玉蝶之梦
汽车镀膜对于施工工艺有着较为严格的要求。如果不能采用专用工具按照流程实施,很难达到完美的施工效果。很多汽车美容店的镀膜施工都达不到标准,而导致有些车主做完镀膜后觉得没有效果。下面小编就给大家对车漆镀膜的施工流程做一些介绍,方便大家更加了解汽车镀膜。①清洗车身同汽车封釉一样,汽车镀膜前的清洗车身是必需过程。洗车完毕,专业的施工流程会要求用洗车泥来去除车漆表面的铁粉、虫胶、树胶等污物。其中铁粉可以说是车主最容易忽视的,但也是对漆面危害最大的一种物质,行车中的金属件磨损,导致空气中充斥了大量的金属粉尘。汽车行驶时,因前进冲力的作用,铁粉会直接刺入漆面。由于铁的分子结构不稳定,很容易被氧化,与车漆发生化学反应。车漆中的铁粉用普通的方法无法去除,而且在抛光的时候还容易混入抛光机加重漆面的二次磨损。②研磨抛光根据整车漆面的划痕情况进行评估,如果划痕较多、较严重的话,一般会建议先做漆面后镀膜。对于划痕较少的车辆,可用立式抛光机(转速1500r/min,传统的卧式抛光机一般转速在4000r/min左右,力道稍控制不均匀,就会对漆面造成较大的伤害)配合专业的抛光蜡对车漆进行抛光。如果施工车辆是新车,可不做处理或用车漆镜面恢复蜡对漆面进行抛光处理,以确保镀膜的最好效果。这一步是最耗时间的,新车和旧车镀膜时间长短差别也主要体现在该步骤。③镀膜镀膜的工序和汽车打蜡类似,都是把施工材料用海绵均匀地涂抹在车漆表面,待干燥后再用专用毛巾擦拭掉多余的材料。全车喷涂镀膜液的施工要进行2~3次,具体施工次数取决于镀膜材料。一般有机器上膜和手工上膜两种方式,其实这两种方式没有任何区别,只要上膜均匀都能达到最佳效果,车主们在施工时不必对此纠结。有些美容店在施工后还会对车漆进行短时间的烘烤,以确保膜层能够更好地吸附在车漆上。新车镀膜完整的工艺流程需要3~4h,旧车则需要4~5h。与汽车封釉相似,镀完膜后并非就万事大吉了。汽车镀膜后注意事项:汽车镀膜之后3天内避免洗车。之后的洗车也一定要选择正规洗车店进行,对于不专业的洗车房,以及刚蹭、碰撞和不正当维护等问题,都会对镀膜带来损害。另外,镀膜后的车辆在一年内不要进行打蜡,那样会使之前的镀膜效果前功尽弃。镀膜效果可以保持一年左右,期间定期做镀膜的后期保养,许多商家都能为镀膜车辆提供后续免费的养护服务。汽车镀膜注意事项:1、汽车镀膜前车主一定要关注实施镀膜后几天的天气变化情况,如果预报会有下雨,那最好不要进行镀膜施工,因为身镀膜后24小时不能够进行洗车或让车漆表面沾水。如果没有注意到天气的变化,镀膜后遇到有下雨的情况,车主应把爱车停靠在车库里,或用车罩把爱车罩起来。2、产品的选择,为自己的爱车定位是专业级镀膜,还是DIY级的镀膜产品?一般是新车镀膜,最好到汽车美容店做一次专业级镀膜;3、爱车镀膜后7天之内最好不要清洗车辆,以达到镀膜的最佳光亮效果。以后洗车过程中要用中性的洗车液,而不能用碱性的。碱性的洗车液泡沫,对镀膜层有消解作用。4、汽车镀膜前应该彻底清洗车身。将车身彻底清洗干净,并用汽吹与干布把残留在各个缝隙处的水分擦干,避免施工时小水珠与小颗粒尘埃影响镀膜效果。
Xiaonini71
汽车镀膜对于施工工艺有着较为严格的要求。如果不能采用专用工具按照流程实施,很难达到完美的施工效果。很多汽车美容店的镀膜施工都达不到标准,而导致有些车主做完镀膜后觉得没有效果。下面小编就给大家对车漆镀膜的施工流程做一些介绍,方便大家更加了解汽车镀膜。①清洗车身同汽车封釉一样,汽车镀膜前的清洗车身是必需过程。洗车完毕,专业的施工流程会要求用洗车泥来去除车漆表面的铁粉、虫胶、树胶等污物。其中铁粉可以说是车主最容易忽视的,但也是对漆面危害最大的一种物质,行车中的金属件磨损,导致空气中充斥了大量的金属粉尘。汽车行驶时,因前进冲力的作用,铁粉会直接刺入漆面。由于铁的分子结构不稳定,很容易被氧化,与车漆发生化学反应。车漆中的铁粉用普通的方法无法去除,而且在抛光的时候还容易混入抛光机加重漆面的二次磨损。②研磨抛光根据整车漆面的划痕情况进行评估,如果划痕较多、较严重的话,一般会建议先做漆面后镀膜。对于划痕较少的车辆,可用立式抛光机(转速1500r/min,传统的卧式抛光机一般转速在4000r/min左右,力道稍控制不均匀,就会对漆面造成较大的伤害)配合专业的抛光蜡对车漆进行抛光。如果施工车辆是新车,可不做处理或用车漆镜面恢复蜡对漆面进行抛光处理,以确保镀膜的最好效果。这一步是最耗时间的,新车和旧车镀膜时间长短差别也主要体现在该步骤。