月光下的芙蓉
何为聚类分析聚类分析或聚类是对一组对象进行分组的任务,使得同一组(称为聚类)中的对象(在某种意义上)与其他组(聚类)中的对象更相似(在某种意义上)。它是探索性数据挖掘的主要任务,也是统计 数据分析的常用技术,用于许多领域,包括机器学习,模式识别,图像分析,信息检索,生物信息学,数据压缩和计算机图形学。聚类分析本身不是一个特定的算法,而是要解决的一般任务。它可以通过各种算法来实现,这些算法在理解群集的构成以及如何有效地找到它们方面存在显着差异。流行的群集概念包括群集成员之间距离较小的群体,数据空间的密集区域,间隔或特定的统计分布。因此,聚类可以表述为多目标优化问题。适当的聚类算法和参数设置(包括距离函数等参数)使用,密度阈值或预期聚类的数量)取决于个体数据集和结果的预期用途。这样的聚类分析不是自动任务,而是涉及试验和失败的知识发现或交互式多目标优化的迭代过程。通常需要修改数据预处理和模型参数,直到结果达到所需的属性。常见聚类方法常用的聚类算法分为基于划分、层次、密度、网格、统计学、模型等类型的算法,典型算法包括K均值(经典的聚类算法)、DBSCAN、两步聚类、BIRCH、谱聚类等。K-means聚类算法中k-means是最常使用的方法之一,但是k-means要注意数据异常:数据异常值。数据中的异常值能明显改变不同点之间的距离相识度,并且这种影响是非常显著的。因此基于距离相似度的判别模式下,异常值的处理必不可少。数据的异常量纲。不同的维度和变量之间,如果存在数值规模或量纲的差异,那么在做距离之前需要先将变量归一化或标准化。例如跳出率的数值分布区间是[0,1],订单金额可能是[0,10000 000],而订单数量则是[0,1000],如果没有归一化或标准化操作,那么相似度将主要受到订单金额的影响。DBSCAN有异常的数据可以使用DBSCAN聚类方法进行处理,DBSCAN的全称是Density-Based Spatial Clustering of Applications with Noise,中文含义是“基于密度的带有噪声的空间聚类”。跟K均值相比,它具有以下优点:原始数据分布规律没有明显要求,能适应任意数据集分布形状的空间聚类,因此数据集适用性更广,尤其是对非凸装、圆环形等异性簇分布的识别较好。无需指定聚类数量,对结果的先验要求不高由于DBSCAN可区分核心对象、边界点和噪点,因此对噪声的过滤效果好,能有效应对数据噪点。由于他对整个数据集进行操作且聚类时使用了一个全局性的表征密度的参数,因此也存在比较明显的弱点:对于高纬度问题,基于半径和密度的定义成问题。当簇的密度变化太大时,聚类结果较差。当数据量增大时,要求较大的内存支持,I/O消耗也很大。MiniBatchKMeansK均值在算法稳定性、效率和准确率(相对于真实标签的判别)上表现非常好,并且在应对大量数据时依然如此。它的算法时间复杂度上界为O(nkt),其中n是样本量、k是划分的聚类数、t是迭代次数。当聚类数和迭代次数不变时,K均值的算法消耗时间只跟样本量有关,因此会呈线性增长趋势。但是当面对海量数据时,k均值算法计算速度慢会产生延时,尤其算法被用于做实时性处理时这种弊端尤为明显。针对K均值的这一问题,很多延伸算法出现了,MiniBatchKMeans就是其中一个典型代表。MiniBatchKMeans使用了一个种名为Mini Batch(分批处理)的方法计算数据点之间的距离。Mini Batch的好处是计算过程中不必使用所有的数据样本,而是从不同类别的样本中抽取一部分样本(而非全部样本)作为代表参与聚类算法过程。