其在开发智能多媒体汉德语言教学系统《二十一世纪汉语》的过程中累积的实践经验,介绍了智能教学系统的历史、结构和主要技术,着重讨论了人工智能技术与方法在其中的应用,并指出了当今这个领域上存在的一些问题。
人工智能专家系统在工程领域的应用
人工智能专家系统在医学中的应用。国外最早将人工智能应用于医疗诊断的是MYCIN专家系统。1982年,美国Pittsburgh大学Miller发表了著名的作为内科医生咨询的Internist 2I内科计算机辅助诊断系统的研究成果,1977年改进为Internist 2Ⅱ,经过改进后成为现在的CAU-CEUS,1991年美国哈佛医学院Barnett等开发的DEX-PLAIN,包含有2200种疾病和8000种症状。我国研制基于人工智能的专家系统始于上世纪70年代末,但是发展很快。早期的有北京中医学院研制成“关幼波肝炎医疗专家系统”,它是模拟著名老中医关幼波大夫对肝病诊治的程序。上世纪80年代初,福建中医学院与福建计算机中心研制的林如高骨伤计算机诊疗系统。其他如厦门大学、重庆大学、河南医科大学、长春大学等高等院校和其他研究机构开发了基于人工智能的医学计算机专家系统,并成功应用于临床。
人工智能在矿业中的应用。与矿业有关的第一个人工智能专家系统是1978年美国斯坦福国际研究所的矿藏勘探和评价专家系统PROSPECTOR,用于勘探评价、区域资源估值和钻井井位选择等。20世纪80年代以来,美国矿山局匹兹堡研究中心与其它单位合作开发了预防煤矿巷道底臌、瓦斯治理和煤尘控制的专家系统;弗尼吉亚理工学院及州立大学研制了模拟连续开采过程中开采、装载、运输、顶板锚固和设备检查专家系统Consim;阿拉斯加大学编写了地下煤矿采矿方法选择专家系统。
人工智能在技术研究中的应用
人工智能在超声无损检测中的应用。在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质,形状和大小进行判断和归类;专家在传统超声无损检测与智能超声无损检测之间架起了一座桥梁,它能把一般的探伤人员变成技术熟练。经验丰富的专家。所以在实际应用中这种智能超声无损检测有很大的价值。
人工智能在电子技术方面的应用。沈显庆认为可以把人工智能和仿真技术相结合,以单片机硬件电路为专家系统的知识来源,建立单片机硬件配置专家系统,进行故障诊断,以提高纠错能力。人工智能技术也被引入到了计算机网络领域,计算机网络安全管理的常用技术是防火墙技术,而防火墙的核心部分就是入侵检测技术。随着网络的迅速发展,各种入侵手段也在层出不穷,单凭传统的防范手段已远远不能满足现实的需要,把人工智能技术应用到网络安全管理领域,大大提高了它的安全性。马秀荣等在《简述人工智能技术在网络安全管理中的应用》一文中具体介绍了如何把人工智能技术应用于计算机网络安全管理中,起到了很好的安全防范作用。
3人工智能的发展方向
人工智能的发展现状
国外发展现状。目前,AI技术在美国、欧洲和日本发展很快。在AI技术领域十分活跃的IBM公司。已经为加州劳伦斯・利佛摩尔国家实验室制造了号称具有人脑的千分之一的智力能力的“ASCII White”电脑,而且正在开发的更为强大的新超级电脑――“蓝色牛仔(blue jean)”,据其研究主任保罗・霍恩称,预计“蓝色牛仔”的智力水平将大致与人脑相当。麻省理工学院的AI实验室进行一个的代号为cog的项目。cog计划意图赋予机器人以人类的行为,该实验的一个项目是让机器人捕捉眼睛的移动和面部表情,另一个项目是让机器人抓住从它眼前经过的东西,还有一个项目则是让机器人学会聆听音乐的节奏并将其在鼓上演奏出来。由于人工智能有着广大的发展前景,巨大的发展市场被各国和各公司所看好。除了IBM等公司继续在AI技术上大量投入,以保证其领先地位外,其他公司在人工智能的分支研究方面,也保持着一定的投入比例。微软公司总裁比尔・盖茨在美国华盛顿召开的AI(人工智能)国际会议上进行了主题演讲,称微软研究院目前正致力于AI的基础技术与应用技术的研究,其对象包括自我决定、表达知识与信息、信息检索、机械学习、数据采集、自然语言、语音笔迹识别等。
