michelle850322
化学与经济的联系化学史实一再表明,无论是从一个国家的科技发展来看,还是从科学家本人的研究工作来看,化学进步与经济增长之间都存在着辩证的互动关系。在对这种关系进行理论分析时,我们可以借鉴国外学者关于科技进步对经济增长的作用的研究成果。一、几个化学史上的案例门捷列夫之所以能发现元素周期律,是与他研究工作中体现出来的时代精神(注重科学与工业相结合)分不开的。从1861年开始,他就致力于翻译被后人称为化学技术百科辞典的《华格纳化学工艺学》。次年,他应邀前往巴库和劳拉罕内地区油田考察了近一个月后,向石油工厂主提出了两项建议:其一是引进新的科学技术,改变运输的落后状态,铺筑由炼油厂到码头的输油管道;其二是依靠科学技术,建造运载煤油的专用船只。这种对化学工业的实地考察拓展了门捷列夫的研究领域。他借助化学分析法,分析、测定了283种液体及其它物质的性质和原子量之间的关系。他把提高科学的生产力看成是自己的最大愿望。可以说,注重基础研究和工业应用的结合,注重理论分析和实验操作的结合,造成了他在化学研究中作出重大的贡献的优势。他先后考察过法国、德国、比利时和美国的化学工业,并致力于用化学知识改善俄国石油生产的落后状况,还就煤的地下气化和采掘问题发表了若干具有独到见解和经济观点的论文。从化学研究手段看,化学分析法在新元素的发现和元素周期律的建立过程中,具有举足轻重的作用。在拉瓦锡时代,化学分析法已成为化学研究的基本方法。随后,从化学角度看,道尔顿原子论推进了化学分析法的发展,因为对原子量的精确测定对化学分析法提出了更高的要求;从工业角度看,英国工业革命和欧洲大陆采矿业的发展对化学分析法的广泛应用产生了积极的影响。化学分析法的迅速改进和广泛应用导致18世纪末、19世纪初22种新元素的发现。同理,在科学和工业的双重推动下,电化学方法应运而生,并导致大量新元素的发现。铝就是在此期间由丹麦科学家奥斯特(Hans Christian Oersted)发现的(1825年),当时得到的是粉状铅。过了两年,德国的维勒(öhler)又制取了块状铝。此后若干年里,铝都是一种贵金属。拿破仑三世曾为工业制铝研究提供了大笔拨款。1854年,人们发现了用还原氯化物制取铝的方法。到1886年,由于人们发现了通过电解铝矾土的氢氧化铝制取铝的方法,制铝工业获得了迅速发展,铝的价格不断下降,铝的产量不断上升。在门捷列夫研究周期律的同时,德国有机化学的迅速发展为它取代英、法而成为世界经济强国找到了突破口,由此发展了合成化学和高分子化学工业,为近代大生产提供了各种新材料。这个突破口就是煤化学工业。如何利用炼焦生产中的排出物煤焦油,是煤化学工业迅速发展的关键,也是有机化学迅速发展的动力之一。美国大约在1810年开始利用高温分解各种有机物所得到的煤气来照明,不久煤焦油就成为照明气的主要来源。继伦敦在1813年建立起煤气厂后,巴黎和柏林在1815年,纽约在1825年都建立起了煤气厂。大约在1815年,人们从煤焦油中分离出了轻油和重油,前者可用作胶制品的涂料,后者是有效的木材防腐剂。依照导师李比希的建议,霍夫曼致力于轻油的研究。1843年,当他把漂白粉加入轻油时,发现其中含有苯胺。由此,他想:能否从轻油中提取苯胺?后来由于发现轻油中苯胺含量太少,霍夫曼选择了这样的途径:先从轻油中提取苯,再由苯制取苯胺。在此基础上,英国的柏琴制成了苯胺紫染料。接着,他和他的父亲在伦敦效外建起了苯胺染料厂。柏琴既从事生产管理,又致力开发研究,还解决了许多技术工艺问题(如苯的提纯,硝基苯的工厂制取,改用铁制防爆容器代替玻璃容器等)。在1862年伦敦举办的国际展览会上,以煤焦油为原料制成的各种苯胺紫染料成了英国的骄傲。但此后不到10年,德国便跃居于染料生产国家之首,并在第一次世界大战以前一直控制着染料生产的发展。①“德国大学培养的从事创造性研究的化学家数量日益增多,是造成这种繁荣景象的主要原因。随着生产药物和染料的大工业的建立,那些培养出一批批化学家的教授纷纷被聘为顾问。他们不仅用科学方式指引工厂向前发展,而且还把工业生产中遇到的问题带回实验室去,用这些新课题来训练学生。他们在工业实验室里看到越来越多的半成品,也就是合成某新化合物的中间产物。大学实验室里对这些中间产物进行的研究,往往就是发明前所未有的新合成法的起点。19世纪末期,德国的理论化学和工业化学都已执世界牛耳,在理论化学和实用化学的共同推动下,各国学生大批涌进德国大学。”②在德国染料工业的飞速发展中,凯库勒的贡献显示了化学理论的巨大威力。他关于苯分子结构的理论加深了人们对苯胺及一系列芳香族化合物的认识,为有目的、有计划地设计和合成染料奠定了理论基础。1868年,瑞伯(C·Graebe)和李别尔曼(K·T·Liebermann)发现茜素是蒽醌的二羟衍生物,并根据凯库勒的结构理论了解到蒽的三组龟壳迭加结构,成功地合成了茜素。第二年德国就开始了合成茜素的工业化生产,其规模迅速扩大,以致完全取代了茜草种植园的生产。