③镀膜镀膜的工序和汽车打蜡类似,都是把施工材料用海绵均匀地涂抹在车漆表面,待干燥后再用专用毛巾擦拭掉多余的材料。全车喷涂镀膜液的施工要进行2~3次,具体施工次数取决于镀膜材料。一般有机器上膜和手工上膜两种方式,其实这两种方式没有任何区别,只要上膜均匀都能达到最佳效果,车主们在施工时不必对此纠结。有些美容店在施工后还会对车漆进行短时间的烘烤,以确保膜层能够更好地吸附在车漆上。新车镀膜完整的工艺流程需要3~4h,旧车则需要4~5h。与汽车封釉相似,镀完膜后并非就万事大吉了。汽车镀膜后注意事项:汽车镀膜之后3天内避免洗车。之后的洗车也一定要选择正规洗车店进行,对于不专业的洗车房,以及刚蹭、碰撞和不正当维护等问题,都会对镀膜带来损害。另外,镀膜后的车辆在一年内不要进行打蜡,那样会使之前的镀膜效果前功尽弃。镀膜效果可以保持一年左右,期间定期做镀膜的后期保养,
家装e站重庆站
本科毕业设计(论文)文献综述院 (系):专 业:班 级:学生姓名: 学 号:年 月 日本科生毕业设计(论文)文献综述评价表毕业设计(论文)题目综述名称 注意综述名称(综述内容中不要出现本课题怎么样等等)评阅教师姓名 职称评 价 项 目 优 良 合格 不合格综述结构 01 文献综述结构完整、符合格式规范综述内容 02 能准确如实地阐述参考文献作者的论点和实验结果03 文字通顺、精练、可读性和实用性强04 反映题目所在知识领域内的新动态、新趋势、新水平、新原理、新技术等参考文献 05 中、英文参考文献的类型和数量符合规定要求,格式符合规范06 围绕所选毕业设计(论文)题目搜集文献成绩综合评语:评阅教师(签字):年 月 日文献综述: 小四号宋空一行标题 二号黑居中空一行1 XXX 三号黑XXX 小四号宋,行距20磅 XXXX 小三号黑XXX 小四号宋,行距20磅 XXX 四号黑XXX 小四号宋,行距20磅空一行2 XXXX 三号黑(空1行)参 考 文 献(空1行)[要求按国标GB 7714—87《文后参考文献著录规则》书写,例如:][1] 袁庆龙,候文义.Ni-P合金镀层组织形貌及显微硬度研究[J].太原理工大学学报,2001,32(1):51-53 .(宋体五号,行距固定值20磅)[2] 刘国钧,王连成.图书馆史研究[M].北京:高等教育出版社,1979:15-18,31.下面的是我的文献综述文献综述:FTO透明导电薄膜的溅射法制备1 前言为了更好的开展毕业论文及毕业实验工作,在查找和阅读与《DSSC用FTO透明导电玻璃的溅射法制备》相关的文献和资料,完成撰写了本文献综述。随着科技的日趋成熟,导电玻璃的制备方法也越来越成熟,种类也衍生得越来越多。本文章将对国内外的制备方法,种类,发展现状及趋势,工艺性能,退火处理对性能的影响等方面做一简要介绍。2透明导电玻璃的种类及制备方法简介透明导电玻璃的种类 .1 TCO导电玻璃TCO(Transparent Conductive Oxide)玻璃,即透明导电氧化物镀膜玻璃,是指在平板玻璃表面通过物理或化学镀膜方法均匀的镀上一层透明的导电氧化物薄膜而形成的组件.主要包括铟、锡、锌、铬的氧化物及其复合多元氧化物薄膜材料。 ITO透明导电玻璃ITO透明导电玻璃全称为氧化铟锡(Indium-Tin Oxide)透明导电膜玻璃,多通过ITO导电膜玻璃生产线,在高度净化的厂房环境中,利用平面磁控技术,在超薄玻璃上溅射氧化铟锡导电薄膜镀层并经高温退火处理得到的高技术产品。 ITO玻璃产品广泛地用于液晶显示器(LCD)、太阳能电池、微电子ITO导电膜玻璃、光电子和各种光学领域。透明导电玻璃FTO透明导电玻璃为掺杂氟的SnO2导电玻璃(SnO2:F),简称为FTO。FTO玻璃可以做为ITO导电玻璃的替换用品,广泛用于液晶显示屏,光催化,薄膜太阳能电池基底等方面,市场需求极大. FTO玻璃因其特殊性,在染料敏化太阳能电池,电致变色和光催化方面对其透光率和导电率都有很高的要求,其综合性能常用直属FTC来评价:FTC=T10/RS。T是薄膜的透光率,RS是薄膜的方阻值;在光学应用方面,则要求其对可见光有好的透射性和对红外有良好的反射性。对其基本要求是:①表面方阻低,②透光率高,③面积大、重量轻,④易加工、耐冲击。透明导电玻璃制备方法FTO透明导电玻璃的制备方法有,物理方法:溅射法、真空蒸发镀膜法、离子辅助沉积镀膜法等;化学方法:喷雾热解法、溶胶-凝胶法和化学气相沉积法等。