yuyanyanbobo
题目基于小波变换的图像去噪方法研究学生姓名陈菲菲学号 1113024020 所在学院物理与电信工程学院专业班级通信工程专业1 101 班指导教师陈莉完成地点物理与电信工程学院实验中心 201 5年5月 20日 I 毕业论文﹙设计﹚任务书院(系) 物理与电信工程学院专业班级通信 1 101 班学生姓名陈菲菲一、毕业论文﹙设计﹚题目基于小波变换的图像去噪方法研究二、毕业论文﹙设计﹚工作自 201 5年3月1日起至 201 5年6月20 日止三、毕业论文﹙设计﹚进行地点: 物理与电信工程学院实验室四、毕业论文﹙设计﹚的内容 1、图像处理中,输入的是质量低的图像,输出的是改善质量后的图像。常用的图像处理方法有图像增强、复原、编码、压缩等。一般图像的能量主要集中在低频区域中,只有图像的细节部的能量才处于高频区域中。因为在图像的数字化和传输中常有噪声出现,而这部分干扰信息主要集中在高频区域内,所以消去噪声的一般方法是衰减高频分量或称低通滤波,但与之同时好的噪方法应该是既能消去噪声对图像的影响又不使图像细节变模糊。为了改善图像质量,从图像提取有效信息,必须对图像进行去噪预处理。设计任务: (1 )整理文献,研究现有基于小波变换的图像去噪算法,尝试对现有算法做出改进; (2 )在 MATLAB 下仿真验证基于小波变换的图像去噪算法。 2 、要求以论文形式提交设计成果,应掌握撰写毕业论文的方法, 应突出“目标,原理,方法,结论”的要素,对所研究内容作出详细有条理的阐述。进度安排: 1-3 周:查找资料,文献。 4-7 周:研究现有图像去噪技术,对基于小波变换的图像去噪算法作详细研究整理。 8-11 周: 研究基于小波的图像去噪算法,在 MATLAB 下对算法效果真验证。 12-14 周:分析试验结果,对比各种算法的优点和缺点,尝试改进算法。 15-17 周:撰写毕业论文,完成毕业答辩。指导教师陈莉系(教研室) 系( 教研室) 主任签名批准日期 接受论文( 设计) 任务开始执行日期 学生签名 II 基于小波变换的图像去噪方法研究陈菲菲( 陕西理工学院物理与电信工程学院通信 1 101 班,陕西汉中 72300 0) 指导教师: 陈莉[摘要] 图像去噪是信号处理中的一个经典问题, 随着小波理论的不断完善,它以自身良好的时频特性在图像去噪领域受到越来越多的关注。基于小波变换的去噪方法有很多
Miss乔大小姐
中北大学2012届毕业论文 第1页 共47页 1 引言 1 课题的提出以及研究意义 使计算器具有人类的感知的能力,能够识图认字,能听话和说话,能与人们自然的进行信息交互,是人们长期以来的梦想。经过二十余年的奋斗,这些梦想已逐渐部分成真。赋予计算机识图认字的智能,能够解脱人们将汉字输入计算机的繁重劳动,克服计算机汉语信息的汉字输入困难的问题,对我国信息化发展更具有特殊重要的价值。随着计算机技术、通信技术、多媒体技术以及Internet的迅速发展,人们越来越深刻地感受到了计算机处理事情的便捷。提取并识别图像中的文字,在图像数据库的组织与管理、视频索引、公交、交通、旅游、摄影等方面将有着极其广泛的应用。随着电力系统的规模增大,电力设备也越来越多,且设备分布具有跨地域性的特点,因此怎样管理维护这些设备,并可随时查看这些设备的信息成为一个急需解决的问题。 图像中往往包含着丰富的文字信息,若能将图像中的文字进行自动检测、分割、提取和识别,则对图像高层语义内容的自动理解、索引和检索非常有价值。因此,90年代,随着多媒体技术的发展以及对基于内容的多媒体检索的需求,图像中的文字获取又逐渐成为研究热点之一。电力设备标牌图像中的文字获取对图像识别、检索有重要意义。从电力设备标牌图像中提取文字需要首先定位包含文字的图像区域,由于电力设备标牌中的文字在字体、大小、对齐方式和排列上变化多端,文字背景复杂,而许多应用场合还要求算法具有一定处理速度,这些都使得从其图像中有效地提取文字变得困难,对其深入研究很有意义。电力设备标牌图像中有丰富的文字信息,对图像中的文字信息的提取将是图像处理方面研究的一个重要方向。在电力系统中,电力设备种类繁多,通过对设备图像的采集,识别出电力设备标牌的文字信息,建立设备信息图文库,对电力设备的年检、统计等工作更加便捷、高效,对提高电力系统的设备管理水平非常重要。在电力管理上的技术需求越来越引起人们的关注和期待,而在此方向的技术研究目前还是一个空白点,因此,研究设备图片中的字符识别技术具有广泛的实际应用价值和重要的学术意义。 