• 回答数

    5

  • 浏览数

    154

逍遥石子
首页 > 医学论文 > 大数据与基因医学杂志

5个回答 默认排序
  • 默认排序
  • 按时间排序

casa1363007

已采纳

大数据等计算机技术的渗透,已经使得生命科学逐渐走进普通人的生活。但和IT、互联网类创业公司相比,生命科学创业公司则相对较为低调,极少自我宣传和炒作。其中一个原因是,生命科学研究从实验室走到市场往往需要更长的时间。、

通过基因编辑技术,对生物的DNA序列进行修剪、切断、替换或添加,效率高、速度快,也有望根除人类致病基因在世代间的传递。也就是说,CRISPR这种基因编辑工具能够精确地改变人类的DNA,能够“关闭”某些基因,也能够给人增加特定的基因,从而彻底根除人们患上某些疾病的可能。

加州大学伯克利分校教授詹妮弗·杜德纳说,有一种疾病叫镰状细胞性贫血,很多人都有这种病,它导致红细胞中的一种蛋白质结构缺陷,让细胞变成镰刀状,从而不能有效通过血管。“但很不幸的是,现在我们拿这种病没有办法,即使能治疗也效果不佳。所以如果我们能改变患者体内细胞的DNA,就能真正修正这种突变,重新恢复正常的血红蛋白形状。”

如果计算机数字化会对生物科技产生影响,这会意味着人们对疾病的治疗或许不再需要对症下药,而是对症对人制定个性化的医疗方案,甚至在疾病之前预防。而这一切,在其他一些创业者看来,并不一定需要医院为我们来做。

Grail公司首席品牌官肯·德拉赞解释说,目前,云存储计算的成本正快速下降。数字化过程,即将生物特征转化为数字从而进行大规模分析,有利于快速深入地了解人类基因,这个机会史无前例。

对在硅谷设立奇点大学、目前在谷歌供职的雷·库兹韦尔来说,思考创新和未来是他一生的工作。他认为,生命科学的未来发展速度将让人瞠目结舌,因为与计算机科学的相互融合,生命科学将实现指数级的加速发展,彻底改变过去的医疗方法。

总之,不管是大数据还是商业与生命科学的结合等方式,这些方法或许是突破性的。通过大数据和基因的结合的尝试,对人体进行疾病的早期筛查的方案,已经显现出了希望。我们期待着可以尽快看到能够帮助人类解决疾病的方案。

341 评论

上海草根

1、就是医疗行业积累的大数据问题,比如看诊历史最丰富了,如何从过往历史里分析出最好的治疗方案如何从已有的成功案例里找到现在最近似的治疗手段等等。2、移动互联、智能传感器、云计算、机器人等新兴信息通信技术与信息感知方式的发展和变化,深刻地改变着传统的医疗与健康服务模式。大数据已成为公认的资源,快速发展的大数据产业,给企业带来无限的上升空间。智能决策方法从追求计算速度逐渐转变为更多地关注多模态数据融合中的推理能力、效率与准确性。提高医疗的精准咨询,提高患者的知情权,同时使得自助医疗、家庭医疗有了实现的机会。医疗行业的发展,大数据在医疗行业营销中的广泛应用,为多层次医疗决策者提供智能决策支持,为大数据驱动的医疗决策提供科学依据,为医疗行业发展和从事大数据工作的人员提供指导。

