肉祖宗想切肉
卧式钢筋切断机的设计钢筋切断技术的应用现状和发展前景摘要:钢筋切断技术作为一个应用很广的技术,使普遍都很重视的。本文对钢筋切断机的工作原理其技术特点进行了概述,同时介绍了钢筋切断技术在实际中的应用和研究情况,其发展前景广阔。 关键词:钢筋;切断机;现状;前景随着我国经济建设的迅猛发展,建筑市场呈现出前所未有的喜人景象。作为建筑工程中重要材料的钢筋需求量猛增,有力地拉动了钢筋调直切断机的市场需求[1]。现代建筑工程中广泛采用钢筋砼结构、预应力钢筋砼结构, 钢筋作为一种特殊的建筑材料起着极其重要作用。目前全国每年用于砼结构的钢筋, 包括非预应力钢筋和预应力钢筋总量超过5 000万 t , 接近我国钢产量的一半, 1999 年我国建筑用螺纹钢筋产量达 2 495 万 t , 已占钢产量的 1/ 5 , 因此钢筋加工成为一个重要的生产环节。在钢筋砼结构工程中由于钢筋加工生产落后于商品砼和建筑模板, 现已成为制约施工机械化程度提高的瓶颈[2]。1钢筋调直切断机的种类和特点经过几十年的发展,我国的建筑用钢筋调直切断机市场现已基本形成。目前,市场上生产和销售的钢筋调直切断机种类很多,根据设备组成的各工作机构特点可以按6种方法进行分类,见表1。[3]表1钢筋调直切断机分类形 式 特 点调直方式 调直模式 钢筋调直效果好,比较容易控制。但调直速度低,被加工钢筋表面有划伤,工作噪声较大;适合各种光圆钢筋。 曲线辊式 调直速度较快,钢筋调直效果好,且易控制。但被加工钢筋表面划伤较重,工作噪声较大;适合各种光圆钢筋和对钢筋表面划伤要求不高的场合。 对辊式 调直速度快,被加工钢筋表面有划伤轻微,工作噪声小;钢筋调直效果一般,控制要求较高。适合各种钢筋,特别适合冷、热轧带肋钢筋。 调直模式+对辊复合式 钢筋调直效果比较好,比较容易控制。调直速度高于曲线辊式,低于对辊式。被加工钢筋表面有划伤。工作噪声比较小;适合各种钢筋。切断方式 锤击切断方式 适用中、小直径钢筋,工作噪声连续、较大。易出现连切现象,定尺误差最小。适用于中、低速度的钢筋调直机和对定尺精度要求较高的场合。 飞剪切断方式 适用大、中直径钢筋,工作噪声较大,不连续。定尺精度不高,但没有连切现象。适用于高速钢筋调直机。 液压切断方式 适用大、中直径钢筋,工作噪声小。没有连切现象。适用于速度不太高的钢筋调直机。落料方式 支撑柱式 结构简单,工作噪声小。适用于小直径光圆钢筋,且钢筋调直度较高的场合。 翻板式 结构较复杂,工作噪声较大,适用大、中直径钢筋。 撤板式 结构较复杂,工作噪声较大,适用大、中直径钢筋。 敞口式 结构简单,工作噪声较小,适用于大、中直径钢筋,且钢筋调直较好的场合。定尺方式 机械式 定尺误差小,易控制。噪声较大,寿命短。适用于对定尺误差要求较高,速度要求不高的场合。 机电式 定尺误差稍大,噪声较小,寿命长。适用于对定尺误差要求较低, 调直速度要求较高的场合。控制方式 普通电气控制 线路复杂,对维护人员要求较高。控制精度低,易发生故障,初期调试麻烦。 PLC控制 线路简单,对维护人员要求不高。控制精度较高,运行比较稳定,初期调试简单。上料方式 开卷式 设备复杂,放线速度快、钢筋不扭转,特别适合于高速工作状态。 非开卷式 设备单一,适于调直速度不太高的工作场合。放线时钢筋自然扭转。2. 常用钢筋切断机的剪切形式分类按调直切断机的剪切方式分类:大体可分为三种,旋转式剪切,上下移动式剪切,下移式剪切。 旋转式剪切[4]该剪切系统主要由承料架,定长开关,电磁铁,牙嵌离合器,主动齿轮,切断齿轮,制动器等组成。当钢筋通过两切断齿轮中间的缝隙进入成料加并触动定长开关后,通过电磁铁带动牙嵌离合器使非轮轴与主动齿轮轴联接,主动齿轮旋转一周带动切断齿轮旋转三分之一周,同时切断钢筋。切断齿轮上均布三对刀齿并轮流工作,以延长刀具寿命。上下移动式剪切[4]该系统主要由承料架、定长开关,电磁铁,转键离合器,曲柄连杆,平移式下切刀台,摆动式上切刀片,制动器等组成。当钢筋通过平移式下切刀台进入承料架并触动定长开关后,电磁铁带动转键离合器使飞轮轴与曲柄连杆联接,曲柄上的连杆推动平移式下切刀台在四连杆机构的作用下前进。摆动式上切刀片的一端固定在机架上,另一端刃口紧贴在平移式下切刀台的刃口处,当平移式下切刀台沿圆弧轨迹运动时,两刀片刃口相对运动,切断钢筋,曲柄使刀台复位,等待下一次剪切。下切式剪切[4]设计说明书目 录 1 引言 概述 21.2 技术要求 31.3 钢筋切断机的结构和工作原理 32 电机选择 切断钢筋需用力计算 功率计算 43. 