凯库勒理论还帮助拜耳(A·Baeyer)确定了靛蓝的分子结构,并于1879年制成了靛蓝结晶,为加速德国染料工业的发展做出了重大贡献。二、化学与经济的互动由上述案例可见,无论对一个人的研究工作(如门捷列夫),对一种元素的认识和利用(如铝),对一种化学方法的改进(如化学分析法),对一个国家化学技术和经济的发展(如德国),都体现出化学与经济之间的互动关系。首先,经济生产活动是化学研究的基本动因。一方面,经济生产为化学研究提出课题,推动化学发展。例如,英国工业革命以后经济的发展提出了精确分析矿石成分的研究课题,促使化学分析法迅速得到改进和发展。同样,如何利用煤焦油的研究课题也是在经济生产活动(炼焦生产)中提出来的。这一课题的深入研究导致了德国有机化学理论和有机化学工业的突飞猛进。另一方面,劳动工具的改进,工艺技术的提高,也是化学进步的动力之一。门捷列夫为实现提高科学生产力的愿望,向石油工厂主提出改进工艺技术的建议,发表关于改善煤的地下气化和采掘技术的论文等,与他发现元素周期律是相辅相成的。德国化学家把工业生产中遇到的问题和半成品带回学校实验室去,既培养出一批批杰出的化学研究人才,又推动了德国有机化学的发展。其次,化学的发展状况对经济生产活动起着巨大的制约作用。比如,化学分析法和电化学方法的产生都导致大量新元素的发现。由此,人们对铝的认识逐步深化,直到1886年发现了电解制铝法。正因如此,制铝工业才得到迅速发展,铝的产量不断提高,铝的价格不断降低。同样,没有凯库勒的理论,就没有合成茜素的工业化生产,也没有靛蓝染料的工业化生产。当然,化学要转化成直接的物质生产力,必须通过两条途径:一是技术环节,二是社会体制。化学的研究成果可以通过技术生产环节作用于劳动者、劳动资料和劳动对象,进而转化为直接的生产力,推动经济发展。化学对劳动者的作用在门捷列夫、柏琴及大批德国化学家身上得到了充分体现。这里实际上涉及教育问题。因此,上述案例所提到的德国化学教育的经验是值得深思和学习的。从劳动资料来看,化学成果要转化为直接的生产力,就必须变成“在机器上实现了的科学”。①如果门捷列夫对油田工厂主的建议实现了,即化学知识凝聚在输油管和油船上,那么化学成果就转化成了直接的物质生产力。化学研究向石油、矿石、元素、煤焦油、苯胺紫染料、茜素、靛蓝染料等的进军,是化学作用于劳动对象,转化为物质生产力的例证。至于社会体制,主要包括经济体制和科研体制。德国的经济振兴就与它整顿大学,兴办企业,为科学家提供优厚待遇和工作条件,制定合理的经济政策和科研政策等密切相关。关于科学对提高劳动生产力的作用,马克思曾指出:“劳动生产力是由各种情况决定的,其中包括:工人的平均熟练程度,科学的发展水平和它在工艺上应用的程度,生产过程的社会结合,生产资料的规模和效能等,以及自然条件。”②马克思和恩格斯在《共产党宣言》中甚至还提到“化学在工业和农业中的应用。”①这些观点在现代经济发展的一系列研究成果中得到了充分体现。在这些成果中,包含着若干具体分析科学技术对经济增长的作用的方法。无疑地,这些方法有助于我们分析化学对经济的作用。下文所述便是这些方法中的一种。三、经济发展中科技贡献度的估算美国经济学家丹尼森()认为,一个国家的总收入在两个时期之间的变动,只有在它的产量决定因素发生变动时才有可能;找出这些因素,估计它们对产量变动的影响,是了解经济增长的先决条件。他借助统计法,发现经济增长主要决定于如下因素的变动;(1)就业人数及其年龄、性别的构成;(2)劳动时间;(3)就业人员的教育年限;(4)资本存量的多少;(5)知识进展状况;(6)资源配置;(7)规模的节约,并以市场扩大来衡量;(8)需求压力的强度及其短期变动的格局。②根据对美国1929—1969年间经济增长及其他许多国家经济增长的分析,丹尼森发现,在上述几个因素中,知识进展和就业人员受教育时间长是经济增长的主要源泉。在综合性的“知识进展”中,科学技术是重要因素。因此,知识进展对经济增长的作用从一个侧面反映了科学技术对经济增长的作用。在具体分析知识进展对经济增长的作用时,丹尼森没有直接估算知识进展对经济增长的贡献值,而是作为剩余额来估算的:从经济增长率中减去所有其它因素的贡献值,余额便是知识进展的贡献值。让我们用一个简化的模型来说明这种估算方法。①首先假设现在的经济系统,(1)只有一种产品;(2)只有劳动和资本两项生产要素,而且它们由同质的单位构成;(3)要素的数量有增长,而质量无变化;(4)产品和要素均在完全竞争的市场上出售;(5)工资率等于劳动的边际产品,利息率等于资本的边际生产率;(6)没有技术变革;(7)没有规模的节约。现在设y表示产量的增长率,k表示资本的增长率,l表示劳动的增长率,a表示资本在国民收入中所占的份额,b表示劳动在国民收入中所占的份额。于是,基本增长公式为:y=ak+bl(Ⅰ)例如,资本增长率为3%,劳动增长率为1%,资本在国民收入中所占的份额为1/4,劳动在国民收入中所占的份额为3/4,则年产量增长率为:由(Ⅰ)式知,产量不能大于投入量,即产量的增长率不能大于要素的增长率;产量的增长率依赖于资本和劳动的联合增长,即依赖于总要素投入量的增长;每一要素对产量的贡献按其在国民收入中所占的份额来衡量。