• 回答数

    4

  • 浏览数

    193

小人鱼不流泪
首页 > 职称论文 > 有关建筑工程的英文论文题目

4个回答 默认排序
  • 默认排序
  • 按时间排序

冰冷的火夫

已采纳

Uniaxial stress–strain relationship of concrete confined by various shaped steel . Susantha, Hanbin Ge, Tsutomu Usami *Department of Civil Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, JapanReceived 31 May 2000; received in revised form 19 December 2000; accepted 14 February 2001AbstractA method is presented to predict the complete stress–strain curve of concrete subjected to triaxial compressive stresses caused by axial load plus lateral pressure due to the confinement action in circular, box and octagonal shaped concrete-filled steel tubes. Available empirical formulas are adopted to determine the lateral pressure exerted on concrete in circular concrete-filled steel columns. To evaluate the lateral pressure exerted on the concrete in box and octagonal shaped columns, FEM analysis is adopted with the help of a concrete–steel interaction model. Subsequently, an extensive parametric study is conducted to propose an empiricalequation for the maximum average lateral pressure, which depends on the material and geometric properties of the columns. Lateral pressure so calculated is correlated to confined concrete strength through a well known empirical formula. For determination of the post-peak stress–strain relation, available experimental results are used. Based on the test results, approximated expressions to predict the slope of the descending branch and the strain at sustained concrete strength are derived for the confined concrete in columns having each type of sectional shapes. The predicted concrete strength and post-peak behavior are found to exhibit goodagreement with the test results within the accepted limits. The proposed model is intended to be used in fiber analysis involving beam–column elements in order to establish an ultimate state prediction criterion for concrete-filled steel columns designed as earthquake resisting structures. •2001 Elsevier Science Ltd. All rights : Concrete-filled tubes; Confinement; Concrete strength; Ductility; Stress–strain relation; Fiber analysis1. IntroductionConcrete-filled steel tubes (CFT) are becoming increasingly popular in recent decades due to their excellent earthquake resisting characteristics such as high ductility and improved strength. As a result, numerous experimental investigations have been carried out in recent years to examine the overall performance of CFT columns [1–11]. Although the behavior of CFT columns has been extensively examined, the concrete core confinement is not yet well understood. Many of the previous research works have been mainly focused on investigating the performance of CFT columns with various limitations. The main variables subjected to such limitations were the concrete strength, plate width-to- thickness (or radius-to-thickness) ratios and shapes of the sections. Steel strength, column slenderness ratio and rate of loading were also additionally considered. It is understandable that examination of the effects of all the above factors on performances of CFTs in a wider range, exclusively on experimental manner, is difficult and costly. This can be overcome by following a suitable numerical theoretical approach which is capable of handling many experimentally unmanageable situations. At present, finite element analysis (FEM) is considered as the most powerful and accurate tool to simulate the actual behavior of structures. The accurate constitutive relationships for materials are essential for reliable results when such analysis procedures are involved. For example, CFT behavior may well be investigated through a suitable FEM analysis procedure, provided that appropriate steel and concrete material models are available. One of the simplest yet powerful techniques for the examination of CFTs is fiber analysis. In this procedure the cross section is discretized into many small regions where a uniaxial constitutive relationship of either concrete or steel is assigned. This type of analysis can be employed to predict the load–displacement relationships of CFT columns designed as earthquake resisting structures. The accuracy involved with the fiber analysis is found to be quite satisfactory with