传动结构设计 基本传动数据计算 带传动设计 齿轮传动设计 轴的校核 键的校核 轴承的校核 214 钢筋切断机的摩擦、磨损和润滑 235 结论与讨论 236致谢 23参 考 文 献 25外文翻译Failure Analysis,Dimensional Determination And Analysis,Applications Of CamsErnestINTRODUCTIONIt is absolutely essential that a design engineer know how and why parts fail so that reliable machines that require minimum maintenance can be designed.Sometimes a failure can be serious,such as when a tire blows out on an automobile traveling at high speed.On the other hand,a failure may be no more than a nuisance.An example is the loosening of the radiator hose in an automobile cooling system.The consequence of this latter failure is usually the loss of some radiator coolant,a condition that is readily detected and corrected.The type of load a part absorbs is just as significant as the magnitude.Generally speaking,dynamic loads with direction reversals cause greater difficulty than static loads,and therefore,fatigue strength must be considered.Another concern is whether the material is ductile or brittle.For example,brittle materials are considered to be unacceptable where fatigue is involved.Many people mistakingly interpret the word failure to mean the actual breakage of a part.However,a design engineer must consider a broader understanding of what appreciable deformation occurs.A ductile material,however will deform a large amount prior to rupture.Excessive deformation,without fracture,may cause a machine to fail because the deformed part interferes with a moving second part.Therefore,a part fails(even if it has not physically broken)whenever it no longer fulfills its required function.Sometimes failure may be due to abnormal friction or vibration between two mating parts.Failure also may be due to a phenomenon called creep,which is the plastic flow of a material under load at elevated temperatures.In addition,the actual shape of a part may be responsible for failure.For example,stress concentrations due to sudden changes in contour must be taken into account.Evaluation of stress considerations is especially important when there are dynamic loads with direction reversals and the material is not very ductile.