2 相关技术研究现状 中北大学2012届毕业论文 第2页 共47页 目前电力设备标牌识别的研究还是一个空白点。其相关技术包括车牌识别技术和对图像中的文字识别技术[1]。电气标牌字符的识别研究还很滞后,目前仍没有相对成熟的系统。随着电力系统的规模增大,电力设备也越来越多,怎样管理维护这些设备,是我们现在需要努力研究并有待应用的一门技术。 当前,图像作为一种重要的可视化信息媒体,已被应用到几乎所有的科学技术领域和日常生活的各个方面。随着图像信息的快速增长,从海量的图像资源中快速高效地提取并识别信息已成为人们迫切的需求。因此,20世纪90年代,基于内容的图像检索(CBIR)[2]技术应运而生,从可视化角度开辟了一条更为直观 、准确的途径,并很快成为智能信息处理领域的研究热点。 如今牌照定位是从一张图片中找到标牌的位置,将包括牌照的子图像从这张图片中切割出来。主要有边缘特征法[3]、神经网络法[4,5]、基于灰度的检测方法、基于数学形态学法、基于颜色的分割方法、基于区域特征的方法、小波变换的方法等。 文字识别技术已经广泛应用到了各个领域中,它作为计算机智能接口的重要组成部分,在信息处理领域中可以大大提高计算机的使用效率。字符识别的对象是汉字、字母和数字。我国牌照的独有的特点是包括汉字的识别。汉字因为其结构复杂,使得识别过程有别于数字和字母。目前主要的字符识别方法有:模板匹配法、统计特征字符识别法、结构特征字符识别法、人工神经网络法。模板匹配对噪声比较敏感,并对字符的字体变化具有不适应的特点。基于统计特征的字符识别法对于形近字符区分能力弱,而且需要寻找特征,特征有时随图像变化而失效。结构特征的描述和比较要占用大量的存储和计算资源,因此算法在实现上相对复杂、识别速度慢。神经网络法也存在找寻特征和计算量大的问题。光学字符识别(OCR)技术是计算机自动、高速地辨别纸上的文字,并将其转化为可编辑的文本的一项实用技术。它是新一代计算器智能接口的一个重要组成部分,也是模式识别领域的一个重要分支。因此,在电力标牌的字符识别中,OCR技术也得到了广泛的应用,是其进行识别不可或缺的技术力量。Lienhart等[6,7]先后开发出两个视频中的文字检测、分割和识别系统。这两个系统都是利用文字的单色性相对于背景的高对比度和视频字幕的简单纹理来进行图像分割。 近几年,国内学者也开始关注并积极投身到电力设备标牌的字符检测领域来,但中北大学2012届毕业论文 第3页 共47页 是都仅限于在进行基于内容的多媒体检索的研究时,附带地介绍了图像和视频中的文字获取,并没有进行系统深入的研究,也没有开发出相应可行的系统。如何识别图像中的文字仍然是一个有待研究解决的问题。 3 本课题主要内容 电力设备标牌字符识别涉及到的技术和车牌识别技术有些相似处,车牌识别技术已经较为成熟,但是,电力设备标牌识别与之有很多不同之处。主要包括: (1)图像的预处理技术。标牌中有很多钢印信息,通过二值化[8,9]提取标牌特征时,需要完整的提取其特征量。而车牌上的信息在提取时不存在上述问题。 (2)电力设备标牌中的信息识别技术。标牌中的字符很多,尤其是所涉及的汉字比较丰富,而车牌中字符构成比较简单。 本文对电力系统中设备标牌中的字符识别技术进行了研究,对设备标牌中的字符识别系统的每一个模块进行了研究及实现。电力设备图片在识别前首先需要对图像进行预处理,以更好的提取标牌中的信息。其次,分割图像。最后进行标牌上的字符识别。因此,本课题主要研究内容为: (一)电力设备标牌的图像预处理方法的研究。采集到的设备图片不可避免的会受到噪声的污染,需要对设备图片进行处理以及修正,突出图片中的标牌信息,增强图像,以便更好的进行字符识别。 (二)分析电力设备标牌特点,结合设备标牌特点研究适合标牌图像的二值化方法。 (三)研究边缘检测算子并对图像进行边缘检测处理,分析实验结果,并进行图像的分割。 (四)应用光学字符识别(OCR)[12,13,14,15]技术和字符识别技术进行电力设备标牌的识别[16,17,18,19]。 在拟采用的研究手段上分别从设备图像预处理、标牌的二值化算法以及标牌图像的分割和字符的识别四个方面进行阐述: 1)进行图像的滤波处理、经灰度直方图灰度修正以及灰度图像对比处理把我们感兴趣的部分突出出来。 2)为了进行有效的识别,采用阈值法进行标牌图像的二值化。通过对其标牌二值化,提取标牌图像中的钢印信息。 中北大学2012届毕业论文 第4页 共47页 3)进行标牌图像的边缘检测和分割。 4)采用基于光学字符识别(OCR)的技术以及MATLAB软件算法完成对标牌字符的识别。 