饿魔娃娃
分块矩阵,求解!授人予鱼不如授人予渔,在《线性代数》的学习中,方法尤为重要。下面就让我们一起解决《线性代数》中令人头痛的——矩阵分块法吧!如果您对——矩阵分块法的学习比较吃力,建议您先学习——矩阵乘法,传送门开启,嘛咪嘛咪哄!工具原料线性代数课本纸,笔(任何)方法/步骤分步阅读1/12前言:想要学会《线性代数》中的——矩阵分块法,我们这次的学习将按照下面的步骤进行:(1) 了解什么是矩阵分块法;(2) 矩阵分块的例子;(3) 分块矩阵的运算规则;(4) 利用矩阵相乘求解复杂运算;(5) 分块矩阵之间的运算规则;2/12让我们首先了解矩阵分块的定义,如下图:3/12矩阵分块示例,如下图:4/12分块矩阵的运算规则一,如下图:5/12分块矩阵的运算规则二,如下图:6/12分块矩阵的运算规则三,如下图:7/12分块矩阵的运算规则四,如下图:8/12分块矩阵的运算规则五,如下图:9/12分块矩阵运算示例一,如下图:10/12分块矩阵运算示例二,如下图:11/12分块矩阵运算总结,如下图:12/12关于分块矩阵已经讲解完了,祝贺您今天又学习了新知识。注意事项今天讲解了矩阵分块,更多精彩内容,敬请关注!如果您觉得这篇经验有所帮助,别忘了投上您宝贵的一票哦!内容仅供参考并受版权保护
shampooxia
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
小顽童阿淑
分块矩阵是高等代数中的一个重要内容,是处理阶数较高的矩阵时常采用的技巧,也是数学在多领域的研究工具。对矩阵进行适当分块,可使高阶矩阵的运算可以转化为低阶矩阵的运算,同时也使原矩阵的结构显得简单而清晰,从而能够大大简化运算步骤,或给矩阵的理论推导带来方便。有不少数学问题利用分块矩阵来处理或证明,将显得简洁、明快。 分块矩阵是一个矩阵, 它是把矩阵分别按照横竖分割成一些小的子矩阵 。 然后把每个小矩阵看成一个元素。将一个矩阵用若干条横线和竖线分成许多个小矩阵,将每个小矩阵称为这个矩阵的子块,以子块为元素的形式上的矩阵称为分块矩阵。同一个矩阵可以有多种不同的分块方法,从而形成不同的分块矩阵。例如矩阵也可分成也可分成特殊分块矩阵分块对角矩阵设A为n阶方阵,若A的分块矩阵在非主对角线上的子块皆为零矩阵,且在主对角线上的子块都是方阵性质:①同结构的分块上(下)三角形矩阵的和(差)、积(若乘法运算能进行)仍是同结构的分块矩阵。② 数乘分块上(下)三角形矩阵也是分块上(下)三角形矩阵。③ 分块上(下)三角形矩阵可逆的充分必要条件是的主对角线子块都可逆;若可逆,则的逆阵也是分块上(下)三角形矩阵。
lichao7980
分块矩阵的加法运算和乘法运算。将矩阵进行分块操作有很多的好处,特别是在高性能并行计算领域内,矩阵的分块化操作更是有很多益处。1. 分块矩阵加法运算给定矩阵A,B分别如下,矩阵A+B=C,矩阵C如下,分块矩阵的加法运算非常显然,这里就不再多费笔墨了。2. 分块矩阵的乘法运算给定矩阵A,B分别如下,(注意:这里矩阵A,B中的每一个元素都是子矩阵)矩阵A*B=C,矩阵C如下,分块矩阵的乘法运算也比较直观,但是相比于其加法运算而言,乘法运算显然会难一点。3. 分块矩阵运算小结分块矩阵做的是一个非常显然的事情是对矩阵乘法粒度的变大化。更加细一点而言,一般的矩阵乘法每一次对矩阵中的一个数进行累积和运算。而分块矩阵面向的操作对象是一个个的子矩阵,显然两者在计算的粒度上有很多的不同。至于子矩阵的粒度的大小,取决于一个线程能够用到的内存的大小和其计算能力,每一个线程能用到的内存越大,能用到的计算能力越大相应地,每一个子线程的运算处理能力就越大,子矩阵的粒度也就可以大一些。反之,则子矩阵粒度小些。最后希望能在本文中有所收获。一、分块矩阵的运算及其应用分块矩阵的基本运算:分块矩阵的运算规则与普通矩阵的运算规则相类似,包括:加法运算、数乘运算、乘法运算、转置运算,其中要特别注意的是乘法运
矩阵的应用是很多的。尤其是在程序处理方面。在世界上存在的,都是离散的,那些理想的才是连续的~而矩阵可以很好地诠释世界上的各种东西~例如我们经常处理的图片,我们平
[1]毛纲源. 一类特殊分块矩阵为循环矩阵的循环分块矩阵的几个性质[J]. 应用数学,1995,(3). [2]游兆永,姜宗乾,. 分块矩阵的对角占优性[J].
矩阵的迹,就是矩阵主对角线上元素之和,英文叫trace(迹)。迹的最重要性质:一个矩阵的迹,和该矩阵的特征值之和,相等。
分块矩阵,求解!授人予鱼不如授人予渔,在《线性代数》的学习中,方法尤为重要。下面就让我们一起解决《线性代数》中令人头痛的——矩阵分块法吧!如果您对——矩阵分块法
论文答辩的时候问的问题都比较专业,而且肯定是围绕你的论文的内容和主题进行提问。所以在答辩之前一定要非常熟悉自己的论文内容。主要问题有以下这些: 1、论文中的核心