呵呵呵达
P值是采用假设检验的方法来计算的。举个例子来说明:比较两个样本的均数有没有差别,采用反证法,首先建立假设检验,H0:假设两组没有差别,H1:假设两组有差别。通过假设两组没有差别计算出其没有差别的概率,一般取P<作为临界值,若P<则代表随机抽取的两组均数没有差别的概率小于,为小概率事件,此时拒绝H0,接受H1。P>接受H0。但是P值的大小只能代表两者是否具有统计学差异,不能代表差异的大小。详细的计算方法要根据你采用的统计学方法具体计算,现在这步一般都采用统计软件SPSS、SAS等来完成。希望对你有所帮助。
雨霖霖i
P值即概率,反映某一事件发生的可能性大小。
不同的P数值所表达的含义也是不一样的。
统计学根据显著性检验方法所得到的P 值,一般以P < 为有统计学差异, P< 为有显著统计学差异,P<为有极其显著的统计学差异。
其含义是样本间的差异由抽样误差所致的概率小于 、、。实际上,P值不能赋予数据任何重要性,只能说明某事件发生的几率。统计结果中显示Pr > F,也可写成Pr( >F),P = P{ > F}或P = P{ > F}。
拓展资料:
计算P值的相关注意事项:
1、P的意义不表示两组差别的大小,P反映两组差别有无统计学意义,并不表示差别大小。因此,与对照组相比,C药取得P<,D药取得P <并不表示D的药效比C强。
2、P>时,差异无显著意义,根据统计学原理可知,不能否认无效假设,但并不认为无效假设肯定成立。在药效统计分析中,更不表示两药等效。哪种将“两组差别无显著意义”与“两组基本等效”相同的做法是缺乏统计学依据的。
3、统计学主要用上述三种P值表示,也可以计算出确切的P值,有人用P <,无此必要。
4、显著性检验只是统计结论。判断差别还要根据专业知识。抽样所得的样本,其统计量会与总体参数有所不同,这可能是由于两种原因。
P值的其他含义:
1、 一种概率,一种在原假设为真的前提下出现观察样本以及更极端情况的概率。
2、拒绝原假设的最小显著性水平。
3、观察到的(实例的)显著性水平。
4、表示对原假设的支持程度,是用于确定是否应该拒绝原假设的另一种方法。
参考链接:百度百科:假设检验中的P值
采用spss软件,单因素分组对照计算。 t值和P值都用来判断统计上是否显著的指标。在p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据
在统计学中,P值(P value,全称Probability Value)是指在进行假设检验时,根据样本数据计算出来的一个概率值。具体来说,P值表示的是,如果总
p值统计学意义是: 结果真实程度(能够代表总体)的一种估计方法,专业上P 值为结果可信程度的一个递减指标,P 值越大,我们越不能认为样本中变量的关联是总体中各变
采用spss软件,单因素分组对照计算。 t值和P值都用来判断统计上是否显著的指标。在p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据
P值是采用假设检验的方法来计算的。举个例子来说明:比较两个样本的均数有没有差别,采用反证法,首先建立假设检验,H0:假设两组没有差别,H1:假设两组有差别。通过