小L快跑
当前国内、外的研究动态从对图像进行滤波的过程中所采用的滤波方法来分,可分为空间域滤波、变换域滤波;从滤波类型来分,又可以分为线性滤波和非线性滤波。2002年和VetterliM.提出了一种“真正”的二维图像稀疏表达方法——Contourlet变换[7,8],这种变换能够很好的表征图像的各向异性特征。由于Contourlet变换能更好的捕获图像的边缘信息,因此选择合适的阈值进行去噪就能获得比小波变换更好的效果。Starck等人将Curvelet变换应用于图像的去噪过程中并取得了良好的效果[9],该方法虽然能有效的去除噪声,但往往会“过扼杀”Curvelet系数,导致在消除噪声的同时丢失图像细节。在过去的二十年里,自适应滤波器在通信和信号处理领域引起了人们的极大关注。TerenceWang等人针对二维自适应FIR滤波器提出了一种二维最优块随机梯度算法(TDOBSG)[10]。这种算法对滤波器的所有系数使用了空间可变的收缩因子。基于使后验估计方差矢量的二范数最小的最小方差准则,在块迭代的过程中选出最优的收敛因子。线性滤波器的最大优点是算法比较简单且速度比较快,缺点是容易造成细节和边缘模糊。在目前对非线性滤波器的研究中,中值滤波器有较明显的优势,很多科学工作者对中值滤波器作了改进或者提出了一些新型的中值滤波器。Loupas等人提出的自适应的加权中值滤波方法(AWMF),但他利用的Speckle噪声模型不够精确,图像细节损失较大[11]。针对中值滤波器在处理矢量信号存在的缺点,Jakko等人提出两种矢量中值滤波器[12]。近年来,小波分析是当前应用数学中一个迅速发展的新领域,它凭借其卓越的优越性,越来越多的被应用于图像去噪等领域,基于小波分析的图像去噪技术也随着小波理论的不断完善取得了较好的效果。上个世纪八十年代Mallet提出了 MRA(Multi_Resolution Analysis),并首先把小波理论运用于信号和图像的分解与重构,利用小波变换模极大值原理进行信号的奇异性检测,提出了交替投影算法用于信号重构,为小波变换用于图像处理奠定了基础[13]。后来,人们根据信号与噪声在小波变换下模极大值在各尺度上的不同传播特性,提出了基于模极大值去噪的基本思想。1992年,Donoho和Johnstone[14]提出了“小波收缩”,它较传统的去噪方法效率更高。“小波收缩”被Donoho和Johnstone证明是在极小化极大风险中最优的去噪方法,但在这种方法中最重要的就是确定阈值。1995年,Stanford大学的学者和提出了通过对小波系数进行非线性阈值处理来降低信号中的噪声[15,16,17]。从这之后的小波去噪方法也就转移到从阈值函数的选择或最优小波基的选择出发来提高去噪的效果。影响比较大的方法有以下这么几种:和提出的基于最大后验概率的贝叶斯估计准则确定小波阈值的方法[18];等在处理断层图像时提出了三种基于小波相位的去噪方法:边缘跟踪法、局部相位方差阈值法以及尺度相位变动阈值法[19];学者Kozaitis结合小波变换和高阶统计量的特点提出了基于高阶统计量的小波阈值去噪方法[20];等利用原图像和小波变换域中图像的相关性用GCV(generalcross-validation)法对图像进行去噪[21];和Woolsey等人提出结合维纳滤波器和小波阈值的方法对信号进行去噪处理[22],VasilyStrela等人将一类新的特性良好的小波(约束对)应用于图像去噪的方法[23];同时,在19世纪60年代发展的隐马尔科夫模型(HiddenMarkov Model)[24],是通过对小波系数建立模型以得到不同的系数处理方法;后又有人提出了双变量模型方法[25,26],它是利用观察相邻尺度间父系数与子系数的统计联合分布来选择一种与之匹配的二维概率密度函数。这些方法均取得了较好的效果,对小波去噪的理论和应用奠定了一定的基础。另外,尽管小波去噪方法现在已经成为去噪和图像恢复的重要分支和主要研究方向,但目前在另类噪声分布(非高斯分布)下的去噪研究还不够。目前国际上开始将注意力投向这一领域,其中非高斯噪声的分布模型、高斯假设下的小波去噪方法在非高斯噪声下如何进行相应的拓展,是主要的研究方向。未来这一领域的成果将大大丰富小波去噪的内容。总之,由于小波具有低墒性、多分辨率、去相关性、选基灵活性等特点[27],小波理论在去噪领域受到了许多学者的重视,并获得了良好的效果。但如何采取一定的技术消除图像噪声的同时保留图像细节仍是图像预处理中的重要课题。目前,基于小波分析的图像去噪技术已成为图像去噪的一个重要方法。
chensilong812
