xiaoshu20061
出生:1963年生于辽宁省昌图县学习经历: 本科生,计算数学专业,吉林大学数学系; 研究生,计算数学专业,吉林大学数学研究所,获硕士学位,获博士学位。工作经历: 吉林大学计算中心,助教、讲师; 吉林大学数学系,讲师、副教授、教授()博士生导师(); 现在 大连理工大学应用数学系,教授、博士生导师; 大连理工大学应用数学系,系主任; 现在 大连理工大学数学科学学院 学术委员会主任、计算科学研究所所长;国外访问经历: 日本筑波大学,博士后; 澳大利亚新南威尔士大学,合作研究; 英国牛津大学,学术访问。
北京美克
SCI杂志论文:[1] Yu Xiao and Bo Yu, A truncated aggregate smoothing Newton method forminimax problems, Appl. Math. Comput., 2009, DOI: .[2] Huijuan Xiong and Bo Yu, An aggregate deformation homotopy method forconstrained min-max-min problems with max-min constraints, ComputationalOptimization and Applications, 2009, DOI .[3] Xu, Qing; Dai, Xi; Yu, Bo Solving generalized Nash equilibrium problem withequality and inequality constraints. Optim. Methods Softw. 24 (2009), no. 3, 327--337.[4] Xiaona Fan and Bo Yu, A Smoothing Homotopy Method for Solving VariationalInequalities, Nonlinear Analysis, TMA, 70 (2009), no. 1, 211--219.[5] Qing Xu and Bo Yu, Solving the Karush-Kuhn-Tucker System of a NonconvexProgramming Problem on Unbonded Set, Nonlinear Analysis, TMA, 70 (2009), , 757-763.[6] Bo Yu and Bo Dong, A Hybrid Polynomial System Solving Method for MixedTrigonometric Polynomial Systems, SIAM J. Numer. Anal., 46 (2008), 1503-1518.[7] Xiaona Fan and Bo Yu, A Polynomial Path Following Algorithm for ConvexProgramming, Appl. Math. Comput., 196 (2008), no. 2, 866--878.[8] Xiaona Fan and Bo Yu, Homotopy Method for Solving Variational Inequalities withBounded Box Constraints, Nonlinear Analysis, TMA, 68(2008), 2357-2361.[9] Moody Chu, Nicoletta Del Buono and Bo Yu, Structured Quadratic InverseEigenvalue Problem, I. Serially Linked Systems, SIAM J. Scientific Computing, 29(2007), pp. 2668-2685.[10] Junxiang Li and Bo Yu, Truncated partitioning group correction algorithms for large-scale sparse unconstrained optimization, Appl. Math. Comput., 190(2007),242-254.[11] Shaoyan Cui, Xiaogang Wang, Yue Liu and Bo Yu, Effect of velocity shear on flowdriven resistive wall mode, Phys. Letters A, 369(2007): 479-482.[12] Qing Xu, Bo Yu and Guochen Feng, A Condition for Global Convergence of aHomotopy Method for Variational Inequality Problems on an Unbounded Set,Optimization Methods and Software, 22(2007), 587-599.[13] Bo Yu and Qing Xu, On the complexity of a combined homotopy interior pointmethod for convex programming, J. Comput. Appl. Math., 200(2007), 32-46.[14] Shaoyan Cui, Xiaogang Wang, Yue Liu and Bo Yu, Numerical studies for the lineargrowth of resistive wall modes generated by plasma flows in a slab model, Physicsof Plasmas, 13(2006), Art. No. 094506.[15] Qing Xu, Bo Yu and Guochen Feng, Homotopy methods for solving variationalinequalities in unbounded sets, J. Global Optimization, 31(2005), no. 1, 121-131.[16] Zhenghua Lin, Bo Yu and Daoli Zhu, A continuation method for solving fixedpoints of self-mappings in general nonconvex sets, Nonlinear Analysis, 52(2003),905-915.