respect to the practical design present, an accurate stress–strain relationship for steel, which is readily applicable in the fiber analysis, is currently available [12]. However, in the case of concrete, only a few models that are suited for such analysis can be found [3,8,9]. Among them, in Tomii and Sakino’s model [3], which is applicable to square shaped columns, the strength improvement due to confinement has been neglected. Tang et al. [8] developed a model for circular tubes by taking into account the effect of geometry and material properties on strength enhancement as well as the post-peak behavior. Watanabe et al. [9] conducted model tests to determine a stress–strain relationship for confined concrete and subsequently proposed a method to analyze the ultimate behavior of concrete-filled box columns considering local buckling of component plates and initial imperfections. Among the other recent investigations, the work done by Schneider [10] investigated the effect of steel tube shape and wall thickness on the ultimate strength of the composite columns. El-Tawil and Deierlein [11] reviewed and evaluated the concrete encased composite design provisions of the American Concrete Institute Code (ACI 318) [13], the AISC-LRFD Specifications [14] and the AISC Seismic Provisions [15], based on fiber section analyses considering the inelastic behavior of steel and this study, an analytical approach based on the existing experimental results is attempted to determine a complete uniaxial stress–strain law for confined concrete in relatively thick-walled CFT columns. The primary objective of the proposed stress–strain model is its application in fiber analysis to investigate the inelastic behavior of CFT columns in compression or combined compression and bending. Such analyses are useful in establishing rational strength and ductility prediction procedures of seismic resisting structures. Three types of sectional shapes such as circular, box and octagonal are considered. A concrete–steel interaction model is employed to estimate the lateral pressure on concrete. Then, the maximum lateral pressure is correlated to the strength of confined concrete through an empirical formula. A method based on the results of fiber analysis using assumed concrete models is adopted to calibrate the post-peak behavior of the proposed model. Finally, the complete axial load–average axial strain curves obtained through the fiber analysis using the newly proposed material model are compared with the test results. It should be noted that a similar type of interaction model as used in this study has been adopted by Nishiyama et al. [16], which has been combined with a so called peak load condition line in order to determine the maximum lateral pressure on reinforced concrete , previous researches [17,18] indicate that the stress–strain relationship of concrete under compressive load histories produces an envelope curve identical to the stress–strain curve obtained under monotonic loading. Therefore, in further studies, the proposed confined uniaxial stress–strain law can be extended to a cyclic stress–strain relationship of confined concrete by including a suitable unloading/reloading stress–strain . Theoretical . Characteristic points on confined concrete stress–strain curveReferring to Fig. 1(General stress–strain curves for confined and unconfined concrete.), the following characteristic points have been identified to define a complete stress–strain curve when concrete is confined by surrounding steel tubes. The notation in the figure is as follows: f ’c is the strength of unconfined concrete; f ’cc is the strength of confined concrete; εc is the strain at the peak of unconfined concrete; εcc is the strain at the peak of confined concrete; εu is the ultimate strain of unconfined concrete; fu is the ultimate strength of unconfined concrete; εcu is the ultimate strain of confined concrete; and αf ’cc is the residual strength of confined concrete at very high strain levels. The expression for the complete stress–strain curve is defined as suggested by Popovics [19], which was later modified by Mander et al. [20] and given by where fc and ε denote the longitudinal compressive stress and strain, respectively; Ec stands for the tangent modulus of elasticity of concrete. It should be noted that Eq. (1) has been defined even for the post-peak region, in this study, it is utilized only up to the peak point. The post-peak behavior is treated separately by assuming a linearly varied stress–strain relation as will be discussed in Section 4. 