125 评论

喵小贝贝

这样就会有人来专门研究人类的基因了

298 评论

五小样儿同学

21世纪初,人类基因组计划(HGP)发布了第一张人类基因草图,人的基因组约有30亿个碱基对,意味着每一个人的基因组有3Gb以上的数据。该计划曾与上世纪的曼哈顿计划(原子弹制造)、阿波罗登月计划并称为三大科学计划,为本世纪的一个里程碑式的科学工程。15年过去了,基因组测序技术发展之快已经超乎人们的想象。十年前,这项技术还只是实验室中一个“迷人”但又昂贵的研究工具。现在,它却已经渐渐步入医疗界,成为一种略显“尖端”的诊断技术。该技术也引领生物医学领域进入大数据时代。早前,曾有人预言,当个人基因组测序费用下降到1000美元时,就标志着我们的医学将进入个体化医疗(Personalized Medicine)的时代。现在,这个目标已基本达到,随着这项技术的迅猛发展和成本的扁平化,它已经开始给我们带来了庞大的数据,包括基因组、蛋白组等各类组学(omics)的出现,也带来了不少数据。1. 海量数据的产生刚过去的七八年间,我们储存的个人基因组数据量已达到106规模,这个数量如此惊人,且这只是刚刚开始。每年Illumina公司的HiSeq X 10测序仪已经可以完成超过18000人的基因组测序工作,该测序系统已分布在全球顶尖测序中心,每天产生大量的数据。英国2014年也启动了“十万人基因组计划”,美国和中国则宣布要完成多达一百万人的基因组数据收集工作。基因测序数据正在以更快的速度翻倍。2015年以后,以历史累积的测序数据来看,每7个月就能翻一番, Illumina仪器测序所得的数据,每12个月就能翻一番;如果仅以摩尔定律来看,每18个月数据量就能翻一番。这种情况将带来一个巨大的“数据黑洞”。图片来自以上所提及的,只是大数据时代下的一个缩影,现在面临的还有其他数据。比如,伴随基因组计划的发展,人类蛋白组计划和基因测序结果在医疗界的应用等也被逐步提出,它们也正在给大数据“添砖加瓦”。所谓人类蛋白组计划,主要目的在于研究所有人类基因编码产生的蛋白质。关于这个,我们来看一个研究者的故事。美国斯坦福大学迈克尔?斯奈德(Michael Snyder)。迈克尔·斯奈德(Michael Snyder)是美国斯坦福大学的一名分子遗传学家。当他抱着好奇的心态测了自己的基因组后,得到了一些“惊喜”。他发现,自己是一名II型糖尿病易感基因的携带者,尽管在这之前,他并没在自己身上发现任何此类疾病的风险因素,包括肥胖、家族病史等等。在接下来的14个月,斯奈德持续监控了自己体内相应RNA的活性和蛋白表达情况。在一次感染呼吸道病毒后,他发现自己体内的蛋白表达发生了变化,并且有相应的生物学通路被激活。接着,他被诊断出了糖尿病。看起来,这场病就是由这次病毒感染所触发的。此后,他还在患上莱姆关节炎时,也监控了自己体内的蛋白表达变化。这时,他的研究已经产生了多达50Gb的数据,这还仅仅只是关于他个人的研究数据。当他将这项研究扩展至100个人时,并将研究目标扩展至13类“组学”(包括蛋白组、肠道菌群的转录组等等),而实际上,按照他的计划,要想真正做到预测疾病,还需要将研究对象增加至上百万个病人。如此这样,它将会带来多大的数据量?各种电子设备的普及以及健康数据记录App的出现,给这个时代带来了海量的数据,也给医学界带来了可观的研究对象。过去的几十年间,医生如果要观察病人的心血管健康情况,往往会给他们做这么一个小测试:让他们在一段平缓、稳固的路上行走6分钟,并记录他们的行走距离。这个测试不仅可用于预测肺移植者的存活率,还可用于检测肌肉萎缩的病程发展,甚至可以评估心血管患者的健康状况。