目前适合批量生产且研发较多的有真空蒸发镀膜法、磁控溅射法、化学气相沉积法和喷雾热解等方法![1]化学气相沉积法和真空镀膜法制备的薄膜和玻璃基板的结合强度不够,溶胶-凝胶法制备的导电薄膜电阻较高。适合于批量生产且已经形成产业的工艺,只有磁控溅射法和溶胶-凝胶法。特别是,溅射法由于具有良好的可控性和易于获得大面积均匀的薄膜。磁控溅射法镀膜:溅射镀膜(sputtering deposition)是指用离子轰击靶材表面,使靶材的原子被轰击出来,溅射产生的原子沉积在基体表面形成薄膜。溅射镀膜有二级、三级或四级溅射、磁控溅射、射频溅射、偏压溅射、反应溅射、离子束溅射等装置。目前最常用的制备CoPt 磁性薄膜的方法是磁控溅射法。磁控溅射法是在高真空充入适量的氩气,在阴极(柱状靶或平面靶)和阳极(镀膜室壁) 之间施加几百K 直流电压,在镀膜室内产生磁控型异常辉光放电,使氩气发生电离。氩离子被阴极加速并轰击阴极靶表面,将靶材表面原子溅射出来沉积在基底表面上形成薄膜。通过更换不同材质的靶和控制不同的溅射时间,便可以获得不同材质和不同厚度的薄膜。磁控溅射法具有镀膜层与基材的结合力强、镀膜层致密、均匀等优点。真空蒸发镀膜:真空蒸发镀膜(vacuum vapor deposition)是在工作压强低于10-2 Pa,用蒸发器加热物质使之汽化蒸发到基片,并在基片上沉积形成固态薄膜的一种工艺方法。真空蒸发的加热方式主要有电阻加热蒸发、电子束加热蒸发、高频加热蒸发和激光加热蒸发等。对于镀制透明导电氧化物薄膜而言,其真空蒸发镀膜工艺一般有三种途径:(1)直接蒸发氧化物;(2)采用反应蒸发镀,即在蒸发金属的同时通入氧气进行化学反应生成金属氧化物;(3)对蒸发金属镀膜进行氧化处理。溶胶-凝胶法:溶胶-凝胶法(so1-gel)是近年来发展起来的能代替高温固相合成反应制备陶瓷、玻璃和许多固体薄膜材料的一种新方法。它将金属醇盐或无机盐经溶液、溶胶、凝胶而周化,再将凝胶低温处理变为氧化物的方法,是应用胶体化学原理制各无机材料的一种湿化学方法。溶胶-凝胶工艺是一种制备多元氧化物薄膜的常用方法。按工艺可分为浸涂法和旋涂法。浸涂法是将衬底浸人含有金属离子的前驱体溶液中,以均匀速度将其提拉出来,在含有水分的空气中发生水解和聚合反应,最后通过热处理形成所需薄膜;而旋涂法则是通过将前体溶液滴在衬底后旋转衬底获得湿膜。化学气相沉积法:化学气相沉积(chemical vapor deposition,CVD)是反应物质在气态条件下发生化学反应,生成固态薄膜沉积在加热的固态衬底表面,是一种重要的薄膜制各方法。CVD法所选的反应体系必须满足:(1)在沉积温度下,反应物必须有足够的蒸汽压;(2)化学反应产物除了所需的沉积物为固态外,其余必须为气态;(3)沉积物的蒸汽压应足够低,以保证能较好地吸附在具有一定温度的基体上,但此法因必须制各具有高蒸发速率的铟锡前驱物而使生产成本较高。影响化学气相沉积薄膜的工艺参数很多,包括基体温度、气压、工作气体流量和反应物及其浓度等。化学气相沉积技术的主要特点包括:设备及工艺简单、操作维护方便、灵活性强;适合在各种形状复杂的部件上沉积薄膜:由于设备简单,薄膜制备的成本也比较低。但是,薄膜的表面形貌很大程度上受到化学反应特性以及能量撒活方式的影响。喷雾热分解法:喷雾热分解法是化学法成膜的一种,其过程与APCVD法比较相似。它是将前驱体溶液在高压载气的作用下雾化,然后输送到基片表面,在高温作用下,前驱体溶液发生一系列复杂的化学反应,在基片表面上得到需要的薄膜材料。而反应副产物一般是通过气相形式排出反应腔。常用的高压载气主要有:压缩空气、氮气、氩气等等。但是由于压缩空气中常含有大量的水蒸气,所以用氮气作为载气的情形比较多。如果需要在基片表面上发生分解反应,基片温度一般在300℃以上,在玻璃上制备FTO薄膜的基片温度一般为500℃。影响最终薄膜性能的喷涂参数有:载气压力、前驱体溶液流量、基片温度、喷口与基片的距离、喷枪移动速度等等[2]。在成膜过程中基材的温度、液体的流速、压缩气体的压力以及喷嘴到基材的距离等参数均可实现精确控制[3]。3 FTO透明导电玻璃的研究现状、应用及发展趋势透明导电玻璃的研究现状自1907年Badeker首次报道了热氧化溅射的Cd薄膜生成半透明导电的CdO薄膜,引发了对透明导电氧化物(TCO)薄膜的研究。1950年前后出现了硬度高,化学稳定性好的SnO2基薄膜及综合光电性能优良的In2O3基薄膜,ZnO基薄膜的研究始于2O世纪80年代 。