【1-4 Fig. 1】. Confinement action in circular CFT columnsIn short CFT columns with relatively thick-walled sections designed for seismic purposes, failure is mainly caused due to concrete crushing. The mode of failure is governed by the individual behavior of each component. The behavior of concrete in CFT columns under monotonically increasing axial load can be explained in terms of concrete–steel interaction. The confinement effect does not exist at the early stage of loading owing to the fact that the Poisson ratio of concrete is lower than that of steel at the initial loading stage. At this level of loading, the circumferential steel hoop stresses are in compression and the concrete is under lateral tension provided that no separation between concrete and steel occurs (., the bond between two materials does not break). However, as the axial load increases, the lateral expansion of concrete gradually becomes greater than the steel due to the change of the Poisson ratio of concrete, and therefore a radial pressure develops at the concrete– steel interface. At this stage, confinement of the concrete core is achieved and the steel is in hoop transferring from the steel tube to the concrete occurs at this stage. It is observed that the load at this stage is higher than the sum of loads that can be achieved by steel and concrete acting the triaxial stress state the uniaxial compressive concrete strength can be given by 【5】 where frp is the maximum radial pressure on concrete and m is an empirical coefficient. In the past a lot of extensive experimental studies have been carried out to determine a value for coefficient m and it is found that for normal strength concrete, m is in the range of 4–6 [21]. In this study m is assumed to be . The radial pressure, fr, can be expressed by the relationship given in Eq. (6), which is easily derived by considering the equilibrium of horizontal forces on a circular section: 【6】Here, fsr, t and D denote the circumference stress in steel, the thickness and the outer diameter of the tube, . Evaluation of confinement in various shaped CFT . Circular sectionDetermination of the confinement level in circular tubes is found in the method proposed by Tang et al. [8]. In this method, the change of the Poisson ratio of concrete and steel with column loading is investigated. An empirical factor, β, is introduced for this purpose and subsequently the lateral pressure at the peak load is given by 【7】 Factor β is defined as 【8】 where νe and νs are the Poisson ratios of a steel tube with and without filled-in concrete, respectively. Here, νs is taken as equal to at the maximum strength point, and νe is given by the following expressions: 【9 10】 Here, t, D and f ’c are the same as previously defined and fy stands for the yield stress of steel. The above equation is applicable for (f ’c/fy) ranging from to where most of the practically feasible columns are found within. A detailed description of the method can be found in Tang et al. [8]. It is clear that frp given by Eq. (7) depends on both the material properties and the geometry of the column. Subsequently, frp calculated from Eq. (7) is substituted into Eq. (5) to determine the confined concrete strength, f ’cc.摘要部分的翻译:各种断面形状钢管混凝土的单轴应力应变关系. Susantha , Hanbin Ge, Tsutomu Usami*土木工程学院,名古屋大学, Chikusa-ku ,名古屋 464-8603, 日本收讫于2000年5月31日 ; 正式校定于2000年12月19日; 被认可于2001年2月14日¬¬摘要一种预测受三轴压应力混凝土的完全应力-应变曲线的方法被提出,这种三轴压应力是由环形、箱形和八角形的钢管混凝土中的限制作用导致的轴向荷载加测向压力所产生的。有效的经验公式被用来确定施加于环形钢管混凝土柱内混凝土的侧向压力。FEM(有限元)分析法和混凝土-钢箍交互作用模型已被用来估计施加于箱形和八角形柱的混凝土侧向压力。接着,进行了广泛的参数研究,旨在提出一个经验公式,确定不同的筒材料和结构特性下的最大平均侧向压力。如此计算出的侧向压力通过一个著名经验公式确定出侧向受限混凝土强度。对于高峰之后的应力-应变关系的确定,使用了有效的试验结果。基于这些测试结果,和近似表达式来推算下降段的斜度和各种断面形状的筒内侧向受限混凝土在确认的混凝土强度下的应变。推算出的混凝土强度和后峰值性能在允许的界限内与测试结果吻合得非常好。所提出的模型可用于包括梁柱构件在内的纤维分析,以确定抗震结构设计中混凝土填充钢柱筒的极限状态的推算标准。 •版权所有2001 Elsevier科学技术有限公司。关键词: 钢管混凝土;限制;混凝土强度;延性;应力应变关系;纤维分析这是当年毕业时我的翻译,因为原文有图表等原文也超过10000字,没法在这里发,如需要原文(pdf版及word版)及全部翻译(5000字,中文),请留下邮箱。