我国人工智能的研究现状。很长一段时间以来,机械
和自动控制专家们都把研制具有人的行为特征的类人性机器人作为奋斗目标。中国国际科技大学在国家863计划和自然科学基金支持下,一直从事两足步行机器人、类人性机器人的研究开发,在1990年成功研制出我国第一台两足步行机器人的基础上,经过科研10年攻关,于2000年11月,又成功研制成我国第一台类人性机器人。它有人一样的身躯、四肢、头颈、眼睛,并具备了一定的语言功能。它的行走频率从过去的每六秒一步,加快到每秒两步;从只能平静地静态不行,到能快速自如的动态步行;从只能在已知的环境中步行,到可在小偏差、不确定环境中行走,取得了机器人神经网络系统、生理视觉系统、双手协调系统、手指控制系统等多项重大研究成果。
人工智能发展方向
在信息检索中的应用。人工智能在网络信息检索中的应用,主要表现在:①如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术,包括机器感知、机器思维、机器行为,即知识获取、知识处理、知识利用的过程。②由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识,这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素,对其进行推理,需要利用人工智能的研究成果。
基于专家系统的入侵检测方法。入侵检测中的专家系统是网络安全专家对可疑行为的分析后得到的一套推理规则。一个基于规则的专家系统能够在专家的指导下,随着经验的积累而利用自学习能力进行规则的扩充和修正,专家系统对历史记录的依赖性相对于统计方法较小,因此适应性较强,可以较灵活地适应广普的安全策略和检测要求。这是人工智能发展的一个主要方向。
人工智能在机器人中的应用。机器人足球系统是目前进行人工智能体系统研究的热点,其即高科技和娱乐性于一体的特点吸引了国内外大批学者的兴趣。决策系统主要解决机器人足球比赛过程中机器人之间的协作和机器人运动规划问题,在机器人足球系统设计中需要将人工智能中的决策树、神经网络、遗传学的等算法综合运用,随着人工智能理论的进一步发展,将使机器人足球有长足的发展。
4结语
由上述的讨论我们可以看到,目前人工智能的应用领域相当广泛。无论是学术界还是应用领域对人工智能都高度重视。人工智能良好的发展和应用前景,要求我们必须加大研究和投入力度,以使人工智能的发展能为人类服务。
下一页分享更优秀的<<<人工智能的毕业论文范文
阳光的玖零
近日,由论答公司主办的教育大数据研讨会在北京举行,讨论会主题为“大数据+教育,有哪些可能性?”。本次研讨会主要关注数据在教育领域的应用,具体包括自适应学习、学习数据分析和教育数据挖掘。来自宾夕法尼亚大学、人民大学、华中师范大学的专家和企业界代表,共同探讨了教育大数据和自适应学习领域的技术趋势和产业机会Ryan Baker是国际教育数据挖掘协会(International Educational Data Mining Society)的创始人、《教育数据挖掘》杂志(Journal Educational Data Mining)主编,在各类期刊和会议发表了260余篇学术论文,先后主持了美国科学基金会(National Science Foundation)、盖茨基金会(Gates Foundation)等研究基金的多项重大项目,累计获得研究经费超过1600万美元。他也在哥伦比亚大学教育学院和爱丁堡大学同时担任教职,他在Coursera和edX上开设的“Big Data in Education(教育大数据)”课程,有来自100多个国家和地区的学生注册。研讨会现场,Ryan Baker通过远程视频,分享了他对教育大数据的体验和应用。据他介绍,目前在教育大数据领域主要有四大研究组织,分别研究人工智能与教育、教育数据挖掘、学习数据分析和大规模学习。Ryan Baker表示,在教育领域广泛应用大数据的时代正在到来。