目前研究和应用较多的TCO薄膜主要有SnO2、In2O3。和ZnO基三大体系,其中以In203:Sn(ITO),SnO2 :F(FTO)和ZnO:Al(ZAO)最具代表性,这些薄膜具有高载流子浓度(1018~1021cm-3)和低电阻率(10-3~1O-4Ω•cm),且可见光透射率8O%~90%,使这些薄膜已被广泛应用于平面显示、建筑和太阳光伏能源系统中。[4] 已经商业化应用的TCO薄膜主要是In2O3Sn(ITO)和SnO2:F(FTO)2类,ITO由于其透明性好,电阻率低,易刻蚀和易低温制备等优点,一直是显示器领域中的首选TCO薄膜。FTO薄膜由于其化学稳定性好,生产设备简单,生产成本低等优点在节能视窗等建筑用大面积TCO薄膜中,具有很大的优势[5]。Sn02:F(FTO)掺杂体系是一种n型半导体材料,表现出优良的电学和光学性能,并且耐腐蚀,耐高温,成本低,化学稳定性好,是现在研究较多,应用范围较广的一类TCO薄膜。苗莉等[6]采用喷雾热解法,以NH4F、SnCl2•2H20为原料,在普通玻璃衬底上制备出了方块电阻最低达到Ω/口,可见光透光率为%的FTO薄膜,且薄膜晶粒均匀,表面形貌平整致密。Yadav等[7]采用喷雾热解法,制备了不同厚度的FTO薄膜,最低电阻率达到 X 10-4 Ω•cm。Moholkar等[8]采用喷雾热解法,制备了不同掺F浓度的FTO薄膜,研究了氟的掺杂浓度对Sn02薄膜的光学,结构和电学性能的影响。中国科学院等离子体物理研究所的戴松元小组[9、10]将FTO用于染料敏化太阳电池的透明电极,并获得较高的光电转换效率。射频溅射:射频溅射的基本原理是射频辉光放电。国内外射频溅射普遍选用的射频电源频率为13.56MHz,以防止射频信号与无线电信号的相互干扰。通常直流溅射的基本过程是,从阴极发出的电子,经过电场的加速后获得足够的能量,可以使气氛气体发生电离。正离子在电场作用下撞击阴极表面,溅射出阴极表面的原子、分子到衬底表面发生吸附、凝聚,最终成膜。直流溅射不能用于绝缘体材料的薄膜制备,因为绝缘材料在受到正离子轰击时,靶材表面的正离子无法中和,使靶表面的电位逐渐升高,导致阴极靶与阳极问的电场减小,当靶表面电位上升到一定程度时,可以使气体无法电离,溅射无法进行。而射频溅射适合于任何一种类型的阻抗耦合,电极和靶材并不需要是导体,射频溅射非常适合于制备半导体、绝缘体等高熔点材料的薄膜。在靶材表面施加射频电压,当溅射处于上半周时,由于电子的质量比离子的质量小很多,故其迁移率很高,用很短时间就可以飞向靶面,中和其表面积累的正电荷,从而实现对绝缘材料的溅射,并且在靶表面又迅速积累起了大量的电子,使其表面因空间电荷而呈现负电位,导致在射频溅射正半周期,也可吸引离子轰击靶材。从而实现了在电压正、负半周期,均可溅射。磁场的作用是将电子与高密度等离子体束缚在靶材表面,可以提高溅射速度。[11]用JPGF一450型射频磁控溅射系统在玻璃衬底上制备SnO2:F薄膜,系统的本底真空度为10-3Pa.溅射所用陶瓷靶是由纯度为%SnO2和NH4F,粉末经混合、球磨后压制成坯,再经1300℃烧结而成,靶中NH4F的重量比是%,用纯度为99.99% 的氩气和氧气作为工作气体,由可控阀门分别控制气体的流量。溅射过程中,控制真空室内氩气压强为1Pa,氧分压为— Pa,靶与衬底间的距离为5cm.溅射功率为150W,溅射时间为25 min,衬底温度为100℃。用RIGAKU D/MAX—yA型x射线衍射(XRD)仪(CuKa辐射波长, nm)测试样品的结构,用APHM一0190型原子力显微镜(AFM)观测样品的表面形貌,使用 rv一1900型紫外可见光分光光度计测量样品的吸收谱,使用激发源为325 nm的He—Cd激光器的光谱仪测量样品的室温光致发光谱,使用普通的万电表测试它的导电性(前提是尽量保持测量条件的一致性)。透明导电玻璃的应用FTO透明导电玻璃具有优良的光电性能,被广泛用于太阳能电池的窗口材料、低损耗光波导电材料及各种显示器和非晶硅太阳能电池中作为透明玻璃电极等,与生活息息相关。在薄膜太阳电池上的应用太阳能电池是利用光伏效应,在半导体p-n结直接将太阳光的辐射能转化成电能的一种光电器件。TCO薄膜是太阳电池关键材料之一,可作为染料敏化太阳电池(dye-sensitized solar cells,DSCS)[12]等的透明电极,对它的要求是:具有低电阻率(方块电阻Rsh约为15Ω/□);高阳光辐射透过率,即吸收率与反射率要尽可能低;化学和力学稳定性好的特点。