这种小测试已被运用于多项医疗研究中,但在过去,最大规模的医疗研究项目中,这种参与者也很少能达到一千人。智能手机中健康类App的出现,从而能让研究者获取大量人群的数据。图片来自不过,这个情况近年来发生了很大的变化。在2015年3月进行的一项心血管研究中,研究者尤安·阿什利(Euan Ashley)在两周时间内就拿到了6000个人的测试结果,这就得益于现在有数百万计的人拥有智能手机和健身追踪器。到了6月份,参与到这项研究中的人数达到了40000人,这仅仅依靠的是一款叫做“我的心脏计数”(My Health Counts,见上图)的苹果应用。有了这个应用软件,阿什利甚至可以招募来自全球的参与者,获取他们的测试结果。那样的话,他得到的数据又将是多少?面对这个现状,不少研究者表示,这些海量数据可能会淹没现有的分析渠道,并对数据存储提出前所未有的“高”要求。2. “大数据”时代下的挑战在群体基因组研究的浪潮下,虽然更多的人关注的仅仅只是整个基因组中的外显子部分,即基因组中可编码产生蛋白的部分,它占到了整个基因组的1-5%,这能够将需要分析的数据量减少到原来的1%。但即使在这种情况下,每年产出的数据量仍可达4000万Gb。这就带来了第一个难题,如何存储这么大的数据量?尽管这还只是这个领域最基本的问题,仍需要巨大的资源来解决。这就是近年来网络上最常出现的一个词——云(Cloud)出现的契机所在。这么大的数据量,必然无法仅仅保存在固定的设备上,需要借助互联网来实现,也即是所谓的“云存储”。此外,这些数据带来的处理危机也是巨大的,电脑处理能力也将局限着它们的应用。这个问题的初步解决依然要依靠“云”,也就是现在所谓的“云计算”。即使处理好了海量数据的存储问题,我们还将迎来另一个更让人头痛的问题——这些数据说明了什么?现在关于基因组学的临床研究,往往聚焦于识别个人基因组中可扰乱基因功能的“小错误”,即所谓单核苷酸突变(single-nucleotide variants, SNPs),即使这些突变往往存在于仅占基因组1%的外显子区域,平均下来,依然有近13000个之多,而其中的2%已被预知可影响相应蛋白的变化,但要从中找出某类疾病的具体致病基因,仍是一个巨大的挑战。自奥巴马提出了“精准医学”的概念,这个方向就一路红火。即使现在已经有了测序技术和分析工具这些手段,有了电子健康记录这位“好帮手”,这种医疗方法的理想和现实之间仍然有着巨大的鸿沟。在这个领域,仍然存在多种障碍。比如,即使在电子健康记录普及和新疗法研发成功的前提下,想要依靠临床医生来实现这些疗法,往往还需要对他们进行不间断的培训,以帮助他们在做医学决定前了解足够多的细节信息。此外,电子健康记录的不可共享性(即涉及到病人隐私的问题),为精准医疗的实现设置了不小的障碍。很多时候,治疗患者个体病例的特异性信息往往被患者个人和治疗机构所把持,到不了研究者手里,那么就无法据此信息来改进一些治疗方法,因此也就没办法实现对个人的“个体化医疗”。这些问题往往反映生物医学领域需要信息处理专家的介入和帮助。遗憾的是,生物信息学家在学术领域也仅仅只占很少的席位,更别提在医学领域,还需要给他们提供更多的职位和机会。3. “大数据”带来的机遇有挑战也必然会带来机遇,这个机遇可以体现在生物医学领域的多个方面,比如医疗界的诊断方法更新、疾病分型更新、医药界药物开发新方向、医学界疾病治疗新方法,甚至生物学科基础研究领域的新工具等等。2013年,安吉丽娜·朱莉的故事轰动全球,为减少患上乳腺癌的风险,她进行了预防性的双乳腺切除术,而这个决定是在她检测到自身携带一种风险基因——BRCA基因后才做出的。这类基因能带来显著的致病风险,约有55-65%的乳腺癌患者携带有害的BRCA1基因突变,45%的携带BRCA2突变。