凸轮的分析应用和疲劳失效恩斯特凸轮是被应用的最广泛的机械结构之一。凸轮是一种仅仅有两个组件构成的设备。主动件本身就是凸轮,而输出件被称为从动件。通过使用凸轮,一个简单的输入动作可以被修改成几乎可以想像得到的任何输出运动。常见的一些关于凸轮应用的例子有:——凸轮轴和汽车发动机工程的装配——专用机床——自动电唱机——印刷机——自动的洗衣机——自动的洗碗机高速凸轮(凸轮超过1000 rpm的速度)的轮廓必须从数学意义上来定义。无论如何,大多数凸轮以低速(少于500 rpm)运行而中速的凸轮可以通过一个大比例的图形表示出来。一般说来,凸轮的速度和输出负载越大,凸轮的轮廓在被床上被加工时就一定要更加精密。材料的设计属性当他们与抗拉的试验有关时,材料的下列设计特性被定义如下。静强度:一个零件的强度是指零件在不会失去它被要求的能力的前提下能够承受的最大应力。因此静强度可以被认为是大约等于比例极限,从理论上来说,我们可以认为在这种情况下,材料没有发生塑性变形和物理破坏。刚度: 装配图截图
MichaelShaoer
凸轮机构的组成、分类与应用 凸轮机构的组成 凸轮机构是机械中常用的一种机构,它是由凸轮、从动件和机架三部分组成的高副机构。 凸轮机构的分类 按凸轮形状分类:盘形凸轮,凸轮的最基本形式,是绕一个固定轴线转动并变化矢径的盘形构件;移动凸轮,当盘形凸轮的回转中心趋于无穷大时,凸轮相对机架做往复运动,这种凸轮称为移动凸轮;圆柱凸轮,将移动凸轮卷成圆柱体而演化形成的。 按从动件的类型来分类:尖底从动件,从动件的尖底能与任意复杂的凸轮轮廓保持接触,从而实现从动件任意运动,但是易于磨损,仅适用于传力不大的低速凸轮机构;滚子从动件,耐磨损,可以承受加大的载荷,故应用最普遍;平底从动件,从动件的底面与凸轮之间易于实现楔形油膜,故常用于高速凸轮机构。 按从动件运动方式分类:移动从动件,从动件做往复运动;摆动从动件,从动件做往复摆动。 按从动件与凸轮保持接触的方式分类:力锁合凸轮机构,凸轮和从动件的接触是通过弹簧力、重力或其他外力的作用来实现的;几何锁合,依靠凸轮和从动件的特殊几何形状而始终维持接触。 凸轮机构的应用 凸轮机构的优点是只需要设计适当的凸轮廓线就可以实现从动件的任意预期的运动规律,并且结构简单、紧凑,设计方便,因此在自动机床、轻工机械、纺织机械、印刷机械、食品机械、包装机械和机电一体化产品中得到广泛应用。 凸轮结构的基本概念和参数 这里以凸轮转动一周,从动件一次往复移动的凸轮机构来介绍其基本概念和参数。以凸轮轮廓曲线最小矢径为半径所做的圆称为基圆,凸轮的回转中心o点至过接触点从动件导路之间的偏置距离为e,以O为圆心,e为半径所作的圆称为偏距圆。以从动件是滚子为例,取滚子中心为参考点,该点当做尖底从动件的尖底,在凸轮转动过程中,该点轨迹形成一封闭曲线,称为此凸轮的理论轮廓曲线,或称理论廓线,凸轮的实际轮廓曲线也称为工作廓线,基圆是以理论廓线最小矢径为半径所作的圆。 凸轮机构运动经历以下过程: 推程。从动件的尖底与凸轮轮廓曲线上点接触,凸轮转动,矢径逐渐增加时,从动件逐渐远离凸轮,知道从动件上升到距离凸轮回转中心最远的位置。此过程中,从动件的位移称为推程,凸轮转过的对应角度称为推程运动角。 远休止。当凸轮继续转动,由于凸轮矢径不变,从动件仍停留在最远处,凸轮转过的角度称为远休止角。 回程。凸轮继续转动,当凸轮和从动件尖底接触点达到基圆位置时,这一过程中,从动件逐渐从最远位置到达起始位置。这一过程称为回程,转过的角度为回程运动角。 近休止。凸轮继续转动,由于接触点是基圆的圆弧,因此从动件不动,凸轮转过的角度称为近休止角。 凸轮转动过程中,从动件重复进行运动循环。这一循环过程根据实际需要可以没有远休止或近休止,但是推程和回程必不可少。 从动件常用运动规律 等速运动 等速运动在行程开始和终止位置的加速度和惯性力在理论上突变为无穷大,致使机构受到强烈冲击,称为刚性冲击。等速运动规律不宜单独使用,运动开始和终止手段必须加以修正。 等加速(等减速)运动 等加速(等减速)运动规律在开始、中点和终止位置加速度和惯性力存在有限度的突变,称为柔性冲击。因此,等加速(等减速)运动规律适用于中速的场合。 