定义(y-l)为按工人平均的产量增长率,(k-l)为按工人平均的资本增长率,则可由(Ⅰ)式导出:y-l=a(k-l)(Ⅱ)这表明,要使按工人平均的产量增长,必须使按工人平均的资本增长。比如由上例,按工人平均的资本增长率为2%,则按工人平均的产量增长率为:根据上述公式,美国的一些经济学家测算了美国及西欧发达国家在较长时期内投入量与产量之间的关系,发现产量的增长率一般高于投入量的增长率。如投入量每年增长2%,而产量每年增长4%是常有的事。这个差额就是上文所谓“剩余额”,也就是除劳动和资本要素增长外其余一切促进产量增长的要素的综合效应,其中绝大部分来自科学技术的进步。丹尼森利用这种方法分析美国经济增长状况以后,得出了如下结论:美国的国民收入在1929—1969年间,平均每年增长%,其中知识进展和教育两项的贡献共占40%左右。若分成两个时期,则国民收入在1929—1948年间平均每年增长%,其中知识进展和教育的贡献占37%;国民收入在1948—1969年间平均每年增长%,其中知识进展和教育的贡献占%。1972年,联合国欧洲经济委员会在分析50年代至60年代欧洲经济增长状况时,也采用了这种方法来分析技术进步的影响,其结果比50年代尚无此法时的分析要简明得多。根据德国经济学家采用这种方法的分析,德国的经济在1850—1913年间每年平均增长率为%,其中技术进步的贡献占42%。有人进一步分析“剩余额”,得出这样的结论:年增长率为%可归于结构的影响(生产要素从生产率低的部门转向生产率高的部门),%可归于教育年限的增长。一个德国经济学教授评论说:“在这种测算所依据的基本数字和所应用的技术中,自然是有许多缺陷的。但是这种测算方法毕竟对我们是一项伟大的贡献,“它使我们能把1850—1913年的德国经济发展,比以前更加轮廓鲜明地描绘出来。我们现在可以指出进展较快和进展较慢的时期中结构的变革和不平衡。一般说来,由(Ⅰ)和(Ⅱ)式所表征的方法用于估算科学技术对经济增长的作用时,常有偏高的倾向。但因为它毕竟能提供有用的参考数据,所以在经济学界得到了广泛的认可和应用。因此,这种方法可以成为我们分析化学对经济增长的作用的参考工具。希望帮到你
跳蚤的华丽转身
化学是基础教育的重要组成部分,在化学教学中培养学生的创新精神对深化基础教育改革,提高学生素质具有重要作用。下面是我为大家整理的关于化学论文,供大家参考。
在科技创新不断涌现的当代,人才培养显得尤为重要。随着社会的发展,我国的教育培养目标已经发生改变,从过去的培养“接班人”向培养“劳动者”转变,由“精英教育”向“大众化教育”转型。在培养目标上不仅要培养一批拨尖人才,更要体现培养大批高素质的普通公民。下面笔者就中学化学中进行低碳经济与绿色化学的教育谈一些认识。
一、低碳经济和绿色化学的概念与内涵
现代社会出现资源、环境问题的根源在于人类的生产、消费模式。以碳为主的能源物质在被人类利用之后,都变成了以CO2为主要物质的气体,造成了温室效应、蝴蝶效应。在多哈提出低碳经济理念之后,全国乃至全球都在倡导低碳模式经济。Lowcarbon是低碳的英文诠释,是指排放更少的以二氧化碳为主的温室气体。而低碳经济是一种高效的、环保的经济模式,其特点是耗能更低、污染更少、排放减少等,要求在利用能源时提高使用效率,且着重于清洁能源的开发与使用,其实质是提高能源利用效率和清洁能源结构问题。从碳到低碳是一个从化学到社会生活的过程,是一场涉及生产方式、生活方式和价值观念的全球性革命,它与我国的化学教育有着紧密的关联。绿色化学重视对环境的保护,通过清洁能源、原子经济等内容的学习,可实现绿色化学。绿色化学是对化学原理的转化,通过化学方法来减少有毒、有害物质的生产和应用,在研究过程中,弱化有害、有毒作用,强化其绿色作用,从技术和经济角度分析,绿色化学能够从源头、生产过程以及使用等各个环节减少并降低污染。因此,在平时的化学教学中,贯彻“低碳经济”的观念,培养学生“绿色化学”的可持续发展理念显得尤为重要。
二、在化学教育中重视低碳经济与绿色化学教育
我国的《九年义务教育化学课程标准(实验)》明确指出了化学课程的性质、目的以及方法。在义务教育阶段中的化学课程,教学目的是让学生了解化学为社会发展带来的影响,利用化学来认识科学技术和社会、生活中的相关问题。同时,学生能够从化学教育中了解化学物品给人们生活和健康带来的影响,且能够借助化学手段治理环境污染,开发并且利用化学资源。另外,化学教育中要强调学生对自然和社会的责任心,当学生在遇到与化学相关的问题时,能够利用化学知识科学地解决问题。由此可知,我国新课程对中学化学有了全新的诠释和要求,新课标更加注重培养学生的科学和人文素养,为新课程理念下的中学化学教学指明了方向。
三、对中学生进行低碳经济与绿色化学教育的基本策略
中学化学教学要选择真实的问题情境,突出科学观念、科学思维、科学方法、科学主题,重视学生创新意识和创新能力的培养,将科学教育与人性发展有机融合起来。在平时的化学教育中可以做到以下几个方面。