中北大学2012届毕业论文 第5页 共47页 2 电力设备标牌图像预处理 电力设备标牌图像由于背景的灰度值介于标头字符的灰度值和钢印灰度值之间,所以用单一的一个阈值无法将标头字符和钢印同时提取出来。为了进行有效的识别,首先需要对数字图像进行处理。 二维物理图像被栅格划分成小的区域,这些小的区域称为数据元素(Picture Element),简称像素。对每个像素进行采样和量化,得到相应的整数值。这个值代表像素的明暗程度和颜色深浅等信息。 每个引入噪声。图像可以分为二值图像、灰度图像、彩色图像。灰度图像只含亮度信息,不含彩色信息。灰度值用8位(Bit)表示,从0到255,一共256级,从黑(0)到白(255)。二值图像就只有代表黑白两色的两个灰度值,归一化后灰度值是黑(0)到白(1)。彩色图像每个像素值都有三个分量,分别表示红色(R),绿色(G)和蓝色(B)。每个分量又按各分量的灰度分为0到255共256级。根据RGB的不同组合就可以表示256 ×256×256种颜色,也就是常说的24位真彩色。 图像的读取 clear; close all; I=imread(''); imshow(I);(结果见图2(a)) 去噪 在图像形成、传输或变换的过程中,由于受到其它客观因素诸如系统噪声、曝光不足或过量、相对运动等影响,获取图像往往会与原始图像之间产生某种差异(称为降质或退化)。退化后的图像通常模糊不清或者经过机器提取的信息量减少甚至错误,因此必须对其采取一些手段进行改善。图像增强技术正是在此意义上提出的,目的就是为了改善图像的质量。图像增强根据图像的模糊情况采用各种特殊的技术突出图像中的某些信息,削弱或消除无关信息,达到强调图像的整体或局部特征的目的。图像增强尚没有统一的理论方法。 利用巴特沃斯(Butterworth)低通滤波器对受噪声干扰的图像进行平滑处理:
excellentpri
汽车牌照定位与分割技术的研究论文编号:TX069 字数:35716,页数:73摘 要汽车牌照自动识别技术是计算机视觉和模式识别技术在现代智能交通系统中的一项重要研究课题,是实现交通管理智能化的重要环节。汽车牌照自动识别系统是以数字图像处理、模式识别、计算机视觉等技术为基础的智能识别系统,它利用每一辆汽车都有唯一的车牌号码,通过摄像机所拍摄的车辆图像进行车牌号码的识别。在不影响汽车运行状态的情况下,计算机自动完成车牌的识别,可降低交通管理工作的复杂度。汽车牌照自动识别技术在车辆过路、过桥全自动不停车收费,交通流量控制指标的测量,车辆自动识别等方面有重要作用,因此ALPR技术的研究有重要的现实应用意义。本文重点介绍了汽车牌照自动识别系统中的关键技术,包括了图象预处理、汽车牌照定位与识别等内容。图象预处理方面主要介绍了图象灰度化和图象增强技术。在此基础上,还阐述了图像二值化和图像倾斜校正等方面的内容。对于汽车牌照定位与识别技术,重点是介绍了图像分割方法,简要提到了字符的识别技术。对于汽车牌照定位与分割系统的设计与实现,本文分别对该系统的两大模块进行了算法分析,并详细阐述了各模块实现的原理,最后给出了实验结果。关键词: 汽车牌照,图像预处理,牌照定位,图像分割,区域标识 ABSTRACTAutomatic license plate recognition (ALPR) is one of the most important aspects of applying computer techniques towards intelligent transportation systems. ALPR System uses computer vision and pattern recognition technology to management modern intelligent transportation. ALPR System is a smart identification system which based on digital image processing, pattern recognition and computer vision technology. ALPR System can identification license plate number because each vehicle have only one vehicle license plate number. Without affecting the operation of the vehicle, the