119 评论

快乐@天使33

Owner Fang Jianshe engineering construction contract legal risk control research你参考参考!!!

152 评论

不计较的心

你给的分太少了……

219 评论

吃那么一天

building types and designA building is closely bound up with people,for it provides with the necessary space to work and live in .As classified by their use ,buildings are mainly of two types :industrial buildings and civil buildings .industrial buildings are used by various factories or industrial production while civil buildings are those that are used by people for dwelling ,employment ,education and other social activities .Industrial buildings are factory buildings that are available for processing and manufacturing of various kinds ,in such fields as the mining industry ,the metallurgical industry ,machine building ,the chemical industry and the textile industry . factory buildings can be classified into two types single-story ones and multi-story ones .the construction of industrial buildings is the same as that of civil buildings .however ,industrial and civil buildings differ in the materials used and in the way they are used .Civil buildings are divided into two broad categories: residential buildings and public buildings .residential buildings should suit family life .each flat should consist of at least three necessary rooms : a living room ,a kitchen and a toilet .public buildings can be used in politics ,cultural activities ,administration work and other services ,such as schools, office buildings, parks ,hospitals ,shops ,stations ,theatres ,gymnasiums ,hotels ,exhibition halls ,bath pools ,and so on .all of them have different functions ,which in turn require different design types as well. Housing is the living quarters for human beings .the basic function of housing is to provide shelter from the elements ,but people today require much more that of their housing .a family moving into a new neighborhood will to know if the available housing meets its standards of safety ,health ,and comfort .a family will also ask how near the housing is to grain shops ,food markets ,schools ,stores ,the library ,a movie theater ,and the community center .In the mid-1960’s a most important value in housing was sufficient space both inside and out .a majority of families preferred single-family homes on about half an acre of land ,which would provide space for spare-time activities .in highly industrialized countries ,many families preferred to live as far out as possible from the center of a metropolitan area ,even if the wage earners had to travel some distance to their work .quite a large number of families preferred country housing to suburban housing because their chief aim was to get far away from noise ,crowding ,and confusion .the accessibility of public transportation had ceased to be a decisive factor in housing because most workers drove their cars to work .people we’re chiefly interested in the arrangement and size of rooms and the number of bedrooms .Before any of the building can begin ,plans have to be drawn to show what the building will be like ,the exact place in which it is to go and how everything is to be important point in building design is the layout of rooms ,which should provide the greatest possible convenience in relation to the purposes for which they are intended .in a dwelling house ,the layout may be considered under three categories : “day”, “night” ,and “services” .attention must be paid to the provision of easy communication between these areas .the “day “rooms generally include a dining-room ,sitting-room and kitchen ,but other rooms ,such as a study ,may be added ,and there may be a hall .the living-room ,which is generally the largest ,often serves as a dining-room ,too ,or the kitchen may have a dining alcove .the “night “rooms consist of the bedrooms .the “services “comprise the kitchen ,bathrooms ,larder ,and water-closets .the kitchen and larder connect the services with the day rooms .It is also essential to consider the question of outlook from the various rooms ,and those most in use should preferably face south as possible .it is ,however ,often very difficult to meet the optimum requirements ,both on account of the surroundings and the location of the roads .in resolving these complex problems ,it is also necessary to follow the local town-planning regulations which are concerned with public amenities ,density of population ,height of buildings ,proportion of green space to dwellings ,building lines ,the general appearance of new properties in relation to the neighbourhood ,and so on .There is little standardization in industrial buildings although such buildings still need to comply with local town-planning regulations .the modern trend is towards light ,airy factory buildings .generally of reinforced concrete or metal construction ,a factory can be given a “shed ”type ridge roof ,incorporating windows facing north so as to give evenly distributed natural lighting without sun-glare .翻译:建筑类型和设计建筑物与人们有着紧密的联系,他为人们提供必要的空间,用以工作和生活。根据适用类型不同,建筑物可以分为两类:工业建筑和民用建筑。工业建筑包括各个工厂或工业生产所使用建筑,民用建筑是指那些人们用以居住,就业,教育和其他社会活动的建筑场所。工业建筑的厂房可用于采矿业,冶金工业,机械制造,化学工业和纺织工业等各类领域的加工和制造。厂房可分为两种类型:单层的和多层的。工业建筑也属于建筑的一种。但是,工业建筑与民用建筑所用的材料和建筑方式不同。民用建筑按使用可分为两大类:住宅建筑和公共建筑。住宅建筑要适应家庭生活。每个单位应包括至少三个必要客房:起居室,厨房和厕所。公共建筑可在政治,文化活动,管理工作和其他服务,如学校,写字楼,公园,医院,商店,车站,剧院,体育馆,宾馆,展览馆,洗浴池,等等。他们都有着不同的职能,这反过来又需要不同的设计类型。房屋是用以住人的. 其基本功能是提供住房的内容,但今天人们需要更多的住房内容。一个家庭在进入一个新的社区后将知道,现有住房不仅要符合其安全,健康和舒适等标准。还要考虑其附近是否有相应的配套设施,如食品市场,学校,商店,图书馆,电影院,以及社区中心等。在60年代中期住房最重要的价值是足够大的空间和方便的出入交通。大多数家庭会首选约半英亩面积土地的家庭住宅,这样将提供足够的空间的用以业余活动。在高度工业化的国家,许多家庭的首选是那种尽可能远离市中心商业圈的住房,即使距离上班地点不得不有一段距离。相当多的家庭首选是郊区的住房,因为他们的主要目的是要远离噪音,拥挤和混乱。拥有方便的公共交通使得距离不再是一个决定性因素,因为大多数人都是开着自己的汽车去上班了。人们现在主要感兴趣的是户型,房间的大小和卧室的数目。在工程项目开始之前,要做好建筑设计和施工流程,让人提前知道该建筑建成后是什么样子以及下一步应该做什么。在建筑设计中要特别重视房间的布局,其目的是提供最大的便利与可能的用途。在一个住宅建筑设计中,布局可考虑以下三个方面: “白天” , “夜晚”和“服务”。必须注意这些空间区域之间的连通交流。 “白天”房一般包括餐厅,起居室和厨房,但其他房间可能会增加,如书房,并有可能成为一个大厅。起居室通常是最大的,往往是一个餐厅,也或可能有厨房、凹室等。 “夜间”房间包括卧室、客房。“服务”用房间包括厨房,浴室,储藏室 ,和厕所等。厨房和储藏室需设置在一起,以方便其房间功能的使用。此外,还必须考虑各种客房的朝向问题,当然最好尽可能的将那些经常使用的房间朝南设置。然而,在考虑到周围的环境和地点、道路等多方面因素,往往很难达到最佳要求。在解决这些复杂的问题,还必须按照当地城市规划条例所涉及的对公共设施,人口密度,建筑物高度,绿化面积,建筑红线等的要求,还要考虑到有相邻建筑的情况,等等。尽管工业建筑需要符合当地城市规划条例但很少有标准化的工业楼宇。现代厂房建筑的趋势是轻质、通风。一般的钢筋混凝土结构或钢结构的工厂,可以得到一个“跌”型脊屋顶,把窗户开向北以便使分布均匀的自然采光不会直射进来造成刺眼。