[17] Bo Yu, Guochen Feng and Shaoliang Zhang, The aggregate constraint homotopymethod for nonconvex nonlinear programming, Nonlinear Analysis, 45(2001), 839-847.[18] Bo Yu and T. Kitamoto, The CHACM method for computing the characteristicpolynomial of a polynomial matrix, IEICE Trans. Fundamentals, E83(2000), .[19] Guochen Feng, Zhenghua Lin and Bo Yu, Existence of an interior pathway to aKarush-Kuhn-Tucker point of a nonconvex programming problem, NonlinearAnalysis TMA, 32(1998), 761-768.[20] Zhenghua Lin, Bo Yu and Guochen Feng, A combined homotopy interior pointmethod for convex nonlinear programming, Appl. Math. Comput., 84(1997), 193-211.[21] Zhenghua Lin, Yong Li and Bo Yu, A combined homotopy interior point methodfor general nonlinear programming problems, Appl. Math. Comput., 80(1996),209-224.[22] Bo Yu and Zhenghua Lin, Homotopy method for a class of nonconvex Brouwerfixed point problems, Appl. Math. Comput., 74(1996), 65-77.[23] Zhenghua Lin and Bo Yu, A quadratically convergent scaling Newton's methodfor nonlinear complementarity problems, Optimization, 33(1995), 143-154.其它英文论文:[24] Bo Dong and Bo Yu, Homotopy Method for Mixed Trigonometric PolynomialSystems, Journal of Information and Computational Science, 4(2007), 505-514.[25] Huijuan Xiong, Yu Wang and Bo Yu, Maximum Entropy Method for Multiple-Instance Classification, Journal of Information and Computational Science, 4(2007), 811-820.[26] Changtong Luo and Bo Yu, Solving Min UR Problem by Triangle EvolutionAlgorithm with Archiving and Niche Techniques, Journal of Information andComputational Science, 4(2007), 811-820.[27] Yu Xiao and Bo Yu, Truncated smoothing Newton method for fitting rotatedcones, Journal of Mathematical Research and Exposition, 接受发表,2009[28] Bo Yu and Guochen Feng, Globally convergent interior path following methodsfor nonlinear programming and Brouwer fixed point problems, in Advances inNonlinear Programming, 325-343, Kluwer Academic Publishers, 1998.[29] Guochen Feng and Bo Yu, Combined homotopy interior point method fornonlinear programming problems, in Advances in Numerical Mathematics;Proceedings of the Second Japan-China Seminar on Numerical Mahtematics(Tokyo, 1994), 9-16, Lecture Notes Numer. Appl. Anal., 14, Kinokuniya, Tokyo,1995.[30] Guoxin Liu and Bo Yu, Homotopy continuation method for linear complementarityproblems, Northeast. Math. J.,20(2004), 309-316.[31] Bo Yu and Guoxin Liu, The aggretate homotopy method for constrainedsequential minimax problem, Northeast. Math. J., 19 (2003), 287-290.[32] Qing Xu, Guochen Feng and Bo Yu, Globally convergent interior point methodsfor variational inequalities in unbounded sets, Northeast. Math. J., 18(2002), 9-14.[33] Qing Xu, Guochen Feng and Bo Yu, Homotopy method for variational inequalities,数学进展, 3(2001), 477-479.[34] Bo Yu, Liqun Qi and Guoxin Liu, A modified aggregate homotopy method forconvex minimax problems, Proceedings of ICOTA'2001, Vol. 1, 32-37.