(一)贯彻绿色化学和低碳经济的观念
让学生接受绿色化学思想,把绿色化学内化为自己的自觉行为。初中和高中的化学课本直接或者间接地对绿色化学都有涉及,但仅是停留在书本的概念之上。在平时的教育中,教师应该引导学生通过实践来加深对绿色化学的理解。如利用周末时间带学生到化学工业园进行参观、实践,亲身接触化学物质的转变和生产过程,形象地说明绿色化学理念的重要性,低碳经济的影响力。介绍空气污染及防治,抓住时机向学生介绍绿色化学及其主要特点,在教学中尽可能渗透、强化绿色化学的思想理念。例如教授温室效应及其危害与防治,使用燃料对环境的影响,金属资源的利用与保护等。同时通过绿色化学的教育,让学生形成良好的生活习惯,真正实现节能减排,低碳经济。
(二)建立绿色化学和低碳经济的意识
人教版新课程下的化学教材,着重于从多个角度阐述了绿色化学和低碳经济的内涵、概念。例如从环境保护的角度讲述了酸雨、大气污染与温室效应的关联;介绍了循环操作、交换剂再生、催化剂中毒等概念;介绍了有毒物质的性质、使用、保存;介绍了与绿色化学相关的再生、使用替代产品、回收以及重复使用的工业化学内容。其中包含了许多低碳经济的理念,例如:以海水为原料提取镁、接触法制硫酸……这些绿色化学技术充分说明了低碳经济并不一定需要极高的成本,也不需要很高的技术,只要我们共同努力,做好自己,就能很好地应对全球变暖等环境问题,为地球尽一份力量。
(三)从实验中体验绿色化学和低碳经济
绿色化学实验具有基本的5R原则,即reduce(减量)、recycling(回收)、reuse(循环使用)、rejection(拒绝使用)、regeneration(再生)。从化学试剂的选择、化学反应条件的控制、化学反应结束后三废的处理等,充分体现了能源、化学试基础教育剂、化学反应、反应产物、剂量等的低碳化等特点。这些具体包含在以下三个方面。
1.将化学实验微型化,实现绿色化学。课堂演示实验以及学生自主实验,要避免出现有毒、有害物质的污染。实验应在小烧杯或小试管中进行,在点滴板上观察。由于实验药品剂量的普遍减少,既节约了药品资源,又减少了化学污染,同时还能够直观地观察实验结果,效果非常明显。
2.优化实验内容、装置和方法。化学实验离不开气体、液体和固体的产物,部分实验产物具备毒性或者对环境、人体有害的特点,因此,实验中既要保证实验的效果,还要对实验的内容和仪器、方法进行改善,尽可能在密闭条件下或在通风橱中进行,以减少实验产物对环境的污染。
3.妥善处理化学实验的废弃物。化学实验为了能够得到科学、真实的实验数据,往往要产生许多废弃物,而这些产物却没有较好地得到处理。在实验教学中,教师应该引导学生利用化学反应洗涤、吸收或转化,将有害产物回收利用。这样不但能够提升学生绿色环保和绿色化学的意识,而且还能给学生及早灌输低碳经济的观念,将普通的化学实验最终提升为绿色化学实验。
(四)实践低碳生活
学生学习知识的最终目的是使用,如何将书本上的化学知识内化为学生自己的知识,并使其更好地应用于生活、服务于社会,笔者认为让学生参与社会实践是一个行之有效的办法。如学习“自然界中的水”时,可让学生调查本地水资源的利用和河水污染情况,参观本市的自来水厂和污水处理厂,让学生对水的污染及净化有一个详实的了解,懂得保护水资源和节约用水的重要意义;又如学习“化石燃料的利用”时,可组织学生调查当地居民的燃料使用种类和大约日消耗量;走访加油站和煤炭加工厂,调查了解化石能源的消耗量和消耗途径,让学生充分认识到我国能源结构的严峻形势和由此引发的环境问题。在化学教育中,课外活动可以组织绿色化学、低碳化学的主题内容,为学生讲解绿色化学的历史、主要内容和方法以及目标等,而教师则将这些内容与教材结合,设置与环保、绿色化学以及低碳相关的课题,有意识地引导学生关注社会、关注环境的绿色化学意识,通过组织学生深入社会生活实践去获得第一手的信息,积极主动地发现问题,写出调查报告,向相关部门提出解决问题的合理化的建议。通过绿色化学教育,增强同学的社会责任感,增加动手能力,增强同学学习化学的兴趣,更重要的是意识到绿色化学教育的重要性,使同学对绿色化学的认知由感性认识上升到理性认识,使自己更好地履行在低碳经济时代下的社会责任。
1化学工程与工艺专业的煤化工特色专业建设原则
以市场为导向
随着能源需求量不断增大,我国对开发能源的技术人才也有了更高的要求。我国教育部在1996年将“煤化工”等专业列为化学工程与工艺专业,促进我国煤化这一特色专业发展。加强煤化工特色建设,可以扩大煤化工产业,推广清洁能源,这也是市场经济的必然需求。煤化工特色建设,要以市场为导向,将学生的就业与市场相结合,从而保证学生在面对社会选择的时候,有足够的自信,具备扎实的专业基础和技术水平,提高就业机会。
发扬创新精神
只有发扬创新精神,才能够彰显特色。特色专业是经过改革后被确定的内容,它本身就具有探索和创新,但煤化工专业发展中,以往的教学经验仍然会对创新有所阻碍,因此在建设有特色的煤化工专业时,要用发展的眼光看问题,创新教育观念和人才培养机制,促进煤化工特色建设。
