chocolate宸
文|程瑞林(山东大学第二医院足踝外科) 来源|(微信公众号)云中瑞麟(ID:ruilinfly)
瑞麟导读: 对于计量资料,临床医学研究中常用的统计分析方法是t检验;而对于计数资料,卡方检验是一个常用的统计分析方法。
最近看到一篇文章,里面分析了骨巨细胞瘤患者术后复发的比例,其中计数资料使用卡方检验(又称χ 2 检验),下面针对卡方检验的使用方法及其R语言实现方法进行简单介绍。
卡方检验是一种用途很广的 计数资料 的假设检验方法,由卡尔·皮尔逊提出。它属于非参数检验的范畴,主要是比较两个及两个以上样本率( 构成比)以及两个分类变量的关联性分析。其根本思想就是在于比较理论频数和实际频数的吻合程度或拟合优度问题。
它在分类资料统计推断中的应用,包括:两个率或两个构成比比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。
可以分为成组比较(不配对资料)和个别比较(配对,或同一对象两种处理的比较)两类。
通常卡方检验的应用主要为: 1、 卡方拟合优度检验 2、卡方独立性检验
我们想知道喝牛奶对感冒发病率有没有影响,以下为数据统计的四格表:
通过简单的统计我们得出喝牛奶组和不喝牛奶组的感冒率为和,两者的差别可能是抽样误差导致,也有可能是牛奶对感冒率真的有影响。
为了确定真实原因,我们先假设喝牛奶对感冒发病率是没有影响的,即喝牛奶喝感冒时独立无关的,所以我们可以得出感冒的发病率实际是(43+28)/(43+28+96+84)=
所以,理论的四格表应该如下表所示:
即下表:
如果喝牛奶喝感冒真的是独立无关的,那么四格表里的理论值和实际值差别应该会很小。
那如何来描述这种差别呢,我们定义卡方值为
其中,A为实际值,T为理论值。
x2用于衡量实际值与理论值的差异程度(也就是卡方检验的核心思想),包含了以下两个信息:
根据卡方检验公式我们可以得出例1的卡方值为:
卡方 = (43 - )平方 / + (28 - )平方 / + (96 - )平方 / + (84 - )平方 / =
卡方值(理论值与实际值差异大小)的意义是什么呢?为此我们再引入一个概念:
上一步我们得到了卡方的值,但是如何通过卡方的值来判断喝牛奶和感冒是否真的是独立无关的?也就是说,怎么知道无关性假设是否可靠?
答案是,通过查询卡方分布的临界值表。
第一行表示显著性水平α 第一列表示自由度
这里需要用到一个 自由度 的概念,自由度等于V = (行数 - 1) * (列数 - 1),对四格表,自由度V = 1。
对V = 1,喝牛奶和感冒(95%概率)不相关的卡方分布的临界值(最大)是:。即如果卡方大于,则认为喝牛奶和感冒(有95%的概率)相关。
【瑞麟描述】临界值的意义表示:如果卡方值>,则纵列因素与横行因素不相关的的概念<(即显著性水平),也即纵列因素与横行因素相关的概念>。
显然<,没有达到卡方分布的临界值,所以喝牛奶和感冒独立不相关的假设没有被推翻。
【瑞麟】 简单说,如果我们计算出的卡方值(表示实际值与理论值的差异,越大表示实际值与理论值越不符,即越有可能纵列因素会影响横行数值)大于临界值(列因素不影响横行值的范围:0~临界值),我们就排斥原假设(H0,即纵列因素不影响横行的因素的变化),接受备择假设(H1:纵列因素对横行的因素变化有影响);反之,卡方值小于临界值,即在(纵列与横行互不影响这一假设)理论范围内,无法推翻原假设,即无统计差异。
我们想知道不吃晚饭对体重下降有没有影响,并获得以下数据:
H0:r1=r2,不吃晚饭对体重下降没有影响,即吃不吃晚饭的体重下降率相等; H1:r1≠r2,不吃晚饭对体重下降有显著影响,即吃不吃晚饭的体重下降率不相等。α=
【瑞麟:H0为纵列因素对横行因素无影响;H1为有影响】
3.计算卡方值 根据图1所示公式,计算出卡方值为
在查表之前应知本题自由度。按卡方检验的自由度v=(行数-1)×(列数-1),则该题的自由度v=(2-1)(2-1)=1,查卡方界值表,找到,而本题卡方=即卡方>,P<,差异有显著统计学意义,按显著性水平α=水准,拒绝H0,可以认为两组的体重下降率有明显差别。
通过实例计算,对卡方的基本公式有如下理解:若各理论数与相应实际数相差越小,卡方值越小;如两者相同,则卡方值必为零。