在薄膜太阳电池中,透明导电膜充当电极,具有太阳能直接透射到作用区域几乎不衰减、形成p-n结温度较低、低接触电阻、可同时作为防反射薄膜等优点。在显示器上的应用显示器件能将外界事物的光、声、电等信息,经过变换处理,以图像、图形、数码、字符等适当形式加以显示。显示技术的发展方向是平板化。在众多平板显示器中,薄膜电致发光显示由于其主动发光、全固体化、耐冲击、视角大、适用温度宽、工序简单等优点,引起广泛关注,并发展迅速。FTO薄膜具有可见光透过率高、电阻率低、较好的耐蚀性和化学稳定性,因此被广泛用作平板显示器的透明电极。在气敏元件上的应用气体传感器是把气体的物理、化学性质变换成易处理的光、电、磁等信号的转换元件。半导体气体传感器是采用金属氧化物或金属半导体氧化物材料做成的元件,与气体相互作用时产生表面吸附或反应,引起以载流子运动为特征的电导率或伏安特性或表面电位变化。二氧化锡薄膜气敏器件具有灵敏度高、响应速度和恢复速度快、功耗低等特点,更重要的是容易集成。随着微电子技术的发展,传感器不断向智能化、微型化方向发展。[13]在建筑幕墙玻璃及透明视窗上的应用喷雾热解法制各的FTO薄膜能用于阳光节能玻璃,对可见光高透射,但对红外光高反射,其反射率大于70%。让阳光中可见光部分透过,而红外部分和远红外反射。阳光中的可见光部分对室内采光是必需的,但可将红外部分的热能辐射反射回去,能有效调节太阳光的入射和反射。利用FTO薄膜在可见光区的高透射性和对红外光的高反射性,可作为玻璃的防雾和防冰霜薄膜。 FTO透明导电玻璃的发展趋势随着LCD的商品化、彩色化、大型化和TFT的驱动或太阳能电池的能量转变效率的提高,人们对透明导电氧化物(TCO)薄膜的要求越来越严格,至少需要满足如下条件:(1)导电性能好,电阻率较低;(2)可见光内透光率较高:(3)镀膜温度更接近室温,能大面积均匀地镀膜;(4)膜层加工性能好,可以进行高精度低损伤腐蚀;(5)热稳定性及耐酸、碱性优良,硬度高;(6)表面形状良好,没有针孔;(7)价格较低,可实现大规模工业化生产。目前,TCO薄膜已普遍达到下列水平:膜厚为500 nm的情况下电阻率在10-4 Ω•cm数量级,在可见光区透光率达80%,载流子迁移率一般达到40cm2/(v•s)。虽然TCO薄膜的性能指标可以满足当前应用需要,但随着器件性能的不断提升,对TCO薄膜提出了更高的性能要求。一些学者提出了TCO薄膜发展的一个量化的前景指标:禁带宽度>3 eV,直流电阻率~5×10-5 Ω•cm,可见光段在自由电子作用下的吸收系数<2x103 cm-1,载流子迁移率>100 cm2/(v•s)。几十年来,人们一直在努力提高透明导电薄膜的透明性和导电性。SnO2:F(TFO)透明导电薄膜由于其兼备低电阻,高的可见光透过率,近红外高的反射率,优良的膜强度和化学稳定性等优点,越来越受到人们的青睐,必将在平板显示器件、建筑物玻璃和气敏传感器等众多领域中得到更广泛的应用。利用溅射法制备FTO透明导电玻璃它的生产工艺简单,操作方便,利于控制。成本较低,原料易得,但在制备过程中NH4F加热分解放出有污染的氮氧化物和氨烟,这对以后商业化生产造成了很大的制约。所以对原料的改进和污染的控制方面还有待开发。4 制备条件对膜结构及光电性能的影响长安大学材料科学与工程学院段理等做了磁控溅射制备银掺杂ZnO薄膜结构及光电性质研究实验,发表了文献[14],并在文献14中得出了——的结论。制备条件对膜厚的影响文献中采用射频磁控溅射法在玻璃衬底上制备了银掺杂ZnO薄膜,当薄膜淀积时间从30rain延长到90min时,薄膜的厚度几乎按照线性关系从约270nm增加到820nm,即薄膜的淀积速率大致稳定在9nm/min左右,为匀速生长。溅射功率与膜厚呈线性增长,及沉淀速率与溅射功率大致呈线性关系。制备条件对膜结构的影响晶体质量随溅射功率的增大而降低,随溅射气压的增大而降低。制备条件对膜光电性质的影响在固定溅射总气压的条件下,增大氧分压可以增强薄膜的紫外发光强度,增大薄膜的载流子浓度。 退火对薄膜的影响退火能显著提高薄膜晶体质量,并增强薄膜的PL发光强度和导电能力,其原因是退火能使银离子完成对锌离子的替代从而形成受主。[15]5 退火后处理对膜结构与成分的影响光敏薄膜的光电、形貌性能与退火处理密切相关,退火处理优化了薄膜表面形貌、减小了光学能隙、增大了薄膜的导电率和载流子迁移率。