稳定发展原则
化学工程与工艺专业的煤化工特色建设,始终坚持煤化工人才培养方向,也有着自身的特色,毕业后学生主要面对钢铁冶金系统,能源方向,因此在建设特色专业是,也要立足根本,找准发现,坚持稳定发展的原则。煤化工建设要以市场为导向,在发展中会面临内部和外部的变化,因此稳定发展,才能适应不确定的变化,适应社会和市场的要求。
2建设煤化工特色的对策
创新教育观念
专业建设是高校办学理念的表现形式,其特色建设的发展方向、过程等都离不开一定的理念指导[1]。煤化工特色专业的发展与市场分不开,煤化工专业与能源安全与供应、钢铁冶金行业发展与节能减排实现有着很大的关系。随着能源问题出现,可持续发展的理念不断摄入,煤化工专业发展也要将观念进行创新,以便适应社会的要求。可以通过实现教育活动,将教育观点和教学理念进行谈论和创新,在实际工作中,如果出现了教学理念偏差,要及时用正确的思想观念给予指导。创新教育观念是培养煤化工人才的必然要求,通过定期考核,加强教育工作者的思想意识,将这种观念融入教育,这也是促进我国煤化工产业的重要措施。
创新课程体系
煤化工特色专业要突出特色,因此要有明确的教学目标,以便在基础教学中突出特色,从而培养有特色的专业性人才。化学工程与工艺专业的课程体系要突出煤化工特色,根据高校制定人才培养目标,科学设定课程体系,使本专业的教学能够有序进行。课程体系是特色专业实施的基础和关键,因此要保证其合理性、科学性和可持续发展。煤化工专业是一门传统的学科,但特色建设赋予了它新的生命力,因此这门学科的课程体系要与国内外最新的教育理念相吻合,从而能够在以往的经验中,发挥教学成果的理念,整合课程资源,促进特色专业发展。煤化工特色建设课程体系要反应时代的特征,但也要与学校的特色向结合,建设出使用社会发展的化学工程与工艺专业的课程体系。煤化工课程体系要突出特色,例如开展“焦化特色课程”、“清洁能源课程”等,充分发挥本专业的特色。将基础必修课和辅修课程想结合,促进煤化工特色专业发展。
理论与实践相结合
化学工程与艺术是实践性较强的专业,在建设特色煤化工专业时,要将理论与实践向结合,培养学生的综合能力[2]。教师在教学时,可以结合计算机开展辅助教学,将最前沿的煤化工专业知识传授给学生,让学生形成较强的专业意识。高校还应加强与企业的合作,为学生提供更多的实践机会,让学生参与到企业生产实践中,培养学生的动手能力,在实践中,学生能够更好地解决问题。将理论与实践向结合,才能够促进煤化工特色专业建设,学生在实践中,专业能力得到锻炼,整体的素质也会不断提高。
建立健全质量保障体系
完善的质量体系建设是有特色的化学工程与工艺专业的保障,在科学的监督机制中,促进煤化工专业发展。高校要保证特色专业有效进行,就要对其投入更多的科研、资金及教学条件,这些物质保障是实施特色专业的前提。化学工程与工艺专业的煤化工特色建设中,会面临很多问题,如课程实施不佳,教师专业能力不强等,这些因素都会阻碍课程目标的实现。做好特色专业,离不开完善的质量保障体系。为了保证教学质量,因此要制定质量责任制,包括学生评价、教学反馈、教务系统质量检测等,确保教学目标的实现。
3结语
xianla198501
随着科技负效应的显现,工程伦理越来越受的人们的重视。化学工程有着与其他工程不同的特点。下面是我为大家整理的化学工程应用 毕业 论文,供大家参考。
《 化学工程中计算流体力学应用分析 》
摘要:计算流体力学是以多种计算方程为基础,在多种化学反应设备中进行能量、质量和动量的综合计算,分析出不同守恒定律中,这些变量的主控形式和变化规律,从而优化工程设计和工艺设备,提高化学反应中正向变化的进行,提高热量交换和原材料的反应速率等。从化学工程经济效益的角度分析,有利于工程成本的节约,提升了经济回报。 文章 计算流体力学的基本原理进行分析,并 总结 了其砸你化学工程中搅拌、热交换、精馏塔和化学反应工程的具体应用。
关键词:计算流体力学;求解;基本原理;化学工程;应用
化学工程在我国具有较长的研究与应用历程,并在实际的生产与生活中取得到巨大的应用成效,不仅能够供给正常的生活需求,同时根据新材料的开发,能够满足现代型环保材料的使用。在化学工程中,较多的反映环境和反应机制都是在溶液中进行的,具有质量守恒和热量守恒定律的应用。而这种质量与能量的关系正是计算流体力学的主要原理。通过对实际应用环境和原理的分析,能够优化工程设计和工艺改进,提高化学工程的生产效率。
1计算流体力学在化学工程中的基本原理
计算流体力学简称CFD,是通过数值计算 方法 来求解化工中几何形状空间内的动量、热量、质量方程等流动主控方程,从而发现化工领域中各种流体的流动现象和规律,其主要以化学方程式中的动量守恒定律、能量守恒定律及质量守恒方程为基础。一般情况下,计算流体力学的数值计算方法主要包括数值差分法、数值有限元法及数值有限体积法,其也是一门多门学科交叉的科目,计算流体力学不仅要掌握流体力学的知识,也要掌握计算几何学和数值分析等学科知识,其涉及面广。