教育数据挖掘有很多的应用方向,包括:预测学生是会辍学,还是会成功完成学业;自动检测学生的学习投入程度、情感、学习策略,以更好地达到个性化;给教师和其他相关人员提供更好的报告;教育科学的基础研究和发现。他认为,个性化教育至少要做到三件事情:1、确定学生的有关数据;2、了解对于学生的学习来说什么是真正重要的;3、有针对性地为学生提供合适的教学。而通过教育数据挖掘,我们可以推断很多事情:学生的元认知和求助。比如,这个学生有多自信?当他需要帮助时,有没有在寻求帮助?他有没有在给自己解释问题,有没有思考这个答案是正确的还是错误的?最重要的,当他面临挑战时,能否坚持下去?没有投入学习的行为。比如,“玩弄”系统,为了找到正确的答案,有的学生会试各种不同的答案,从“1”试到“38”。粗心,本身会做,但是不用心,最后给出的答案是错的。有些孩子会做非常难以解释的行为,比如不用方程符号,而是画了一个笑脸。学生情感。Baker的研究团队和其他研究团队,已经创造了研究模型,可以根据数据推断,学生是否感到厌倦、沮丧、困惑、好奇、兴奋、快乐,是否投入,等等。长期的学习结果。比如,学生能够记住刚才他学的东西吗?学生准备好学习下一个主题、下一个知识没有?中学生能上大学吗?他会从大学毕业还是辍学?Ryan Baker表示,要获得这样的推断,只需要学生与系统交互的数据,不需要学生戴上头盔检测器。目前,这些模型已经开始大规模应用于自适应学习,应用于几十万的美国学生。Ryan Baker列举了一些自适应学习系统的案例。Knewton通过系统决定学生下一个要学习的问题是什么,已在全球的多个领域多个学科中运用。ALEKS-ALEKS用的是先行知识结构和知识点模型,来选择最适合学生的学习材料。比如,一个学生在学习上出现了问题,系统能够检测出来,是以前学的知识点出了问题,然后让学生回到以前的知识点上去学习。ALEKS系统应用于美国高中、大学的数学、科学学科。Cognitive Tutor系统能自动检测学生的知识,直到学生掌握为止。比如,系统不会让学生学习下一步的知识,直到他展示出他已经学好了他现在正在学习的知识。系统能够给学校提供数据报告,学校根据报告能够更好地让学生投入到学习中去。每年大约被50万的美国初高中生用于数学学习。论答论答公司的系统与ALEKS的系统有些类似,也是用先行结构和知识点模型,选择合适的学习材料。同时也是自动检测学生的知识状态直到学生掌握为止。应用领域目前包括数学和英语,完全针对中国学生开发。Reasoning Mind用各种自动检测的模型来检测老师的教学是否有效。通过数据生成报告给每个地区的教学管理员,让他们找到方法帮助老师提高教学。主要是用于美国的小学数学。Duolingo自动检测学生记忆,来决定什么时候回顾已经学过的知识。在全世界范围内应用于外语词汇的学习。其他的像Civitas,Course Signals,Zogotech都是地区供应商,运用风险预测模型提供行动信息预测。它们会对学生做出预测,可能学不好、会失败,把报告提供给老师。已在世界范围内的大学应用。Ryan Baker指出,在这些系统中,有足够的证据证明,至少以下两个系统是非常好的。1、胡祥恩教授在美国做了大量实证研究,证明ALEKS系统对于帮助学生学习是有效的。他的研究证明,ALEKS系统对于不同人群的学生是同样有效的;特别值得提出的是,ALEKS可以帮助少数人群群体提高学习成绩。2、Ryan Baker本人领导的研究团队与论答公司合作的研究表明,学生通过论答系统学习,比通过传统的在线学习系统学习,效果更好。他们在中国3个不同的地区做的3次实证研究,都证明了论答系统的有效性。Ryan Baker分析了教育大数据算法模型的潜在发展方向。他认为,这些模型的长期潜力是,通过学生的知识和学习模型来确认,学生什么时候需要更多的支持:首先是“mastery learning”,学生在掌握一个知识前,不会让他去学习下一个知识。当学生需要支持的时候,自动介入;同时告诉老师和父母,这个学生什么时候需要支持。