简谐运动 简谐运动在行程开始和终止位置,加速度有突变,会引起柔性冲击,只有在远近休止角均为零的时候才可以获得连续的加速度曲线。因此,简谐运动的运动规律也适用于中速的场合。 摆线运动 摆线运动加速度曲线连续,理论上不存在冲击。摆线运动规律的凸轮对加工误差敏感,适用于高中速、轻载的场合。 组合运动规律 为了获得更好的运动特性,可以把各种运动规律组合起来加以应用。组合时,两条曲线在连接位置必须保持连续,可消除某些运动规律中有冲击的部分,是速度和加速度曲线变得连续。除了考虑冲击之外,还要对各种运动规律的最大速度、最大加速度及其影响加以比较。若最大速度过大,则动量大,此时若从动件突然被阻止,会产生过大冲击力,从而危害设备及人生安全。若最大加速度过大,则高福处应力过大,此时对机构强度及耐磨性的要求也相应提高。 凸轮机构的压力角 凸轮机构的压力角的确定 凸轮机构中从动件的受力方向与受力点的速度方向之间所夹的锐角称为压力角,压力角越大凸轮工作的性能越差,当压力角大到一定数值,会导致机构产生自锁而无法运动。压力角的许用值:直动从动件在推程运动时:30°~40°,摆动从动件在推程运动时:40°~50°。滚子接触、润滑良好和支撑有较好刚度时,取数据上限,否则取下限。 压力角与基圆半径的关系 在其他参数相同的情况下,基圆半径越小,凸轮压力角越大。为了减小最大压力角可以适当增大凸轮基圆半径。由于基圆半径增大会增加凸轮的尺寸,因此基圆半径不宜过大。 压力角与偏置e的关系 凸轮逆时针转动,从动件处于竖直时(e=0),该点位置压力角为α。当从动件向左倾斜,有一右偏置时,压力角减小,当从动件右偏置过大时,压力角较之前有所增加,当从动件有左偏置时,压力角增加。 当凸轮逆时针转动时,采取适当的右偏置可以减小凸轮机构的推程压力角,但同时会使回程压力角增大。 盘形凸轮轮廓设计 图解法设计盘形凸轮机构 设计凸轮廓线采用反转法原理,即当尖底从动件凸轮机构以等角速度w顺时针转动时,从动件按预期运动规律运动。现设想给该凸轮机构加一个等角速度w逆时针转动时,凸轮机构中运动关系没变,但是凸轮将静止不动,这时尖底运动的轨迹就是凸轮轮廓曲线。 偏置尖底直动从动件盘形凸轮廓线的设计: 选定凸轮转动中心O,取与从动件位移曲线相同的比例尺,以r为半径做基圆,e为半径做偏距圆,当前从动件为凸轮推程起始位置,从动件导路中心线与偏距圆相切; 画出从动件位移线图,求出推程运动角,远休止角,回程运动角,近休止角,对线图进行若干等分; 基于反转法原理,凸轮不动,从动件和机架以角速度w逆时针转动,根据线图划分的角度分别作出从动件位置(保持与基圆相切); 根据从动件位移线图中位移量作出B₁,...,B9点; 将这几个B点顺次连成光滑曲线(远近休止部分用圆弧即可),就可得到要求的凸轮轮廓曲线。偏置滚子直动从动件盘形凸轮廓线的设计: 首先设计滚子中心运动轨迹,然后在理论廓线上以滚子半径画出一系列的圆,做这些圆的包络线。 需要指出的是,滚子半径的大小对凸轮的实际轮廓有很大的影响,当滚子半径大于等于理论廓线最小曲率半径时,会使凸轮的实际轮廓产生尖点或失真。平底直动从动件盘形凸轮廓线的设计: 当从动件的端部是平底时,凸轮实际轮廓曲线的求法与滚子直动从动件相仿。过所有B点,做一系列平底,最后平底包络出的曲线即为凸轮工作廓线。对于平底直动从动件,只要不改变导路的方向,无论导路对心还是偏置,无论取哪一点为参考点,所得出的直线族和凸轮实际轮廓曲线都是一样的。尖底摆动从动件盘形凸轮廓线的设计: 选取适当作图比例尺,选定作出O点、基圆、摆动中心A的轨迹,选取A的起始点; 根据从动件角位移线图,作出一系列A点位置; 以各A点为圆心,A、B起始点的距离为半径做圆弧,使得各角等于从动件角位移线图里面的数据,作出一系列C点,并顺次连接,即为凸轮轮廓。 解析法设计盘形凸轮机构 解析法设计凸轮轮廓就是列出凸轮轮廓的坐标表达式。
1、掌握制药机械设备的概念和分类,GMP认证与验证的概念。2、熟悉制药机械的代码和产品型号,药品生产对设备的要求,GMP认证与验证的基本要求。3、了解制药机械G
原动画后期制作研究摘要:随着电脑技术的快速发展 其硬件和软件随着时间的推移在快速更新,Pc处理能力在迅速增长 硬盘的容量在不断增大。现在一台高配置的Pc机已经可
机械工程硕士论文题目 机械工程硕士论文题目已经为大家整理好了,各位同学们,请看下面吧! 1、车载液压机械臂动态设计与研究 2、基于网络模型的复杂机电系统可靠性评
我觉得选择未来职业方向要看你是什么样的性格,具体想从事技术还是其他什么的。1,跑船,工资高,无聊。2,船厂轮机管理,工资一般,工作较辛苦。相对其他工作危险系数大
什么水平?本科、专科,学校是什么档次?