导言 损坏的图像往往是在其噪声采集和传输。例如在图像采集,其性能的影像传感器是受多种因素,如环境条件和质量检测的内容本身。例如,在获取图像的CCD相机,轻水平和传感器温度是主要影响因素的数量所产生的噪声的形象。图像传输过程中还损坏,由于干扰的频道用于传输。图像降噪技术,必须消除这种添加剂随机噪声,同时保留尽可能多的重要信号的功能。的主要目标,这些类型的随机噪声去除抑制噪声,同时保持原始图像的细节。统计过滤器一样平均滤波器[ 1 ] [ 2 ] , Wiener滤波器[ 3 ]可用于消除这种噪音,但基于小波变换的去噪方法更好的结果证明不是这些过滤器。一般来说,图像去噪规定之间的妥协,减少噪音和保护重要的图像细节。为了实现良好的性能在这方面,去噪算法,以适应图像的不连续性。小波代表性,自然有利于建设这种空间自适应算法。它压缩在一个重要信息信号转换成相对较少,大量系数,代表图像细节在不同的决议尺度。在最近几年出现了相当数量的研究小波阈值和阈值选取的信号和图像去噪[ 4 ] [ 5 ] [ 6 ] [ 7 ] [ 8 ] [ 9 ] ,因为小波提供了一个适当的基础分离噪音信号从图像信号。许多小波阈值技术一样VisuShrink [ 10 ] , BayesShrink [ 11 ]已经证明,效益较好的图像去噪。在这里,我们描述一个有效的阈值去噪技术通过分析统计参数的小波系数。本文安排如下:简要回顾了离散小波变换( DWT域)和小波滤波器银行第二节。小波阈值技术是基于解释第三节。在第四部分提出了新的阈值技术的解释。的步骤在此范围内工作的解释第五节第六节的实验结果这个拟议的工作和其他去噪技术是当前和比较。最后总结发言中给出了第七节。
天天要开心哦
题目基于小波变换的图像去噪方法研究学生姓名陈菲菲学号 1113024020 所在学院物理与电信工程学院专业班级通信工程专业1 101 班指导教师陈莉完成地点物理与电信工程学院实验中心 201 5年5月 20日 I 毕业论文﹙设计﹚任务书院(系) 物理与电信工程学院专业班级通信 1 101 班学生姓名陈菲菲一、毕业论文﹙设计﹚题目基于小波变换的图像去噪方法研究二、毕业论文﹙设计﹚工作自 201 5年3月1日起至 201 5年6月20 日止三、毕业论文﹙设计﹚进行地点: 物理与电信工程学院实验室四、毕业论文﹙设计﹚的内容 1、图像处理中,输入的是质量低的图像,输出的是改善质量后的图像。常用的图像处理方法有图像增强、复原、编码、压缩等。一般图像的能量主要集中在低频区域中,只有图像的细节部的能量才处于高频区域中。因为在图像的数字化和传输中常有噪声出现,而这部分干扰信息主要集中在高频区域内,所以消去噪声的一般方法是衰减高频分量或称低通滤波,但与之同时好的噪方法应该是既能消去噪声对图像的影响又不使图像细节变模糊。为了改善图像质量,从图像提取有效信息,必须对图像进行去噪预处理。设计任务: (1 )整理文献,研究现有基于小波变换的图像去噪算法,尝试对现有算法做出改进; (2 )在 MATLAB 下仿真验证基于小波变换的图像去噪算法。 2 、要求以论文形式提交设计成果,应掌握撰写毕业论文的方法, 应突出“目标,原理,方法,结论”的要素,对所研究内容作出详细有条理的阐述。进度安排: 1-3 周:查找资料,文献。 4-7 周:研究现有图像去噪技术,对基于小波变换的图像去噪算法作详细研究整理。 8-11 周: 研究基于小波的图像去噪算法,在 MATLAB 下对算法效果真验证。 12-14 周:分析试验结果,对比各种算法的优点和缺点,尝试改进算法。 15-17 周:撰写毕业论文,完成毕业答辩。指导教师陈莉系(教研室) 系( 教研室) 主任签名批准日期 接受论文( 设计) 任务开始执行日期 学生签名 II 基于小波变换的图像去噪方法研究陈菲菲( 陕西理工学院物理与电信工程学院通信 1 101 班,陕西汉中 72300 0) 指导教师: 陈莉[摘要] 图像去噪是信号处理中的一个经典问题, 随着小波理论的不断完善,它以自身良好的时频特性在图像去噪领域受到越来越多的关注。基于小波变换的去噪方法有很多
永远的终结者
图像处理,是对图像进行分析、加工、和处理,使其满足视觉、心理以及其他要求的技术。图像处理是信号处理在图像域上的一个应用。目前大多数的图像是以数字形式存储,因而图像处理很多情况下指数字图像处理。此外,基于光学理论的处理方法依然占有重要的地位。图像处理是信号处理的子类,另外与计算机科学、人工智能等领域也有密切的关系。传统的一维信号处理的方法和概念很多仍然可以直接应用在图像处理上,比如降噪、量化等。然而,图像属于二维信号,和一维信号相比,它有自己特殊的一面,处理的方式和角度也有所不同。目录[隐藏] * 1 解决方案 * 2 常用的信号处理技术 o 从一维信号处理扩展来的技术和概念 o 专用于二维(或更高维)的技术和概念 * 3 典型问题 * 4 应用 * 5 相关相近领域 * 6 参见[编辑] 解决方案几十年前,图像处理大多数由光学设备在模拟模式下进行。