• 回答数

    3

  • 浏览数

    274

libby131313
首页 > 医学论文 > 医学论文中统计方法的错误

3个回答 默认排序
  • 默认排序
  • 按时间排序

深田和美

已采纳

医学统计中的常见误区有哪些

医学统计学是运用概率论与数理统计的原理及方法,结合医学实际,研究数字资料的搜集、整理分析与推断的一门学科。医学研究的对象主要是人体以及与人的健康有关的各种因素。下面是我为大家带来的关于医学统计中的常见误区的知识,欢迎阅读。

一,真正差异和统计学差异

常常有人和我说: P值越小,试验结果的差异就越大!而且还有依据 [P < 是有显著性差异; P < 是有极显著性差异]。

其实,这些人忽略了 n 这个样本数的作用,n 的大小会影响 P 值。但更应该澄清一下的是: P 值代表的是统计学差异,并不是真正的差异!真正的差异只能靠平均值或者频度的比较才能得到。

二,卡方检验的局限性

我们知道各组之间的计数资料的比较,要用卡方检验,但有些情况是不行的!!!

1,当样本有小于5的值2X2表时,必须要用 Fisher 检验才正确!

2,当组与组之间有不同的背景,而这些背景因子还可能会影响到组与组之间结果差异,这是就必须要用 Mantel-Haenszel 检验!

这第2条可能大家不要理解,那我就举两个例子:

1) 关于男性和女性对于不同颜色的喜好的统计学分析

但这里应该注意到年龄可能会对这个分析造成影响,这就要用Mantel-Haenszel 检验了。

***红色 蓝色 黄色

男性 5 7 8

女性 15 10 6

可以按大人和小孩(比如我们以15岁为分界)分层,在SPSS中要把这个因素放到[行] [列]下边的[层化]一栏里,并在统计指标选项里,选 Cochran和Mantel-Haenszel的统计量选项,这样出来的结果就可靠了!

2)两种治疗(A和B)效果的评价分析:

*****A法 B法

生存 41 54

死亡 47 31

用卡方检验 X2=; P <

但是,病人的临床分期将影响着分析结果:

********生存**************死亡

——————————***——————————

————A****B————————A*****B———

1期-----18-----21--------------------0--------0-------

2期-----23-----33-------------------13------- 8-------

3期------0------0--------------------34-------23-------

再用Mantel-Haenszel检验: X2=; P >

说明实际上A法和B法两组的统计学差异,是这个不同的分期造成的!!!

1,当样本有小于5的值2X2表时,必须要用 Fisher 检验才正确!

讨论:当样本有小于5的值2X2表时,必须要用 Fisher 确切概率法。

当样本有小于5的值R×C表时,将某两组合并,用pearson卡方检验。

三,t 检验的局限性

1,我们经常用 t 检验来判别两组病人血清中某种标记物水平上的差异,但这里要注意,有一些血清标记物的水平是不能用 t 检验的!

比如: 血清标记物 PSA和AFP,在正常人的水平是很低的,而在病人则明显增加,呈现指数幂次改变,这样一来,血清 PSA和AFP水平在每组病人中很容易不是呈现正态分布!

这时应该用 非参数性检验---即 Mann-Whitney U test (Wilcoxon U test)。

2,关于用不用配对t 检验,我个人认为当同一组样本在不同时点,不同处理方式的比较上,应该用配对t 检验。

四,ANOVA 检验的局限性

1,在2组以上计量资料样本比较时,ANOVA 检验非常常用。但这个检验只是说明了一个趋势的比较结果,并不能说明真正的统计学差异,真正的`差异还要通过每两个点的直接比较,也就是说应该在ANOVA 检验后,还必须做两两比较或多重比较,这样才能从全貌上反映出统计的全部结果。

2,既然方差分析得到差别有显著性意义的结论后,还需进行两两比较,有人认为还不如一开始就进行多次t检验更方便,其实,这种认识是不妥当的。t检验用于ANOVA的两两比较将增大第一类错误,产生假阳性,因此要采用特定的方法,在SPSS的one-way ANOVA或General linear models中操作时,Post Hoc(多重比较)对话框内有多种方法可供选择,象两两比较一般用SNK法,而多个试验组和一个对照组的比较则多用dunnett检验。

3,我们经常用 ANOVA 检验来判别几组病人血清中某种标记物水平上的差异,但这里要注意,与 t 检验一样,有一些血清标记物的水平是不能用 ANOVA 检验的!

如上所说的: 血清标记物 PSA和AFP,在正常人的水平是很低的,而在病人则明显增加,呈现指数幂次改变,这样一来,血清 PSA和AFP水平在每组病人中很容易不是呈现正态分布!

这时应该用 非参数性检验---即 Kruskal-Wallis rank test 。

五,单元线性相关分析

有时我们常常只注意到了 P 值大小,可最重要的是 r 值!

样本数 n 对 P 值 结果的影响很大,容易让我们产生错觉,其实,相关的存在与否的评价是与 r 值最直接相关的,如下:

当 P 值小于时: r 值

几乎没有相关关系

弱的相关关系

有相关关系

强相关关系

极强相关关系

P 值只是证明这个相关在统计学上是否成立!!!