对朱莉来说,虽然她携带的仅仅是前一个基因,已足以让她做出预防性手术的决定。这个故事给出了一个鲜活的例子,就是如何把个体测序得到的数据与临床诊断联系在一起,这就好像人类正在从自己的基因组中找到这些失落的宝藏,从而帮助自己预防一些恶性疾病,但这只是这个时代所带来的一个福利而已,并且只占到很少的一部分。以糖尿病为例,不精确的疾病分型,对于前期的预防和后期的治疗都十分不利。之前,医学界已经知道,有多达百余种途径可能导致糖尿病的发生,涉及到胰腺、肝脏、肌肉、大脑甚至脂肪的不同变化。现代通过基因的研究发现,对不同类型糖尿病而言,其致病基因十分多样。这时,如果将这些不同亚型的糖尿病混为一谈,就会让人很难弄明白,为什么携带同样的基因突变,病人在面对同一治疗方案时,会出现完全不同的治疗效果。正如生物化学家阿兰·阿蒂(Alan Attie)所说的那样,“从致病基因到体重、血糖水平等表型的出现这一过程,往往有许多步,其中每一步都可能发生基因突变,这最终会削弱基因和表型之间的联系”。因此,只看表型(即临床症状)和只看突变基因,得到的都只会是片面的结果。只有将两者有机结合起来,才能更加深我们对疾病的了解,做到更精确地进行疾病分型,以便更容易“对症下药”。美国国立卫生研究院(NIH)曾发起一项大型项目,构建了癌症基因组数据库(the Cancer Genome Altas,简称TCGA),将所有癌症相关基因突变分类保存,共保存有250万Gb的数据,这大大改进了研究者对各种类型癌症的认识。但仅仅这样,对于提供了组织样本的患者来说,并没给他们的临床经历带来太多改变。与癌症治疗相关的另一方面,是个人电子健康记录及其病例的特异性信息。对很多研究者来说,如果能从医院或个人手中得到这部分信息,就能够卓有成效地进行癌症治疗方案的改进。总体而言,只有在拿到测序大数据的基础上,同时掌握病人的干预记录(来自个人的电子健康记录)和临床特征(来自医疗机构的临床病理记录),才能最终做到“升级”肿瘤的临床治疗方案。医药研发也能从大数据获益良多,这无可厚非。在医药研发的世界里,基因技术公司更倾向于进行长期的生物学研究,并将其联系到临床数据上,以使得药物能够“对症下药”到每个人身上,甚至会帮助制药公司做出更“大胆”的研发决定,进行个性化定制免疫疗法的研究。以微生物菌群研究为例。现在就有人提出这样的想法:什么时候我们会想要研发出能改变体内微生物菌群的药物呢?这些存在于我们肠道、皮肤表面和环境中的数以十亿计的微生物,不仅影响我们是否患病,还会影响到药物对疾病所产生的药效。现在大部分对于微生物菌群研究得到的数据还只是针对小部分人群,但这是否也意味着一个不错的研究方向?毕竟我们现在还缺乏一些稳定的测试手段,能让我们以一种持续性的方法来改变微生物菌群,并对疾病发展产生有意义的影响。对免疫学研究来说,大数据会带来什么?首先,有以下“组学”都可以对免疫学研究产生有利影响,包括:基因组、微生物组、表观基因组、转录组、代谢组、通路组、细胞组和蛋白组。具体来说,比如对特定B细胞或T细胞所有抗体抗原分子的分析,这些分析结果(尤其是与能识别对应抗体的抗原决定簇的技术相结合),可将临床诊断、抗体药物研发、疫苗研发上升到一个新高度,并能为自身抗原肽结合抗体提供新见解。伴随着荆棘的引路,往往也会引来好歌喉的夜莺。大数据给我们带来挑战的同时,也带来了机遇,尤其是对于一些恶性疾病(比如癌症)的治疗。一种单一类型的肿瘤,往往就会伴随着多样化的基因突变,但随着投入更多的时间和金钱,会得到更多的治疗靶点。当大数据分析的精度越来越高时,对于整个疾病发生过程的了解也会越来越深入,有了“大数据分析”这项利器,更多的精准治疗方案将会产生,帮助人们做出更好的选择。