由于这些光学方法本身所具有的并行特性,至今他们仍然在很多应用领域占有核心地位,例如 全息摄影。但是由于计算机速度的大幅度提高,这些技术正在迅速的被数字图像处理方法所替代。从通常意义上讲,数字图像处理技术更加普适、可靠和准确。比起模拟方法,它们也更容易实现。专用的硬件被用于数字图像处理,例如,基于流水线的计算机体系结构在这方面取得了巨大的商业成功。今天,硬件解决方案被广泛的用于视频处理系统,但商业化的图像处理任务基本上仍以软件形式实现,运行在通用个人电脑上。[编辑] 常用的信号处理技术大多数用于一维信号处理的概念都有其在二维图像信号领域的延伸,它们中的一部分在二维情形下变得十分复杂。同时图像处理也具有自身一些新的概念,例如,连通性、旋转不变性,等等。这些概念仅对二维或更高维的情况下才有非平凡的意义。图像处理中常用到快速傅立叶变换,因为它可以减小数据处理量和处理时间。[编辑] 从一维信号处理扩展来的技术和概念 * 分辨率(Image resolution|Resolution) * 动态范围(Dynamic range) * 带宽(Bandwidth) * 滤波器设计(Filter (signal processing)|Filtering) * 微分算子(Differential operators) * 边缘检测(Edge detection) * Domain modulation * 降噪(Noise reduction)[编辑] 专用于二维(或更高维)的技术和概念 * 连通性(Connectedness|Connectivity) * 旋转不变性(Rotational invariance)[编辑] 典型问题 * 几何变换(geometric transformations):包括放大、缩小、旋转等。 * 颜色处理(color):颜色空间的转化、亮度以及对比度的调节、颜色修正等。 * 图像合成(image composite):多个图像的加、减、组合、拼接。 * 降噪(image denoising):研究各种针对二维图像的去噪滤波器或者信号处理技术。 * 边缘检测(edge detection):进行边缘或者其他局部特征提取。 * 分割(image segmentation):依据不同标准,把二维图像分割成不同区域。 * 图像制作(image editing):和计算机图形学有一定交叉。 * 图像配准(image registration):比较或集成不同条件下获取的图像。 * 图像增强(image enhancement): * 图像数字水印(image watermarking):研究图像域的数据隐藏、加密、或认证。 * 图像压缩(image compression):研究图像压缩。[编辑] 应用 * 摄影及印刷 (Photography and printing) * 卫星图像处理 (Satellite image processing) * 医学图像处理 (Medical image processing) * 面孔识别, 特征识别 (Face detection, feature detection, face identification) * 显微图像处理 (Microscope image processing) * 汽车障碍识别 (Car barrier detection)[编辑] 相关相近领域 * 分类(Classification) * 特征提取(Feature extraction) * 模式识别(Pattern recognition) * 投影(Projection) * 多尺度信号分析(Multi-scale signal analysis) * 离散余弦变换(The Discrete Cosine Transform)
基于频域多尺度小波变换的CR图像超分辨率增强,吉林大学学报(信息科学版),2009(3) (通讯作者)李哲,黄廉卿,李鹤:”基于数学形态学的CR图像实时快速分割
当前国内、外的研究动态从对图像进行滤波的过程中所采用的滤波方法来分,可分为空间域滤波、变换域滤波;从滤波类型来分,又可以分为线性滤波和非线性滤波。2002年Do
你的论文准备往什么方向写,选题老师审核通过了没,有没有列个大纲让老师看一下写作方向?写论文之前,一定要写个大纲,这样老师,好确定了框架,避免以后论文修改过程中出
关于医学影像的论文范文 医学影像是指为了医疗或医学研究,对人体或人体某部分,以非侵入方式取得内部组织影像的技术与处理过程。下面,我为大家分享关于医学影像的论文,
最近,端到端场景文本识别已成为一个流行的研究主题,因为它具有全局优化的优点和在实际应用中的高可维护性。大多数方法试图开发各种感兴趣的区域(RoI)操作,以将检测