通过学习投入程度模型判断,学生什么时候开始变得厌倦、沮丧了,并调整学习活动,让厌倦的学生不再厌倦,让沮丧的学生的学习变得更容易一些。学习投入程度模型还可以检测,在线学习中,什么样的学习活动,能让学生更容易地投入进去,并最终发现,什么样的学习活动对学生更好、对什么样的学生更好。这样的模型也能告诉老师和父母,学生什么时候开始变得不再投入学习了。还可以运用学习模型确认,学生什么时候没有真正学会,需要更多支持。最后,Ryan Baker指出,下一步的目标是优化之前已经验证的经验和方法,然后把它们运用到系统中,最终让中国和世界上的数十亿学生受益。讨论:“因材施教”的千年理想该如何照进现实?王枫博士,论答公司(Learnta Inc.)创始人兼CEO胡飞芳博士,美国乔治华盛顿大学(George Washington University)统计学终身教授,中国人民大学统计与大数据研究院的教授胡祥恩博士,美国孟菲斯大学(University of Memphis)心理系、计算机科学系、计算机工程系终身教授,华中师范大学心理学院院长马镇筠博士,论答公司联合创始人兼首席数据科学家辛涛博士,北京师范大学中国基础教育质量监测协同创新中心常务副主任、博士生导师,兼任国家督学、教育部基础教育课程教材专家工作委员会委员、中国教育学会学术委员会委员。技术发展到今天,“因材施教”如何实现?王枫:因材施教,我首先到的是,每位学生学习的内容都不一样。如果有新的技术或者系统,系统应该像一个好老师一样,不会头疼医头脚疼医脚。比如说,一元二次方程做错了,好老师不会简单说一元二次方程做错了,你继续再做十道一元二次方程的题目,这其实是很差的老师,他没有真正去全面评判学生,到底是哪些掌握好、哪些掌握不好。一个好的老师可能会说,我全面地看了你整个学习,可能你的问题不是出在一元二次方程上面,老师看了你做的题目,一元一次方程没有掌握好、因式分解也没有掌握好,你继续做一元二次方程是浪费时间。这就是从系统角度来说,系统做到了根据每个学生最基础的先行知识点的结构,给你提供最适合你当前学习的知识点,题目也好、视频也好、还有其他各种各样的学习内容。胡飞芳:因材施教是我们教育的理想状态。孔子很早提出因材施教,在他当时的历史环境里面,因材施教可能更多是个体性的,因为那时学生少、老师也少,因材施教相对比较容易做到。随着历史的发展,我们有更多的人需要教育时,我们做的一件事情是什么呢?就是做了一个标准化。标准化做的是什么?课堂教育。课堂教育从某种意义上来讲是标准化。现在这个历史阶段,教育大数据可能真正要做到的就是因材施教,自适应学习本身想做的也是这个。胡祥恩:因材施教事实上在学习理论里有两个:一个是outerloop“学什么”,一个是innerloop“怎么学”。用技术来细化因材施教是教育产业走向成熟的一个标志。但是这个路非常非常难,因为“怎么学”那个层次非常非常难。马镇筠:“因材”代表认识到学生的个体化差异,“施教”指进行差异化教学,这是根本思想。但如果考虑到时代背景,孔夫子时代专注的是学生的职业发展方向,也就是说,把适合当政治家的培养成政治家,把适合当学者的培养成学者。现在再提因材施教,我们其实能做得更多、更精细化。比如,“因材”,对“材”的分类不仅是职业方向,还会考虑到学生的学习状态、学习目标、潜在能力、兴趣偏好等。而且,传统意义上的因材施教考虑的是学生个体间的差异,没有重视学生本身状态是在发生变化的,学生在不断学习,状态甚至兴趣各方面都可能发生变化。但这些是自适应学习能够做到,甚至比传统的因材施教做得更好的地方。再说到“施教”,现在我们能做的几件事,包括学习路径推荐,给不同的学生匹配他最合适的学习内容,这种非常精细化的层面,我们已经有了一定的技术积累。怎么判断一个产品做到了真正的自适应?马镇筠:大多数产品的学习过程可以分为测、学、练,可以从这三个环节去看这个产品做到什么程度。测,各种学习机构都有测评。但是国内只有论答团队第一个做出来能够在几十道题内,精准判断你一百个知识点,哪21个没掌握,哪79个掌握了。