231 评论

相关问答

  • 建筑工程检测有关的论文题目

    学术堂整理了二十个建筑工程类毕业论文题目供大家参考:1、招标控制价模式下建设工程投标报价规律研究2、建设工程招投标过程中围标现象探讨3、地方政府对公共建设工程监

    小胖子老头 5人参与回答 2023-12-11
  • 建筑工程检测有关的论文题目大全

    建筑工程作为与人们生产生活息息相关的工程,与整个国家经济的发展、人民生活的改善有着密切的关系。下面是我带来的关于建筑工程技术 毕业 论文题目的内容,欢迎阅读

    xiaoxiao765 3人参与回答 2023-12-12
  • 有关建筑工程的英文论文题目

    Uniaxial stress–strain relationship of concrete confined by various shaped steel

    小人鱼不流泪 4人参与回答 2023-12-07
  • 关于建筑工程的论文题目

    学术堂整理了二十个建筑工程类毕业论文题目供大家参考:1、招标控制价模式下建设工程投标报价规律研究2、建设工程招投标过程中围标现象探讨3、地方政府对公共建设工程监

    吃吃吃货小两口 3人参与回答 2023-12-09
  • 建筑工程中的论文题目

    房屋建筑工程施工是我们最常见的建设项目之一,在写作房屋建筑学论文时,我们要重视论文的题目,千万不能忽视论文的题目的重要性。。下面是我带来的关于房屋建筑学论文题目

    梅干菜2012 5人参与回答 2023-12-09