针对计算流体力学的真实模拟,其主要目的是对流体流动进行预测,以获得流体流动的信息,从而有效控制化工领域中的流体流动。随着信息技术的发展,市场上也出现了计算流体力学软件,其具有对流场进行分析、计算、预测的功能,计算流体力学软件操作简单,界面直观形象,有利于化学工程师对流体进行准确的计算。
2计算流体力学砸你化学工程中的实际应用
在搅拌中的应用分析
在搅拌的化学反应中,反映介质之间的流动性比较复杂,依据传统的计算形式根本无法解决,并在化学试剂在搅拌中存在不均匀扩散的特点,在湍流的形式中能量的分布状况也存在着空间特点。若是依据实验手段测得反映中物质、能量和质量的变化规律,其得出的结构往往存在较差时效性,实验差加大。
通过对二维计算流体力学的应用,能够对搅拌中流体的形式进行模拟,并进行质量、能量等数据的验证。但是流体的变化,不仅与化学试剂的浓度、减半速度有关,还与时间、容器的形状等有着之间的联系,需要建立三维空间模拟形式进行计算流行力学。随着科学技术和研究水平的提高,在通过借助多普勒激光测速仪后,已经对三维计算形式有了较大的突破,这对于化工工程中原料的有效应用和工程成本的减低具有促进的作用,但是在三维计算流体力学中还存在一定的缺陷,需要在今后的研究中不断的完善。
在化学工程换热器中的应用分析
换热器是化学工程中主要的应用设备,通过管式等换热器、板式换热器、冷却塔和再沸器等的应用,能够有效的控制化学试剂在反应中的温度变化。其中根据换热器的形式不同,计算流体力学的方式也就不同。在管式换热器中主要是通过流体湍流速度的改变,增加换热速率的。在板式换热器中是通过加大流体的接触面积,提高换热效率的。而在冷却塔和再沸器中,热量交换的形式更为复杂,但是却群在重复性换热的特点,增加了换热的时间,提高了换热的效果。从总体上分析,计算流量力学中,需要对温度变化、流体的速度变化、热交换面积变化和时间变化进行分析。通过CFD计算流体力学的应用,能够计算出不同设备的热交换效果,并根据生产的实际需求进行换热器的选择使用。
在精馏塔中的应用
CFD已成为研究精馏塔内气液两相流动和传质的重要工具,通过CFD模拟可获得塔内气液两相微观的流动状况。在板式塔板上的气液传质方面,Vi-tankar等应用低雷诺数的k-ε模型对鼓泡塔反应器的持液量和速度分布进行了模拟,在塔气相负荷、塔径、塔高和气液系统的参数大范围变化的情况下,模拟结果和现实的数据能够较好的吻合。
Vivek等以欧拉-欧拉方法为基础,充分考虑了塔壁对塔内流体的影响,用CFD商用软件FLUENT模拟计算了矩形鼓泡塔内气液相的分散性能,以及气泡数量、大小和气相速度之间的关系,取得了很好的效果。在填料塔方面,Petre等建立了一种用塔内典型微型单元(REU)的流体力学性质来预测整塔的流体力学性质的方法,对每一个单元用FLUENT进行了模拟计算,发现塔内的主要能量损失来自于填料内的流体喷溅和流体与塔壁之间的碰撞,且用此方法预测了整塔的压降。
Larachi等发现流体在REU的能量损失(包括流体在填料层与层之间碰撞、与填料壁的碰撞引起的能量损失等)以及流体返混现象是影响填料效率的主要因素,而它们都和填料的几何性质相关,因此用CFD模拟计算了单相流在几种形状不同的填料中流动产生的压降,为改进填料提供了理论依据。CFD模拟精馏塔内流体流动也存在一些不足,如CFD模拟规整填料塔内流体流动的结果与实验值还有一定的偏差。这是由于对于许多问题所应用的数学模型还不够精确,还需要加强流体力学的理论分析和实验研究。
在化学反应工程中的应用研究
在化学反应工程中,反应物和生成物的化学反应速率与反应器、温度和压力等有着较大的联系,在实际的反应中可以利用计算流体力学进行数据的获取。但是这数据的获取具有一定的温度限制,当反应中温度过大,就会造成分子的剧烈运动,其运动轨迹的变化规律就会异常,在利用计算流体力学的模型计算中,计算数据与实际情况会发生较大的偏差。由于高温中分子的运动轨迹和运动速度难以获取,在计算流体力学的实际计算中,就要借助FLUENT进行三维建型,并利用测速反应器进行速度的测量,通过综合的比较分析,利用限元法进行数据的计算。可以得出不同环境下的反应器的流线、反应器内部的浓度梯度及温度梯度。通过CFD软件预测反应器的速度、温度及压力场,可以更进一步理解化学反应工程中的聚合过程,详细、准确的数据可以优化化学反应中的操作参数。
3结束语
计算流体力学对于化学工程的应用具有实际意义,并在经济效益的提高上具有重要的价值,在近几年,化学工程技术人员不断的计算流体力学中展开研究,以二维空间计算和模拟为基础,不断的完善三维空间的流量计算,并得出了一系列的流体流动规律。根据计算流体力学在化学工程中的广泛应用,在今后的化学工程发展中,应加强此类学科的教学与延伸,提供出更有效的反应设备和工艺操作。
参考文献
[1]余金伟,冯晓锋.计算流体力学发展综述[J].现代制造技术与装备,2013(06).