光敏薄膜性能的优化,有利于增大聚合物太阳电池的填充因子、开路电压和短路电流,对于提高其能量转换效率、改善器件光伏性能具有非常重要的意义。[16]分别对较低氧分压反应磁控溅射制备的 薄膜进行氧化性气氛和惰性气氛退火。通过XRD和SEM 分析,发现氧化性气氛退火薄膜为表面多孔的金红石结构 ,而惰性气氛退火薄膜表面较为致密,结构分析不仅观察到金红石结构的 ,还发现了四方结构的 。XPS表面分析进一步表明,氧化性气氛退火后,薄膜成分单一,未氧化的 完全氧化成稳定的 ,而且具有稳定结构的 薄膜表面吸附水很少。相对而言,惰性气氛退火后,薄膜表面 、 和 共存,表面化学吸附氧和吸附水较明显,薄膜的稳定性降低。[17]6 FTO导电玻璃制备相关参数根据范志新等所提出的理论表达式: 带入相关数据可得到,SnO2:F(FTO)的最佳掺杂含量为[18]通过对比总结,参考大量数据,选择溅射功率:100W,溅射压力:5Pa,溅射时间:,溅射靶距:38mm[13、19]做产品。进行相关参数的选择与优化。7 参考文献1、张志海, 热解法制备氟掺杂二氧化锡导电薄膜及其性能研究 合肥工业大学2、汪振东, 玻璃基TiO<,2>-SiO<,2>/SnO<,2>:F薄膜的喷雾热分解法制备和表征 武汉理工大学3、郝喜红, 喷雾热解法制备掺杂二氧化锡导电薄膜 西安建筑科技大学4、张明福等, 透明导电氧化物薄膜研究的新进展 压电与声光5、方俊 杨万莉, n型透明导电氧化物薄膜的研究新进展 陶瓷6、苗莉等, SnO2:F导电薄膜的制备方法和性能表征 材料导报7、Yadav A A,Masumdar E U,Moholkar A V,et a1.Effect of quantity of spraying solution on the properties of spray deposited fluorine doped tin oxide thin films[J].Physiea B:Condensed Matter,2009,404(12—13):1874 - 1877.8、Moholkar A V,Pawar S M,Rajpure K Y,et a1.Effect of fluorine doping on highly transparent conductive spray deposited nanocrystalline tin oxide thin films[J].Applied Surface Science,2009,255(23):9358—9364.9、Dai S,Wang K,Weng J,et a1.Design of DSC panel with efficiency more than 6%[J1.Solar Energy Materials and Solar Ceils,2005,85(3):447—455.10、Huo Z,Dai S,Wang K,et a1.Nanocomposite gel electrolyte with large enhanced charge transport properties of an 13-/I- redox couple for quasi-solid-state dye-sensitized solar cells[J].Solar Energy Materials and Solar Cells,2007,91(20):1959-1965.11、王璟和,射频溅射法制备透明导电陶瓷薄膜 天津大学12、姜磊等, 染料敏化太阳电池研究进展 内蒙古大学学报(自然科学版)13、曾志峰等, 射频溅射法制备掺杂SnO2纳米薄膜的研究 武汉大学学报(理学版)14、段理、樊小勇等, 磁控溅射制备银掺杂 薄膜结构及光电性质研究 材料导报(研究篇)15、SunLL,TanO K,ZhuW G,et a1.Pb(Zro 3Ti0. 7)03/Pb-TiO3 multilayer thin films for pyroelectric infrared sensorapplication[J].J Appl Phys,2006,99(9):0941016、顾锦华、钟志有等, 真空退火处理对光敏薄膜及聚合物太阳电池性能的影响 中南民族大学学报(自然科学版)17、王磊、杜军等, 退火气氛对SnO2薄膜结构与成分的影响 材料导报18、范志新等, 二氧化锡薄膜的最佳掺杂含量理论表达式 电子器件19、刘庆业等, 射频溅射法研制SnO2纳米薄膜 广西师范大学学报(自然科学版)