221 评论

h071232003

医疗大数据是个很宽泛的概念,他有很多详细的分类,包括:电子病历数据,这是患者就医过程中所产生的数据,包括患者基本信息、疾病主诉、检验数据、影像数据、诊断数据、治疗数据等,这类数据一般产生及存储在医疗机构的电子病历中,这也是医疗数据最主要的产生地。电子化的医疗病历方便了病历的存储和传输,但是并未达到进行数据分析的要求。大约80%的医疗数据是自由文本构成的非结构化数据,其中不仅包括大段的文字描述,也包括包含非统一文字的表格字段。通过医学自然语言理解技术,将非结构化医疗数据转化为适合计算机分析的结构化形式是医疗大数据分析的基础。电子病历中所采集的数据是数据量最多、最有价值的医疗数据。通过和临床信息系统的整合,内容涵盖了医院内的方方面面的临床数据集。在电子病历的互通互联上,出于各自的利益性(限制病人转诊),各大电子病历企业也不愿意使数据互通互联。根据美国政府相关报告显示,其电子病历共享比例也仅为30%左右。检验数据医院检验机构产生了大量患者的诊断、检测数据,也有大量存在的第三方医学检验中心也在产生数据。检验数据是医疗临床子系统中的一个细分小类,但是可以通过检验数据直接患者的疾病发展和变化。目前临床检验设备得到迅速发展,通过LIS 系统对检验数据进行收集,可以对疾病的早发现早诊断和正确诊断做出贡献。影像数据随着数据库技术和计算机通讯技术的发展,数字化影像传输和电子胶片应运而生。医疗影像数据是通过影像成像设备和影像信息化系统产生的,医院影像科和第三方独立影像中心存储了大量的数字化影像数据。医学影像大数据,是由DR、CT、MR 等医学影像设备产生所产生并存储在PACS 系统内的大规模、高增速、多结构、高价值和真实准确的影像数据集合。与检验信息系统(LIS)大数据和电子病历(EMR)等同属于医疗大数据的核心范畴。医学影像数据量非常庞大,影像数据增速快,标准化程度高。影像数据和临床其他数据比较起来,它的标准化、格式化、统一性是最好的,价值开发也最早。费用数据医院门诊费用、住院费用、单病种费用、医保费用、检查和化验收入、卫生材料收入、诊疗费用、管理费用率、资产负债率等和经济相关的数据。除了医疗服务的收入费用之外,还包含医院所提供医疗服务的成本数据,包含药品、器械、卫生人员工资等成本数据。在DRGs 按疾病诊断相关组付费模式中,需要详细的成本数据核算。通过大样本量的测算,建立病种标准成本,加强病种成本核算和精细化成本管理。基因测序数据基因检测技术通过基因组信息以及相关数据系统,预测罹患多种疾病的可能性。基因测序会产大量的个人遗传基因数据,一次全面的基因测序,产生的个人数据则达到300GB。一家基因测序企业每月产生的数据量可以达到数百TB 甚至1PB。智能穿戴数据各种智能可穿戴设备的出现,使得血压、心率、体重、体脂、血糖、心电图等健康体征数据的监测都变成可能,患者的单一体征健康数据以及运动数据快速上传到云端,而且数据的采集频率和分析速度大大提升。除了生命体征之外,还有其他智能设备收集的健康行为数据,比如每天的卡路里摄入量、喝水量、步行数、运动时间、睡眠时间等等。智能穿戴设备虽然在这两年遇冷,用户很难形成粘性,但是并不意味着智能穿戴设备所产生的数据没有意义。提供健康数据和服务,可能是智能穿戴厂商未来的转型之路。健康大数据的收集必须依靠硬件载体,智能穿戴设备还将会遇到自己的第二春。体检数据体检数据是体检机构所产生的健康人群的身高、体重、检验和影像等数据。这部分数据来自医院或者第三体检机构,大部分是健康人群的体征数据。随着亚健康人群、慢病患者的增加,越来越多的体检者除了想从体检报告中了解自己的健康状况,还想从体检结果中获得精准的健康风险评估,以及如何进行健康、慢病管理。移动问诊数据通过移动设备端或者PC 端连接到互联网医疗机构,产生的轻问诊数据和行为数据。曾经通过互联网问诊企业春雨医生的数据,分析各地医生互联网问诊的活跃度、细分疾病种的问诊行为。通过这些数据的分析,对行业发展、互联网问诊企业的决策有非常重要的帮助。

83 评论

相关问答

  • 大数据与医学论文

    在大数据时代,生物医学领域的发展受到了深刻的影响。大数据技术可以帮助生物医学研究人员更好地进行基因测序、疾病诊断、药物研发等方面的工作。同时,大数据技术也提高了

    张轶群123 4人参与回答 2023-12-07
  • 大数据与生物医学论文

    医学论文在哪个网站查介绍如下: 知网:国内最大文献库,涉及学科全面。 万方医学网:网拥有220多种中文独家医学期刊全文、1000多种中文医学期刊全文、4100多

    jessiedido 3人参与回答 2023-12-07
  • 大数据与精准医学论文

    在大数据时代,生物医学领域的发展受到了深刻的影响。大数据技术可以帮助生物医学研究人员更好地进行基因测序、疾病诊断、药物研发等方面的工作。同时,大数据技术也提高了

    哈笑折腰 5人参与回答 2023-12-11
  • 大数据与转化医学论文

    抽屉原理和六人集会问题 “任意367个人中,必有生日相同的人。” “从任意5双手套中任取6只,其中至少有2只恰为一双手套。” “从数1,2,...,10中

    rayyeung23 3人参与回答 2023-12-06
  • 大数据与基因医学杂志

    大数据等计算机技术的渗透,已经使得生命科学逐渐走进普通人的生活。但和IT、互联网类创业公司相比,生命科学创业公司则相对较为低调,极少自我宣传和炒作。其中一个原因

    逍遥石子 5人参与回答 2023-12-10