1,当样本有小于5的值2X2表时,必须要用 Fisher 检验才正确!

讨论:当样本有小于5的值2X2表时,必须要用 Fisher 确切概率法。

当样本有小于5的值R×C表时,将某两组合并,用pearson卡方检验。

不是说样本小于5

而是说:在R×C表中

理论频数不应该小于1,并且1≤T≤5的格子数不应该超过总格子数的1/5,若出现上述情况可以通过以下方法:

a.增加样本含量,使理论频数增大;

b.根据专业知识,删除理论频数太小的行和列;或者将理论频数太小的行或列与性质相近的邻行和邻近列合并。

c.改用双向无序的R×C表的fishher确切概率法。

还有一点

四格表卡方检验的适应指标:(T为理论频数)

1。n≥40,且T≥5时用卡方检验基本公式。但是当p≈α应该用fisher确切概率法

2。n≥40,但是1≤T≤5时,用四格表校正公式

3。n<40,或者T<1时,用fisher四格表确切概率法

4。四格表卡方检验的连续性校正仅仅用于自由度为1的四格表尤其是n较小时。

补充几点:

1. 关于P值:P值的大小并不是各组差异的大小,而是统计学差异显著性的大小。P值越小,说明得出各组没有差异的概率越小,越有理由说明各组存在差异(可以说,P值的大小反映了做出统计结论的“理由”的大小,而不是被比较的各组的实际差异的大小,得出有意义的结论后,其差异的大小可直接通过各组的均数或率进行比较)。

2. 关于t检验和方差分析:katalyster兄上面提到的t检验及方差分析在某些时候不适用,实际上就是每种方法都有其应用条件,不服从正态分布当然不能用。对这样的资料首先可考虑变量变换(如抗体滴度等资料,为指数或幂次的关系,可用对数转换),如变换后,服从正态分布,可用上述方法;若还不符合,则考虑非参数检验。

3. 关于相关分析:两个变量间是否存在相关关系,要看P值,而不是r值,r值用来说明相关关系的大小。当P<,才能讲两变量间存在相关关系,再看r值,r值越大,相关关系越强,反之越小;否则,P>,不能讲两变量间存在相关关系,r值毫无意义。

感谢kushuya, xiaoxiongzjh两位专家的补充和指正!之所以开这个专题,是真心想让初学者从这些<误区>中走出来!

六,Logistic regression 分析

在判断某因子对疾病的危险度时常用的方法。

1,假设要判断某因子对疾病的危险度(OR),要了解这个OR是一个相对危险度,即是有某因子存在和没有某因子存在之间比较的OR值。

2,OR 和 RR 不一样,OR是在Logistic regression model中使用,RR是在Cox proportional hazard model中使用。

3,假设要判断某因子对疾病的危险度,要在多变量Logistic regression model中校正一些混扰因素,如常见的年龄,性别,吸烟等等,并最后得出这个 Adjusted OR。但并不是说有了这些校正,我们就可以在实验设计上就不考虑这些混扰因素,相反,必须在实验设计上就把这些混扰因素在实验组和对照组配平,光靠在多变量Logistic regression model中校正是不可靠的。

其它方法---生存分析 (Kaplan-Meier法+ Logrank法):