haorantaba
1.洗车,使用中性洗车液对全车进行清洗,同时清除车身静电层2.吹水 使用鹿皮币+空气枪,擦干吹干车身表面及边缝中的水分,防止影响后续施工效果3.遮蔽,遮蔽车标、橡胶塑料饰件、车灯及镀件、侧窗玻璃、前、后风挡玻璃等部位都会做完全遮蔽。防止抛光过程中的粉末粘在非抛光部位4.检查车漆表面 检查车漆表面附着铁粉等杂质的,使用粘土(或铁粉去除剂)清理,步骤如下:a.简单的洗下车,将有可能造成划伤的砂砾和灰尘去除b.将粘土浸点水,使它保持湿润c.左手喷水,右手涂粘土,使粘土保持润滑。同时作业面要用适当的力度,过轻则看不出效果d.注意涂抹方向e.粘土表面变脏了,要换一面进行作业f.不久漆面将会变光滑g.使用完的粘土放在塑料袋里保存5.车漆表面镜面抛光,先粗、细研磨,采用机用研磨机(电动或风动)加上粗研磨剂进行粗磨,再加研磨剂抛光进行抛光细研磨。用机械抛光机,加上镜面处理剂抛去粗研磨剂留下的旋印,达到漆膜镜面抛光的效果6.去除遮蔽7.车漆表面镜面还原,使用“车漆镜面还原剂”对车漆表面进行还原处理,大范围建议使用研磨专用机器,手工操作时建议分块进行施工,每块区面积为30*30cm左右比较方便施工8.擦干车漆表面的水份
天龙过江
原创][论文] 迈克耳孙-莫雷实验之真相 ——一个足可以从源头推翻爱因斯坦相对论的有力证据 陆明华 E-mail: 网址: ( 2006-03-23 首发于人民网科教论坛 ) 迈克耳孙-莫雷实验为推翻以太假说做出了不可磨灭的贡献。然而,既然以太假说不能成立,那么,由于迈克耳孙-莫雷实验的条纹移动ΔN的计算始终依赖于以太假说,所以其计算方法也是不可靠的,由此而得出“光速不变,它与地球的运动状态无关”这样的结论显然是不严谨的,同时也是经不起推敲的。但是,“光速不变,它与地球的运动状态无关”这一错误论断却一直沿用至今,并始终是支持爱因斯坦相对论的有力证据。 100年前,爱因斯坦将迈克耳孙-莫雷实验作为建立相对论的可靠支柱。而今,本文将它作为推翻爱因斯坦相对论的有力证据。 1.迈克耳孙-莫雷实验简介 本文有关迈克耳孙-莫雷实验简介的内容都来之于科学出版社1998年出版的大学物理教材《简明大学物理》,特此声明。 在电磁理论发展初期,人们认为光是在所谓“以太”的介质中传播,以太被作为绝对参考系的代表,为了确定绝对参考系(或以太参考系)的存在,历史上许多物理学家做过很多实验,其中最著名的是1881年迈克耳孙探测地球在以太中运动速度的实验,以及1887年他和莫雷所做的更为精确的实验[ ]。 .迈克耳孙-莫雷实验的设计思想 如果有一惯性系S’,相对于绝对空间(或以太)沿光速传播方向以速度v运动,那么自S’系观察光的传播速度V ’(光) 为 c-v ,因此如果从地面一点(视地球为近似惯性系)来测量在不同方向上(如相互垂直的方向)传播的光速,则由于地球的运动将有不同的光速值,这样就可以借以判定地球相对于绝对参考系(或以太)的运动,从而找出绝对参考系(或以太)。这正是迈克耳孙-莫雷实验的设计思路[ ]。 .迈克耳孙干涉仪 于劈形膜干涉实验可知,劈形膜干涉条纹的位置决定于光程差,只要光程差有一微小的变化就会引起干涉条纹的明显移动。迈克耳孙(Michelson 1852~1931)干涉仪就是利用这种原理制成的,其结构如图 01(图略)所示,M1和M2是两面精密磨光的平面反射镜,其中M1是固定的,它的平面位置可以微调;M2用螺旋控制,可作微小移动,G1和G2是两块材料相同、厚薄均匀而且相等的平行玻璃片。在G1的一个表面上镀有半透明的薄银膜,使照射到G1上的光线分成振幅近于相等的透射光和反射光,因此称为分光板,G1、G2这两块玻璃片与M1和M2的倾角为45°。 由光源S发生的光线,射到G1上后分成两束光线,光线①透过G1及G2到达M1,经M1反射后,再穿过G2经G1上的银膜反射到视场中。光线②从G1的镀膜面反射到M2,经M2反射后,再穿过G1到达视场中。显然,光线①和②是两条相干光线,它们在视场中相遇时产生干涉。 由于分光板G1的存在,使M1相对于镀膜面形成一虚像M1’位于M2附近,光线①可以看作是从M1’处反射的。M1’和M2之间形成一空气膜,光线②通过G1三次,加上G2后光线①也通过三次与G1厚度相同的玻璃片(G2起光程补偿作用),这样M1’与M2之间空气膜厚度就是光线①和②的光程差(本文作者加注:这可能是《简明大学物理》教材编辑有误,不然的话,就与下面的公式合不起来。