[2]舒长青,王友欣.计算流体力学在化学工程中的应用[J].化工管理,2014(06).
《 能源化学工程专业化工热力学教学思考 》
[摘要]《化工热力学》是能源化学工程专业一门理论性和逻辑性较强的专业基础课,文章阐述了作者在《化工热力学》课程教学过程中如何提高学生对学习本课程兴趣的教学实践和教学体会。通过明确教学内容和教学主线,改变传统的单一的课堂教学,将课堂教学与学科动态及工程实践密切结合,激发学生学习兴趣,培养学生自主学习能力和工程意识,以满足培养能源化学工程领域领军人物的要求。
[关键词]化工热力学;能源化学工程;教学实践;教学体会
化工热力学是化工类学生的专业必修课程之一,主要讲述热力学定律在化学工程领域的应用,包括化工过程中各种形式的能量之间相互转换规律及过程趋近平衡的极限条件等。它是培养学生分析和解决实际化工问题思维方法的重要专业理论基础课[1-3]。然而该课程的课程内容抽象、计算繁琐,学生感到非常难学又缺乏实际应用,在课程学习过程中学生产生恐惧和厌学心理,达不到良好的教学效果,因此,我们对该课程的教学内容和 教学方法 进行一些改革和尝试,希望激发学生学习的兴趣,进而更好地掌握这门课程,为后续专业课程的学习夯实基础。
武汉大学2013年新开设的能源化学工程专业是由1958年原武汉水利电力学院开办的“电厂化学”专业发展而来,主要面向电力行业及高效洁净能源领域(包括超临界火电、核电、生物质能、氢能、新型化学电源等),培养掌握化学与化工基础理论及能源化学专业知识和技能的未来行业发展的领军人物。
目前,本专业主要有水处理、材料腐蚀与防护、化学监督与控制、能源化学四个主要研究方向。为了适应学校对新专业发展和一流学科建设的要求,2015年在本专业大三学生中新增设了《化工热力学》这门化工类专业的专业基础课程。如何调动学生的课堂积极性,培养学生的创新能力,夯实学生的专业基础,使他们在54学时的学习过程中理解并掌握本门课程的基本概念,并且将抽象的理论与实际的能源化学过程联系起来是本课程的核心教学任务。本文结合我校能源化学工程专业的培养目标,浅谈《化工热力学》的教学体会,着重对教学方式进行了探索和实践,为培养能源化学工程领域的领军人物奠定基础。
1明确教学内容与课程主线
结合我校《化工热力学》课程以工程应用为中心、专业研究方向覆盖面广等特点,我们选用了朱自强等编著、化学工业出版社出版的《化工热力学》作为教材[4],同时,也鼓励学生使用部分参考教材(《化工热力学》,冯新等编,2008;《化工热力学(第二版)》,陈钟秀等编,2000;《化工热力学导论(原著第七版)》,.史密斯等编,刘洪来等译,2007)[5-7]。化工热力学发展时间较长,已形成较完整的知识体系,如何在54学时内有效地把关键知识点教授给学生是本课程教学实践的关键。
由于本专业学生在大二《物理化学》课程中已经系统学习了理想气体相关的状态方程及其应用,因此在本课程教学中不再赘述,而是重点介绍工程实际应用较多的二参数状态方程、化工热力学分析、溶液热力学、流体相平衡和化学反应平衡等。在教学实践中,首先,详细分析《化工热力学》教材结构,围绕主线内容合理编排知识点;其次,建立好各知识点之间的逻辑关系,让学生在大脑中建立化工热力学框架图;最后,根据能源化学工程专业的需要,适当删减补充了教材内容,结合学科动态,增强化工热力学的应用能力,如燃料电池开路电压的计算、水/二氧化碳共电解制合成气过程中气体组成的计算等。
2改变单一课堂教学模式,培养学生自主学习能力
化工热力学课程设计的公式多而繁杂,学生在开始学习阶段容易产生恐惧厌学心理,传统的单一课堂教学模式具有“教师主导学生学习”的特点,与本课程“教师引导学生学习”的教学目的存在较大偏差。因此,应改变传统单一课堂讲授模式,充分采用“启发式”和“参与式”相结合的教学方法。
首先,教师在 课前预习 阶段设疑(提出问题),促使学生思考,复习旧知识,预习新知识;其次,教师在教学实践过程中采用多媒体和板书相结合的教学方式解疑(解决问题),并通过对例题和习题的讲解加深学生对化工热力学原理、方法和应用的理解,同时,教学过程中应避免陷于抽象的说教和枯燥的公式推导之中,重点讲述化工热力学知识点的应用条件和物理意义;最后,课堂教学结束后,教师主动与学生面对面交流答疑(探讨问题),并设置思考题让学生查阅相关资料。通过“设疑—解疑—答疑”的渐进式教学方法达到对关键知识点举一反三的目的,同时,吸引学生注意力,培养学生自主学习能力,提高学生学习的积极性和主动性。