由于计算样本量少,所以会相应减少运行时间;但另一方面,由于是抽样方法,抽样样本很难完全代表整体样本的全部特征,因此会带来准确度的小幅度下降,但是并不明显。谱聚类在大数据背景下,有很多高纬度数据场景,如电子商务交易数据、web文本数据日益丰富。高维数据聚类时耗时长、聚类结果准确性和稳定性都不尽如人意。因为,在高维数据,基于距离的相似度计算效率极低;特征值过多在所有维度上存在簇的可能性非常低;由于稀疏性和紧邻特性,基于距离的相似度几乎为0,导致高维空间很难出现数据簇。这时我们可以选着使用子空间聚类,或是降维处理。子空间聚类算法是在高维数据空间中对传统聚类算法的一种扩展,其思想是选取与给定簇密切相关的维,然后在对应的子空间进行聚类。比如谱聚类就是一种子空间聚类方法,由于选择相关维的方法以及评估子空间的方法需要自定义,因此这种方法对操作者的要求较高。使用聚类分析中间预处理图像压缩用较少的数据量来表示原有的像素矩阵的过程,这个过程称为图像编码。数据图像的显著特点是数据量庞大,需要占用相当大的储存空间,这给图像的存储、计算、传输等带来了不便。因此,现在大多数数字网络下的图像都会经过压缩后再做进一步应用,图像压缩的方法之一便是聚类算法。在使用聚类算法做图像压缩时,我们会定义K个颜色数(例如128种颜色),颜色数就是聚类类别的数量;K均值聚类算法会把类似的颜色分别放在K个簇中,然后每个簇使用一种颜色来代替原始颜色,那么结果就是有多少个簇,就生成了多少种颜色构成的图像,由此实现图像压缩。图像分割图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣的目标技术和过程,这是图像处理和分析的关键步骤。图像分割后提取出的目标可以用于图像语义识别,图像搜索等领域。例如从图像中分割出前景人脸信息,然后做人脸识别。聚类算法是图像分割方法的一种,其实施的关键是通过不同区域间明显不同的图像色彩特征做聚类,聚类数量就是要分割的区域的数量。图像理解在图像理解中,有一种称为基于区域的提取方法。基于区域的提取方法是在图像分割和对象识别的前提下进行的,利用对象模板、场景分类器等,通过识别对象及对象之间的拓扑关系挖掘语义,生成对应的场景语义信息。例如,先以颜色、形状等特征对分割后的图像区域进行聚类,形成少量BLOB;然后通过CMRM模型计算出BLOB与某些关键词共同出现的概率。异常检测异常检测有多种实施方法,其中常用的方法是基于距离的异常检测方法。即使数据集不满足任何特定分布模型,它仍能有效地发现离群点,特别是当空间维度比较高时,算法的效率比基于密度的方法要高得多。算法具体实现时,首先算出数据样本间的距离(如曼哈顿距离、欧氏距离等),然后对数据做预处理后就可以根据距离的定义来检测异常值。例如,可以使用K-means的聚类可以将离中心店最远的类或者不属于任何一个类的数据点提取出来,然后将其定义为异常值。聚类算法的选择:数据为高维数据,那么选取子空间聚类(如谱聚类)数据量在100万条以内,那么使用k均值较好;如果数据量超过100万条,那么可以考虑使用Mini Batch KMeans如果数据中存在噪点,那么可以使用基于密度的DBSCAN如果最求更高的分类准确度,那么选择谱聚类将比K均值准确度更好
caroline2900