computer can identify the license plate number automatically, which can reduce the complexity of the traffic management. Vehicle license automatic identification technology has important effect in vehicles crossing the bridge, measure the traffic indicators and automatic vehicle identification. Vehicle license automatic identification technology has played an important role in many different aspects. This paper focuses on the key technologies of the vehicle license plate recognition system, which include image preprocessing, vehicle license orientation and identification. In the part of image preprocessing introduces gray-scale image and image enhancement technology. On the other side, this paper also expounds on the value of the two images and proofread the gradient image. For vehicle licenses plate identification technology, the point is on the image segmentation method. This part also introduces the character recognition technique. In this paper, the design of the orientation and segmentation vehicle license plate system has two major modules. The most important is the algorithm analysis and the principle of the two modules. The end of paper is the experimental WORDS vehicle licenses, image preprocessing, license positioning, image segmentation, regional identification 目录摘 要 IABSTRACT II第一章 绪论 研究背景及意义 国内外发展现状 车牌自动识别系统概述 论文组织结构 6第二章 车辆图像的预处理 图像的灰度化 图像增强 对比度增强 直方图均衡化 图像的滤波 图像的二值化 图像二值化的意义 二值化方法介绍 图像的倾斜校正 17第三章 车辆图像的分割 图像的分割 灰度门限法 灰度门限的确定 车牌分割的简介 基于区域的图像分割 基于边缘的图像分割 字符的分割与识别 字符的分割 字符的识别 25第四章 车辆定位与分割系统的设计与实现 图像预处理模块 图像灰度化算法实现 图像增强算法实现 牌照区域定位与分割模块 图像边缘检 31 阈值选取与图像二值化 定位车牌 设计介绍 系统模块分析 开发环境简介 界面功能介绍 37第五章 总结 工作总结 设计中遇到的困难 心得 工作展望 42致 谢 44参考文献 45附 录 程序 47--73以上回答来自:
里面很多,要合适就给分
医学影像诊断学是医学影像学中的一门重要学科,而医学影像学是临床医学的一个重要分支。下面是我为大家整理的医学影像技术专业 毕业 论文,供大家参考。 《 高职影
图像处理的核心是图形算法。人工智能和模式识别这些关注于应用。只有掌握算法,能够灵活应用,积累项目经验,会有用武之地。
数字图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。这里学术堂为大
数字图像处理OK,帮你处理。