[35] Qinghuai Liu, Bo Yu and Guochen Feng, An interior point path-following methodfor nonconvex programming with quasi normal cone condition, 数学进展, 29(2000), , 281-282.[36] Bo Yu, Qinghuai Liu and Guochen Feng, A combined homotopy interior pointmethod for nonconvex programming with pseudo cone condition, . J., 16(2000),383-386.[37] Yufeng Shang, Bo Yu, Qing Xu, Xiuying Zhao, Globally Convergent Method ofNon-Interior Point for Equilibrium Programming, in Global Optimization: Theory,Methods & Application I (eds.: C. Ma, L. Yu, D. Zhang and Z. Zhou), LectureNotes in Decision Sciences, Global Link Publisher, Vol. 12 (B) (2009), 923-929.[38] Changtong Luo and Bo Yu Low dimensional simplex evolution - a hybrid heuristicfor global optimization, 2007 8th ACIS International Conference on SoftwareEngineering, Artificial Intelligence, Networking, and Parallel/DistributedComputing 470-4 2007.[39] Luo, Changtong; Zhang, Shaoliang; Yu, Bo, Low dimensional reproductionstrategy for real-coded evolutionary algorithms, Proceedings - 7th IEEE/ACISInternational Conference on Computer and Information Science, IEEE/ACIS ICIS2008.[40] Shuyan Dong, Jintao Zhang, Bo Yu, Changtong Luo and Shaoliang Zhang, AGenetic Algorithm for Finding Minimal Multi-homogeneous Bézout Number,Computer and Information Science, 2008. ICIS 08. Seventh IEEE/ACISInternational Conference on, 301-305.[41] Cui Shaoyan et al, Effect of the Conducting Boundary Location on Resistive WallMode Instability, The 16th International Conference on Gas Discharges and TheirApplications, Vol. 1, 445-448, 2006[42] Luo Changtong and Yu Bo, Triangle evolution—a hybrid heuristic for globaloptimization, Journal of Mathematical Research & Exposition, 29(2009), No. 2,237-246.[43] An efficient algorithm for computing minimal polynomials of polynomial matrices, 中国科技论文在线,2005-02-16.[44] The random product homotopy for solving polynomial systems in , in ComputerMathematics (Tianjin, 1991), 36-45, World Sci. Publishing, River Edge, NJ, 1993.中文论文:[45] 信号处理中一类非线性方程组的快速求解 系统科学与数学,第28卷(2008),第8期,1002-1019.[46] 解非凸规划问题的动边界组合同伦方法,数学研究与评论,第26卷(2006),第4期,831-834.[47] 凸规划的动边界组合同伦方法及其收敛性,吉林大学学报(理科版),第44卷(2006),第3期,357-361.[48] 有限极大极小问题的拟牛顿法,吉林大学学报(理科版),第44卷(2006),第3期,367-369.[49] 解凸规划问题的动边界组合同伦方法,高等学校计算数学学报,Vol. 27(2005),专刊,311-315.[50] 非凸广义半无限极大极小问题的全局收敛方法,高等学校计算数学学报,Vol. 27(2005),专刊,316-319.[51] 基于拟法锥条件的非凸非线性规划问题的同伦内点算法,应用数学学报,第26卷(2003), 第2期, 372-377.[52] 序列极大极小问题的凝聚同伦方法,吉林大学学报(理科版),第41卷(2003),第2期, 155-156.[53] 连续化方法解约束非凸规划问题,计算数学,21(1999), , 309-316.[54] 非线性特征值问题的大范围求解,吉林大学自然科学学报,1994, , 27-30.[55] 二次规划的Q-平方收敛算法,吉林大学自然科学学报,1994, , 45-48.[56] 一类非凸Brouwer不动点问题的同伦算法,吉林大学自然科学学报,1994, , 37-38.[57] 亏欠多项式组解的个数和同伦算法,数学科学研讨会论文集,吉林大学出版社,1992.[58] 用单纯形方法解双参数特征值问题,高校计算数学学报,13 (1991), , 283-292.
研究生毕业论文的审核日期一般是每年3月至5月3月份的时候。学校要求上交论文进行统一查重,4月初论文发送到被出诊的院校和导师手中似月没回,结果5月份参加答辩,6月
出生:1963年生于辽宁省昌图县学习经历:1981.09-1985.07 本科生,计算数学专业,吉林大学数学系;1985.09-1992.07 研究生,计算数学
如果不给钱的话,很难找到合适的。
毕业论文的格式 完美对待好
前期你可以用papertime查重,给你一个查重字数兑换码(463 zero nine two 英文换成数字兑换查重字数即可)。改改重复率后,再用学校图书馆的知