1、刍议网络信息技术教育的一些思索2、浅谈网络犯罪3、网络招聘现状模式分析4、应用无线网络技术组建局域网的常见问题分析5、中国网络经济和电子商务问题探析6、net在事务处理的应用探讨7、电子商务下物流模式的探讨8、电子商务信息安全技术研究9、商品类型对网上购物偏好性别差异的影响10、一种电子商务信息安全保障机制 毕业论文答辩的一般程序: 1.学员必须在论文答辩会举行之前半个月,将经过指导老师审定并签署过意见的毕业论文一式三份连同提纲、草稿等交给答辩委员会,答辩委员会的主答辩老师在仔细研读毕业论文的基础上,拟出要提问的问题,然后举行答辩会。2.在答辩会上,先让学员用15分钟左右的时间概述论文的标题以及选择该论题的原因,较详细地介绍论文的主要论点、论据和写作体会。3.主答辩老师提问。主答辩老师一般提三个问题。老师提问完后,有的学校规定,可以让学生独立准备15—20分钟后,再来当场回答,可以是对话式的,也可以是主答辩老师一次性提出三个问题,学员在听清楚记下来后,按顺序逐一作出回答。根据学员回答的具体情况,主答辩老师和其他答辩老师随时可以有适当的插问。4.学员逐一回答完所有问题后退场,答辩委员会集体根据论文质量和答辩情况,商定通过还是不通过,并拟定成绩和评语。5.召回学员,由主答辩老师当面向学员就论文和答辩过程中的情况加以小结,肯定其优点和长处,指出其错误或不足之处,并加以必要的补充和指点,同时当面向学员宣布通过或不通过。至于论文的成绩,一般不当场宣布。相关书籍
花轮小丸子
研究生论文的“盲审”环节,不是“闭上眼睛审核”,而是“匿名送审”。也就是说,评阅导师不知道论文作者是谁。负责任的老师,肯定会仔细审阅所有毕业生的论文,但也不排除个别老师会着重或忽略审阅部分硕士“毕业生”的论文 。
首先,是“论文开题”,包括开题报告、PPT演讲,然后导师签字确认,接下来是开题答辩和网上开题上传流程。
其次,是“中期答辩”,也要做答辩PPT,演讲,还要有会议记录,然后导师签字,上传文件。
最后, 是“毕业答辩”,包括申请答辩、论文上传,导师确认、评价,然后是网上查重、外审和抽检盲审,接着是答辩PPT、拍照和上传。
所以说,“盲审”是硕士毕业论文在外审之后的“抽检审核”环节;相对而言的是“外审”,指的是高校将论文送到外单位,由审论文专家负责审核。
所有的博士论文和部分硕士论文(一般在30%-50%左右),都需要在毕业论文答辩前送到外单位做“盲审”,而当地省市教委会,也会随机抽取一些论文做“盲审”,这些做法,都是为了抽查和确保高校研究生培养的质量。
我们经常把“单盲审”说成“盲审”,就是评阅老师不知道是哪个学生写的论文。但实际上有些省市和高校,是有“双盲审”的,也就是说审稿人不知道作者,作者不知道审稿人,这样双向屏蔽的审核方式,明显要更加客观公正。
总之,博士和硕士研究生的毕业论文,都必须通过“外审+盲审”的双重审核,才能获得“论文答辩”资格,然后由答辩委员会决定,该学生是否能够通过答辩并获得学位。
对于学生而言,“盲审”实际上相当于第二次毕业机会,因为不管是“外审”还是“盲审”,只要在一个审核流程中有2个专家通过,就能合格并进入答辩流程。
实际上,不管是“外审”还是“盲审”,“单盲审”还是“双盲审”,想要顺利拿到论文答辩资格,毕业论文本身的质量和水平,才是最为关键的因素。
主要是论文的格式和规范。比如不要抄袭搬运,杜绝错别字、病句和误用标点符号。排版精美、分段清晰,页码准确规范,都是毕业论文在盲审流程中的“加分项”。
不要小看这些,经常有评阅老师反馈:每年审阅硕士毕业论文,“形式质量”能够完美无瑕疵地通过审核的并不多。大多数都是错写、漏写,忘记标页码,段首不留空,行距不一致等等。
所以说,如果同学们在提交论文之前,精益求精地做好论文排版质量的核查和修正,就能在很大程度上提高毕业论文的过关率。