市场上大部分竞品,只会告诉你,知识点掌握率或者分数,79分或者知识掌握率达到79%;或者一些其他维度的总结,比如逻辑思维能力比较强、阅读的磨炼技巧比较好、学习动力哪方面稀缺。他们做了降维,本来很复杂的学习状态这样说出来,相对比较容易实现。但如果要做到具体告诉你,哪些知识点掌握、哪些知识点没掌握,这个难度就高很多了。关于学习路径推荐的话,很多题库类的软件,知识点学完之后,会给一些题目推荐,但真正实现路径推荐的很少很少。路径推荐也是很核心的,有20个知识点没掌握,先学哪个知识点,后学哪个知识点,学习顺序是非常关键的,必须遵循循序渐进的原则,哪些知识点是前提知识点,哪些知识点是后续知识点,随机给你知识点去学习的话不能起到最好效果。真正到了练或学的环节,推荐什么样的视频,先推视频还是先推文字讲义,推简单题、中等难度题还是复杂题目,都需要根据学生实际情况来决定。刚才只是举了几个例子,具体涉及到背后的算法、整个系统跟学习内容的结合以及整个教学流程的实现,中间很多环节必须要打通,形成一个闭环,才能对最终的结果负责。辛涛:我的研究领域是教育和心理学的测量和评价。我个人的学术观察,基本上在现代这领域是两个类型。一个是心理测量领域,有一套成熟的方法,包括早期的IRT(Item Response Theory)和现在的ADT。另外一个是人工智能检测。心理测量系统,是一小群人在做;人工智能化是大的方向,现在是显学,给大家提供了明显的可能性。重要的是,那些背后的算法,能够在企业里真正实现出来。现在可能很多算法已经在那儿了,大体上路径是通的。自适应学习基本上是把学习和评价联动起来了。因为,要自适应学习,必须有一个系统随时看到学生学到什么程度,这个完全是评价。但是,评价完了之后有一个新的呈现。这一块现在已经有一些很成熟的一些东西了,但不是一时半时可以说得特别具体的。我做教育的测量和心理测量,人工智能那块我不熟。但是,从教育测量角度来说,在自适应学习和新技术结合之前,很大一块还是自适应考试,CAT(computer adaptive test)。系列化产生一个CAT变成了一个自适应学习的过程。总的来说,使用最简单、最机械化的方法,连续的CAT实际上是可以破解一个学习过程的。测评本身经历了好几个阶段,通常用三个应用介词表示。accessment to learning and teaching;现在国家倡导的,accessment for learning and teaching,测评要对学习和教学有帮助;跟信息化结合,accessment as learning and teaching,它是学习提供的完全融合的一个环节。王枫:什么样的自适应学习系统才是真正的高级自适应学习系统?在中国的落地到底是怎么样才能真正落地?我在马博士的基础上想补充一点。自适应系统如果一定要分级,也可以简单分一下。一种最基础的系统是基于规则的,比如说埋点。一个学生做10道一元二次方程题目,我预先埋好了,你做错了,立马给你推五道一元一次方程题目、五道因式分解题目。这个是埋点埋好了,这是规则,预先由老师或公式设置好了。但这个规则有用性是非常有限的,因为每个学生不一样,A学生是因为一元一次方程不会,B学生可能是因式分解不会,C学生可能连小学的乘法快速运算都不会,这个没法预先直接埋点准备好。所以自适应系统真正到了更高级一点的话,一定是真正通过大数据、根据算法模型来分析学生的学习数据,匹配下一步应该学什么。在中国,自适应学习有效应用于教学有三个前提条件。做到这三点,自适应学习在中国的教育里面前途无限。好的产品。必须要有针对中国本土化的自适应学习产品,把它开发出来。像ALEKS系统的确算法不错,但里面连一套国内的高考题都没有,家长不会让小孩子用这样的系统,因为直接影响应试目标。真正本土化开发的话,没有一成不变的算法,世界上最好算法就是没有开发出来的。教育非常复杂,每个学科不一样。比如数学后台有强大的关系,先行后续关系;英语没达到数学这么强的相关性,但算法是一样可以应用的。好的学生、家长、老师。有了好的产品,首先学生应该真正投入进去学习。