3课堂教学与工程实践密切结合,培养学生初步的工程观点
化工热力学由于理论性较强、基本概念多且抽象,而且本科生在学习过程中接触科研课题及工程实践的机会较少,将课堂教学内容与科研课题及工程实践紧密结合起来,建立“以应用为中心”、“探究式”的特色教学模式,紧密联系我校在能源化学工程领域(特别是超临界火电、核电、生物质能、氢能、新型化学电源等方面)开发利用的化学工程实际问题,把学科前沿领域的科研成果带入课堂,可以使他们强化科研思想、激发听课兴趣、培养创新能力;同时,可以让学生获取利用化工热力学基本原理解决工程实际问题提供思路和方法,培养学生初步的工程观点。
4考核方式方法研究
传统的期末一张考卷为准的考试方式不利于学生能力的培养,也不能全面地体现学生对所学知识的掌握程度,为了更加系统全面地评价学生对课程内容的认识情况,我们对课程的考核方式方法进行了改革探索。目前,课程成绩总评包括平时成绩和期末成绩两部分,其中平时成绩包括学生的课堂综合表现、课程预习、作业三个部分,各占10%;期末考试采用开卷方式考试,考试的题目偏重于对知识点的理解和其在能源化学过程中的应用。然而由于该课程的课程内容抽象、计算繁琐,教学过程中发现仍有部分学生存在畏惧厌学心理,因此,在今后的教学实践中应考虑进一步激发学生的学习兴趣,增强学生的主观能动性,在课堂教学中引入分组讨论,开展导向性的专题研究,将课程内容与能源化学过程(特别是学科动态)相结合,培养学生查阅资料和分工协作的能力,为学生下一步学习专业课程夯实基础。
5结束语
在《化工热力学》课程的教学实践和尝试中,首先要明确教学内容与主线,打破单一的学生被动听讲的模式,理论联系实际应用,调动学生学习的积极性和主动性,激发学生对教学内容的兴趣,并且在教学的过程中对教学方法进行改革创新,因材施教,为学生下一步学习更专业的能源化学工程知识和从事新能源行业工作奠定扎实的基础。
参考文献
[1]陆小华,冯新,吉远辉,等.迎接化工热力学的第二个春天[J].化工高等 教育 ,2008,3:19-21.
[2]梁浩,刘惠茹,王春花.《化工热力学》教学实践与尝试[J].广东化工,2010,37(1):157-158.
[3]李兴扬,唐定兴,沈凤翠,等.化工热力学教学改革与体验[J].化工高等教育,2011,3:71-73.
[4]朱自强,吴有庭.化工热力学(第三版)[M].北京:化学工业出版社,2009.
[5]冯新,宣爱国,周彩荣,等.化工热力学[M].北京:化学工业出版社,2008.
[6]陈钟秀,顾飞燕,胡望明.化工热力学(第二版)[M].北京:化学工业出版社,2000.
[7]史密斯JM,范内斯HC,阿博特MM,等编;刘洪来,陆小华,陈新志,等译.化工热力学导论(原著第七版)(IntroductiontoChemicalEngineeringThermodynamics,SevenEdition).北京:化学工业出版社,2007.
有关化学工程应用毕业论文推荐:
1. 化学工程毕业论文
2. 化学毕业论文精选范文
3. 化工毕业论文范文大全
4. 化学毕业论文范例
5. 化学毕业论文范文
6. 化工毕业设计论文范文
1引言环境化学(environmental chemistry)是研究化学物质,特别是化学污染物在环境中的各种存在形态及特性、迁移转化规律、污染物对生态环境和人
很多人写作论文时,都不知道如何选题,就怕选的题目过大过宽泛,导致无法深入写作,其实拟定经济学 毕业 论文题目可从:微观经济学、社会经济学、贸易经济学、制度经
哲学论文题目一:科学技术哲学 1.对科学的崇拜与批判:两种对峙的科学观 2.近代自然科学为何未能诞生于中国——从科学自身的原因看 3.科学价值中立如何可能 4.
学中文的也要学外文,一样,增加知识面
在经济学的论文中引用参考文献,具有重要的标志功能、评价功能、保护功能和链接功能,可以反映经济学论文的研究基础和科学依据,可供进一步检索有关资料,共享资源。下面我