x2值表是数理统计根据正态分布的定义计算出来的。 是一种近似,在自由度大于1、理论数皆大于5时,这种近似很好;当自由度为1时,尤其当1<T<5,而n>40时,应用以下校正公式:
如果观察资料的T<1或n<40时,四格表资料用上述校正法也不行,可参考预防医学专业用的医学统计学教材中的精确检验法【瑞麟:Fisher检验?】直接计算概率以作判断。
1.一般认为行×列表中不宜有1/5以上格子的理论数小于5,或有小于1的理论数。当理论数太小可采取下列方法处理:①增加样本含量以增大理论数;②删去上述理论数太小的行和列;③将太小理论数所在行或列与性质相近的邻行邻列中的实际数合并,使重新计算的理论数增大。由于后两法可能会损失信息,损害样本的随机性,不同的合并方式有可能影响推断结论,故不宜作常规方法。另外,不能把不同性质的实际数合并,如研究血型时,不能把不同的血型资料合并。
2.如检验结果拒绝检验假设,只能认为各总体率或总体构成比之间总的来说有差别,但不能说明它们彼此之间都有差别,或某两者间有差别。
R语言自带卡方检测的方法,只要调用方法(),会自行输出X-squared卡方值, df自由度, p-value概率。
判断5种品牌啤酒的爱好者有无显著差异:
P值越大,支持原假设的证据就越强,给定显著性水平α(取), 当P值小于α时,就拒绝原假设。
H0:两种药物疗效相同 H1:有效率不等
为何会提示算法可能不准确呢?计算理论值:
文献1中的数据列表为
文章提及计数资料使用χ 2 检验,而数据列表中多处数据小于5,显然应该视理论值大小选择连续性修正的卡方检验或Fisher检验更合适一些。
参考文献: 1.同志超,等。四肢骨巨细胞瘤的外科治疗分析。中华解剖与临床杂志,2018,23(3) , 统计学——卡方检验和卡方分布 , CDSN博客,2017 , 卡方检验及R语言实现 ,CDSN博客,2017-3-27 上下求索, 卡方检验x2检验(chi-square test) ,CSDN博客,2016-7-7 , 统计学第七章 卡方检验【R语言实现】 ,, 6.嘉儿jy 《卡方检验中非连续性校正与连续性校正的区别!》 百度知道,2016-1-19 7.薛毅、陈立萍 编著《统计建模与R软件》,清华大学出版社,2006 《求助,下面几种状况SPSS交叉表分别该使用哪一种卡方分析,是Pearson卡方,还是Fisher‘s,还是连续性校正》 ,百度知道,2016-5-11
201808282046更新
irisorlove
r语言在生物医学领域的应用如下:
R语言在医学科学研究中应用广泛,典型的应用包括:机器学习技术可以帮助研究人员构建和改进机器学习模型,建立影响治疗效果的变量;统计学分析可以帮助研究人员确认实验结果是有意义的或不可信的;R语言支持高级图形,可以帮助研究人员清楚地表达结果。
此外,R语言还提供数据预处理、建模和分析的工具和框架,从而使得研究者能够更有效地运用自己的精力和时间,以更快的速度完成研究。
总的来说,R语言是一种实用的软件,可以帮助研究人员快速进行医学研究,从而更快地获得结果。R语言的优势在于涵盖的范围较广,提供的功能较强,可扩展性强,而且可以免费使用。因此,建议研究人员在研究过程中尽可能多地使用R语言,以更好地实现研究目标。
我们日常所说的R语言,R是用于统计分析、绘图的语言和操作环境。R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。R是统计领域广泛使用的诞生于1980年左右的S语言的一个分支。可以认为R是S语言的一种实现。
r语言在生物医学领域的应用如下: R语言在医学科学研究中应用广泛,典型的应用包括:机器学习技术可以帮助研究人员构建和改进机器学习模型,建立影响治疗效果的变量;统
医学论文格式及写作方法医学论文写作是一项严肃、意义重大的工作、是交流经验,传播科技成果,不断提高临床诊治和科研水平的重要组成部分。只有不断的总结,才能在总结的基
数据准备 统计概念学习。 (1)当观测值为奇数时,(n+1)/2位置的观测值即为中位数。 (2)当观测值个数为偶数时,n/2和n/2 + 1位置的两个观测值的平
转自医学方 2019-07-4 Alexander 流行病学或者医学论文中,对研究对象基本情况的描述通常以表格的形式进行,并且放在结果部分的开头,即Table
这要看你的数据量,如果巨大,可能是要用SPSS。如果数据量不是很大,EXCEL也是可以的,只是要自己运用函数额处理。