我们有时在临床研究只注意到了用这种方法分析与生存相关的研究,其实,在疾病复发上也常用这种方法!前者是以生---死为判别,后者则以复发---不复发为判别。

141 评论

小宇宙晴

计学,可以说无处不在,我们每个人的日常生活都会受到统计学的影响。但是很多人,即使受过统计学的正规训练,也会在不知不觉之间犯一些常见的分析错误。下面这篇文章,我就和大家分享一些现实生活中比较常见的统计研究错误。1. 参照组(Control group)那天我恰好在网上看到一篇文章,叫做《眼保健操对于保护眼睛有作用么?》。作者的观点是眼保健操没有什么作用,列举的证据是眼保健操在中国的学校里推行了50多年,小学生和中学生的近视率大大上升了,而非下降。因此作者得出结论:眼保健操对视力有害。乍一看,好像确实是这么回事:50多年前我们开始在学校里要求学生们做眼保健操。但是现在孩子们的近视率,则要比当时的那些孩子的近视率高出很多。但是如果就因为这个而得出眼保健操没用的结论,则是谬之大矣。主要原因在于:没有参照组。和建国初那时候的孩子们相比,现在的孩子由于功课压力,在室内花的时间(读书,做作业,上补习班等)大幅度增长,用眼的“诱惑”也大大增加,比如电视,电脑,手机等等。因此无论是否做眼保健操,现在孩子的视力肯定都不及当时的孩子。这也不是中国独有的现象,日本,韩国,新加坡等国的情况也类似。而这些国家都没有眼保健操。如果要真正研究眼保健操对于保护视力是否有效,那么就应该通过参照组来对比。研究人员应该找到两组情况类似的样本(比如同一个学校里的孩子)进行研究。这两组样本的区别除了他们是否做眼保健操以外,在其他方面越相似越好。然后通过一定时间的跟踪调查,研究人员才可能得出更加客观和可靠的研究结果。1747年,苏格兰医生James Lind在一艘名叫Salisbury的船上成功的找到了治疗坏血病的方法:就是通过吃橙子和柠檬补充维他命C。而他找到该疗法的关键就是运用了参照组实验方法。坏血病是一种非常可怕的疾病。坏血病的发病特征包括皮下出血(因此腿会变黑),极度疲劳,牙床腐烂,肌肉变软。长期出海的船员和海盗是坏血病的多发人群。James Lind使用的参照组实验是这样进行的。在Salisbury这艘船上,Lind医生找到了12个坏血病严重程度差不多的病人,将他们两人一组分成6组。对于这6组病人,Lind医生给予了他们6种不同的治疗方法,包括橙子,柠檬,苹果酒,醋和盐水等。后来Lind医生发现,食用橙子和柠檬的那组病人的恢复速度显然比其他组别要快很多,因此得出结论橙子和柠檬可以治疗坏血病。现在我们知道,橙子中的维他命C才是坏血病的克星。Lind医生通过参照组实验获得的这项重要发现,帮助挽救了成千上万的水手的生命。如果没有参照组这个重要的分析方法,Lind医生能否找到正确的解药要打一个大问号。当时,Lind医生一度怀疑坏血病的病因和啤酒有关。Lind医生观察到,每次船上的啤酒被喝光时,往往也伴之以坏血病的大面积流行。但事实上,啤酒喝光,和坏血病盛行,只是一个巧合而已。因为坏血病往往多发于长期航海旅途中,而在海上旅行久了,啤酒自然也会被喝完。如果不通过参照组方法去分析真正的原因,那么就可能得出啤酒能够治疗坏血病这样错误的结论。在我们阅读分析一些统计研究报告时,一个很重要的地方就是要看该研究有没有参照组进行对比。如果研究只是比较了几个变量之间的关系而缺乏参照组进行对照,那么该研究的结论就值得怀疑。2. 随机取样(Random Sampling)下面来讲讲“随机取样(Random Sampling)”这个问题。在现实中,我们经常面对的问题是,需要研究的样本量太大,无法收集到完整的数据。比如我们想要了解全国十几亿人的想法,或者想要知道所有沿海城市的中产阶级的消费偏好,等等。要想精确的回答这些问题,我们就需要随机抽取一些代表性样本,通过样本的表现来推测整体的特征。如何确保收集到的样本真正“随机”,是一个技术含量很高的问题。在这方面有很多失败的例子可供我们学习。1936年,美国的总统选举大战在罗斯福(FDR)和兰登(Alf Landon)之间展开。在选举投票前,当时一家非常大的调查机构Literary Digest发出了1千万张明信片来收集美国人的投票倾向。在这1千万张明信片中,Literary Digest收到了2百万份回复。在这些回复中,绝大部分人都倾向于选兰登。因此Literary Digest得出结论:兰登将赢得总统选举。当时还有另外一家新成立不久的调查公司,名叫Gallup。Gallup没有Literary Digest那么大的预算。他们只是有针对性的选了几千个受访者做了民意调查,并得出罗斯福将会赢得总统大选的结论。

273 评论

橘子的新生命

一般都会过。一般盲审不过的论文多半都是违背学术道德规范,有造假和抄袭行为,不管是否盲审,这种论文铁定不通过。所以如果只是少量的方法用错,一般都会过。但是,针对论文中的问题评委会提出反馈意见供整改,也不能完全排除不通过的可能性,所以也要做好相应的准备应付这种情况。

246 评论

相关问答

  • 医学期刊统计方法错误率

    我搜到3篇文章,希望对你有所帮助医学科研设计中一个常被忽视的统计学错误辨析【作者中文名】 毕京峰; 段俊国; 【作者单位】 山东中医药大学; 成都中医药大学;

    贝贝781213 6人参与回答 2023-12-10
  • 医学论文中的统计错误

    论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。论文各组成的排序为:题名、作者、摘要、关键词、英文题名、英

    喵喵:小妹 6人参与回答 2023-12-08
  • 医学期刊中的统计错误

    我搜到3篇文章,希望对你有所帮助医学科研设计中一个常被忽视的统计学错误辨析【作者中文名】 毕京峰; 段俊国; 【作者单位】 山东中医药大学; 成都中医药大学;

    社区人员 5人参与回答 2023-12-09
  • 医学论文高级统计方法错误

    一般都会过。一般盲审不过的论文多半都是违背学术道德规范,有造假和抄袭行为,不管是否盲审,这种论文铁定不通过。所以如果只是少量的方法用错,一般都会过。但是,针对论

    素手宛花 5人参与回答 2023-12-06
  • 医学论文中统计方法的错误

    医学统计中的常见误区有哪些 医学统计学是运用概率论与数理统计的原理及方法,结合医学实际,研究数字资料的搜集、整理分析与推断的一门学科。医学研究的对象主要是人体以

    libby131313 3人参与回答 2023-12-11