像Ryan Baker教授讲的,学生如果随便学一下,再好的系统也没用。第二,家长得督促孩子学习。第三,老师非常重要。老师应该做有价值的事情,比如给学生做个性化的辅导答疑,给学生针对性的讲解,组织学习活动小组,鼓励学生发挥创造能力,领导能力的培养。学校以点带面。学生大部分时间都在学校里面学习。如果学校里最基本的、有效的在线教学产品都不应用的话,其实是有问题的。但是改变绝对不是简单的行政命令可以解决的。一个好的产品,一定是从点到面,逐步推广。自适应学习,更适合有明确目的的学习,像应试教育这块可以做得更好。所以学校可以应用进去。胡祥恩:我觉得大家做自适应也好、因材施教也好,比较好的例子大家可以看一看。教育这个领域有多大,自适应概念就该有多宽。所以说,实验室里面有很多小的做得非常非常好的东西,只是没有到市场上面去,有很多非常非常巧妙的算法、一些东西。你会发现很多欧洲的、美国的实验室做的system,我每次看了都有种,自己是坐井观天的感觉。怎么看待人工智能在教育中的应用?胡飞芳:AlphaGo跟master,谷歌做了一个非常好的广告,人工智能在某些方面可以做得非常好。但是,我现在给你们讲另外一个谷歌自己不会去说的例子,但这也是事实。2008年、2009年的时候,谷歌推出一个免费产品,用各种搜集到的数据,预测美国的流感发展趋势。开始时很成功,预测跟实际发生的情况很相似。但到2015年,他自动撤回去了,不再提供预测。因为在2012跟2013年预测的时候,预测结果跟实际情况相差非常远。这说明像这种不确定性的问题,人工智能还有非常大的局限性。一旦有不确定的数据,就有噪音。数据量很大时,大数据可能产生大噪音。怎样使噪音下降?2015年一个哈佛教授的研究团队在谷歌的基础上,用谷歌的数据去做同样的预测。他用了什么呢?就是用了模型,实际上模型在很多时候降噪是很有用的,用模型去预测,而不完全是人工智能的方式去预测。结果,他做出来的预测基本都比较准。人工智能相对比较成功的,是比较确定的问题,所谓的确定是不管有多少种可能性,还是一个确定的东西。而流感很多时候是完全不确定的因素。教育其实很多时候也是不确定的。同样一个人,现在让他回答这个问题,他可能思路清楚地回答出来;过了一个小时后,即使是同样类型的问题,按道理他应该回答出来,结果他回答不出来。这是说,实际上有很多因素在干扰的时候,人工智能的功能是不是会减少一点。把模型跟人工智能加在一起,会弥补人工智能在某些方面的弱点,这样会更好。怎样促进商界和学界的交流,更好地把学界已经有的一些成果,运用到市场上来?胡祥恩:教育产业应该是一个最大的产业,教育产业事实上是一个知识产业链。到目前为止,很多人认为自己要做一整套系统而在美国汽车业,最赚钱的是供应商,是做轮胎、做玻璃的。一旦标准化之后,一个人如果螺丝钉生产得最好,他就能够养活几家人、几代人。到目前为止,美国推的就是教育标准化,教育内容的标准化、教育技术的标准化。比如说97年的时候,就说怎么样把内容标准化,你做的东西我可以用。我只是做整个教育知识产业链里面一个小块,做得很好。教育整个的产业链,有可能发挥特别特别技巧的那些小的公司,就能够在这个产业链里面生存、可以做得很好。第一个是要标准化,第二个要理解整个教育是一个产业链。
DoughnutTOP
当前,以信息技术和数据作为关键要素的数字经济蓬勃发展,并成为推动我国经济增长的重要力量。数字人才是数字经济发展的核心要素。实践出真知,美林数据基于数十年数据领域实践经验,结合产业发展的人才需求,为高校提供从教学、实践、科研一体化的大数据应用能力解决方案。大数据人才应用能力成长平台——Tempo Talents,从产业人才需求的视角,通过模式创新、技术创新,为高校大数据人才培养提供从平台、课程内容到教学管理的系统解决方案。平台核心围绕“人才应用能力培养”,以实践为基础,将大数据人才培养所需的知识、技能和方法论三个层面互相融合,核心是通过学生动手实践,培养数据思维及解决问题的能力。
Tempo Talents——大数据应用能力成长平台核心面向大数据管理应用、数据科学与大数据技术、交叉学科等大数据相关专业,应用于教学实践、集中实训、在线竞赛、学习交流等场景。