当然,哪怕你的论文排版精美得就像是期刊论文一样,如果内容空洞无物,缺乏数据考证和建设性观点,那么想要通过“盲审”,也是不太可能的。不管是论文的选题、内容和论证都需要学生脚踏实地考查、筛选和归纳,以艰苦卓绝的科研精神,尽可能地撰写出专业领域的优质论文。
最好的办法就是提前半年甚至是一年去准备论文,也可以选择将论文的精华部分修改成投稿论文,尝试去投给相关领域的行业期刊,然后根据期刊编辑老师的专业评审意见,反过来修改自己的毕业论文。
毫无疑问,专业的意见和建议,更能帮助硕士毕业生提高论文质量,顺利通过论文审阅流程。
所以对于硕士毕业生来说,你不要管“研究生论文送去盲审,盲审老师会不会看全部论文”,如果你还有时间,那就提前准备,如果你马上毕业,论文已经交上去了,那么多问也无益。
毕竟,想要拿到硕士学位,勤学苦读的功夫要用在平时,到了关键时刻,才不会悔之晚矣。
多啦X梦521
基于Cocos2D的微信小游戏的设计与实现 指尖律动微信小游戏的设计与实现 基于Spring MVC的在线书城系统设计与实现 基于卷积神经网络的图像修复系统设计与实现 二手交易网站的设计与实现 停车计费APP系统设计与实现 车型分类系统设计与实现 基于地图API的高铁运行地图的设计与实现 基于条形码的私家书房APP的设计与实现 基于L-Systems的3D分形模拟系统的设计与实现 基于android的私家衣橱APP的设计与实现 电子图书推荐系统 智能插座数据管理与分析 基于B/S结构的智能插座服务器开发 基于物联网技术的智能垃圾桶开发 基于光传感器的垃圾智能分类 基于对抗学习的人脸照片-画像转换方法 基于深度学习的字体风格转换方法 基于深度学习的肺癌检测方法研究 基于JSP的浙江省高校学习社区的设计与实现 基于SSH的汽车图像相册管理系统的设计与实现 基于大数据技术的职业岗位画像设计与实现 基于协同过滤的用户移动轨迹信息预测研究 基于H5的智力水滴益智游戏设计与实现 可视化展示数据处理中心的设计和实现 学生编程答疑平台的设计与实现 基于Android的失物即寻平台的设计和实现 广度优先文本挖掘爬虫系统开发 大学生竞赛信息发布及组队系统的设计和实现 基于web的社团活动信息集中发布平台的设计与实现 基于hyperledger的农产品溯源系统设计与实现 智适应算法星球系统的设计与实现 基于Android系统的数字水印相机设计与实现 基于Unity的趣味休闲手游开发 二维游戏引擎设计与实现 基于机器学习的验证码自动识别软件的设计与实现 车辆4S店管理系统的设计与实现 JadePool幼儿园管理系统的设计与实现 气象卫星云图接受软件系统的设计与实现
写设计系统方面的就可以了。之前也是苦于写不出,还是学姐给的文方网,写的《人脸识别系统的研究与实现——图像获取、定位、特征提取和特征识别》,很专业的说人寿保险老业
现如今,随着社会经济发展,机器人开始被广泛应用于各行各业中,替工人进行一些复杂、繁重的体力劳动,能减轻人们的工作负担。下面是由我整理的工业机器人技术论文 范文
何为聚类分析聚类分析或聚类是对一组对象进行分组的任务,使得同一组(称为聚类)中的对象(在某种意义上)与其他组(聚类)中的对象更相似(在某种意义上)。它是探索性数
毕业论文答辩5大技巧 毕业论文答辩是一种有组织、有准备、有计划、有鉴定的比较正规的审查论文的重要形式。下面我为大家介绍毕业论文答辩5大技巧,赶紧GET起来! (
如何免费下载ACM数字图书馆文献(2021/2/17亲测好用)1、首先在acm图书馆(ACM电子图书馆)找到想要的文献(我使用作者+年限限定的方式找到了文章)2