Tempo Talents核心特点1、DT-CMPA人才能力地图,让学习目标清晰明确基于大数据行业人才标准及一万多个大数据相关岗位招聘需求解析,定义岗位素质模型,从岗位胜任力出发,规划学习路径和学习路线。基于人才能力地图,高校可以根据自己的学科建设目标、人才培养方向,进行课程体系的规划。而学生也能根据自己的就业目标,规划学习路径,让学生学习更具目标感,清楚学什么、为什么学。
2、专业课程实践资源,满足不同类型教学、实验需求1)系统课程体系设计,名师专业课程打造与多位高校老师沟通合作,围绕大数据学习路线的两个基础一个链条,打造9大方向、数百个分类,开发设计1000多个原子课,为高校实践教学提供丰富的课程资源。
2)创新原子课设计,知行合一Q:何为“原子课”?A:将课程中涉及的技术点、知识点“原子化”拆分,从基础原理、特性到最终应用,层层递进,用闯关的模式引导学生学习和实践,目的是让学生将每一个知识点吃透、掌握与应用。基于原子课实现“个性化定制课堂”,老师可根据人才培养需求、学科特色、所用教材在原子课程库中自由挑选、灵活搭配难易度合适的知识点原子,灵活组合,实现“个性化定制课堂”。3)个性化定制课堂,因材施教定制化“教学课堂”,自定义教学计划,学生学习行为与评测结果记录,洞察和解析学生学习路径与成果,过程与结果并重,探索教学目标达成的最佳方案。3、千余个项目应用实践经验,培养学生数据思维及解决问题的能力基于美林数据上千个行业头部客户大数据建设项目经验,以行业应用为引导,以真实项目案例为基础,内嵌6大行业,100+项目实训,让学生了解行业最新实践与应用场景,通过实战演练提升学生解决实际问题的能力。
对于大数据学习而言,最难的不是Python的一段代码实现、也不是算法原理的掌握,而是在具体业务场景中,将业务问题数据化,利用分析工具、大数据知识去找到解决方案。针对每一个实训项目,我们都将项目落地全过程进行深度剖析,还原项目落地全流程。将分析方法论、业务问题转化为数学问题的思维方式、知识技能的应用技巧等,全部融入到具体的项目实训案例中,让学生通过实训,掌握方法、提升思维模式。4、一体化实践运行平台,提供丰富实验实训环境1)技术创新,实验环境管理智能高效基于容器与虚拟化技术,提供在线编程、远程命令行、交互式编程、远程桌面等实验实训环境,通过无感知的实验资源分配与回收替代复杂的实验环境管理,让实验管理智能高效。2)编码式加拖拽式双环境,应用型与开发型兼顾既有以原理、技术教学为目标的编码环境,也有以应用为目标的拖拽式环境。拖拽式数据可视化分析与机器学习建模平台,以应用为目标,与编码环境充分融合,满足大数据分析应用实践,为交叉学科大数据人才应用能力培养提供环境支持。
5、激发学生学习热情,打造“自驱型”能力成长平台闯关、竞赛、自主探索的数据游乐场,打破传统的学习模式,打造专业与趣味性融合的学习体验,充分激发学生自主学习热情,打造“自驱型”能力成长平台。
人工智能技术无论是在过去。认知心理学和人工智能。使得人工智能和心理学从最初就紧密地联系在一起。以下是我整理的人工智能的期末论文的相关资料,欢迎阅读! 摘要:人工
人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。以下是我整理的人工智能的毕业论文范文的相关资料,欢迎阅读! 摘要:人工智能是20世纪计算机
人工智能是一项前瞻性科学研究,已经成为ICT产业发展的突破口。以下是我整理的科技人工智能论文的相关 文章 ,欢迎阅读! 人工智能技术推动我国ICT产业发展模
“人工智能”是大学本科自动化专业所开设的一门专业选修课,为了能够调动自动化专业的学生对本课程学习的积极性,对《人工智能》这门专业选修课程的 教学 方法
人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。以下是我整理的人工智能的毕业论文范文的相关资料,欢迎阅读! 摘要:人工智能是20世纪计算机