如按下面的公式来表达应为:M1’与M2之间空气膜厚度是光线①和②的光程差的一半)。如果M1与M2并不严格垂直,那么,M1’与M2也不严格平行,则在M1’和M2之间形成空气劈形膜,光线①和②形成等厚干涉,这时观察到的干涉条纹是明暗相间的条纹。若入射单色光波长为λ,则每当M2向前或向后移动λ/2的距离时,光线①和②所产生的光程差δ为±2(λ/2)= ±λ,就可看到干涉条纹移过一条。所以计算视场中移过的条纹数目ΔN,就可以算出M2移动的距离Δx [ ] Δx = ΔNλ/2 当M2也固定不动时,假如在某种状态下,能够使得光线①和②产生的光程差的变化值Δδ为λ,就可看到干涉条纹移过一条。那么,计算视场中移过的条纹数目ΔN,就可以算出光线①和②所产生的光程差改变量Δδ Δδ =ΔNλ 同理,如果能测算出光线①和②所产生的光程差变化值Δδ时,就可算出干涉条纹移过的条数ΔN ΔN = Δδ/λ .迈克耳孙-莫雷实验的推理过程 如图02(图略)所示,迈克耳孙干涉仪整个装置可绕垂直于图面的轴线转动,并保持光程PM1=PM2=L固定不变,设地球相对于绝对参考系自左向右以速度v运动。当装置处于图示位置时,PM1与v平行,光束①在P、M1间来回所经路线也与v平行,而光速②在P、M2间来回所经路线则与v垂直。可以证明,光束①在P、M1间来回所需时间t1比光速②在P、M2间来回所需时间t2稍长,即t1>t2。如把整个装置绕垂直于图面的轴线转90°,光束①、②所经路线正好互换,于是光束①所需时间t1就比光速②所需时间t2稍短。因而在转动过程中,就能从望远镜T观察到干涉条纹的移动,经计算可得条纹移动数目为: ΔN = 2Lv2 /λc2 但出乎意料,虽经多次反复实验,都未观察到条纹的移动。这实验,后经多人改进反复做过,始终没有观察到地球相对于以太(或绝对参考系)运动的效应[ ]。 .迈克耳孙-莫雷实验中条纹移动ΔN的计算 由前所述,根据伽利略速度变换,可得 t1 = L/(c-v) +L/(c+v) = 2Lc/(c2-v2 ) = 2L/[c(1-v2/c2)] 光束②在P→M2’→P”间所经路程实际上是如图03(图略)所示的等腰三角形的两腰之和。故有 ct2 /2 = [L2+(vt2/2)2]1/2 经计算可得 t2 = 2L/(c2-v2)1/2 = 2L/[c(1-v2/c2)1/2] 两束光的时间差为 Δt = t1-t2 =2L/[c(1-v2/c2)] - 2L/[c(1-v2/c2)1/2] = (2L/c){(1+v2/c2+…) - [1+v2/(2c2)+…]} ≈ (L/c)(v2/c2) 于是,两光束的光程差为 δ= cΔt ≈ Lv2/c2 若把整个装置转过90°,则前后两次的光程差为2δ,在此过程中干涉条纹移动ΔN条,由上式,有 ΔN = 2δ/λ ≈ 2Lv2/(λc2) 然而,无论进行多少次实验,都未能观察到条纹的移动。因此,当时的研究者得出了如下的结论,即:迈克耳孙-莫雷实验结果表明了不存在绝对参考系,以太假说不能成立;光速不变,它与地球的运动状态无关。人们对这一问题比较认同的看法是:迈克耳孙-莫雷实验是否是狭义相对论的实验基础,学术界说法不一。但该实验及其结果有助于我们接受相对论理论[ ]。 以上是《简明大学物理》上关于迈克耳孙-莫雷实验的内容介绍,而以下的内容是本文对《简明大学物理》上关于迈克耳孙-莫雷实验的内容所进行的分析。 2.迈克耳孙-莫雷实验为何始终观察不到地球运动效应呢? 迈克耳孙-莫雷实验的结果否定了光的传播依赖以太这种特殊介质的假说,同时也否定了绝对参考系的存在,这是该实验对物理学所做出的举世公认的最显著的贡献。然而,它对于理论物理还有着更为重要的意义,却并不为人所知,也长期被人们所忽视。那就是,由于迈克耳孙-莫雷实验中条纹移动ΔN的计算过程依赖于以太假说,所以其计算方法本身同样也是不可靠的。如果在当时,人们能够对迈克耳孙-莫雷实验中条纹移动ΔN的计算方法作进一步的探索和研究的话,就不会草率地得出“光速不变,它与地球的运动状态无关”这样一个错误的结论。从而可以有效地遏止像爱因斯坦相对论这样的十分隐密的伪科学理论的产生和发展。 .迈克耳孙-莫雷实验的条纹移动ΔN的计算没有摆脱以太假说的阴影。 当初,迈克耳孙-莫雷实验的条纹移动ΔN的计算依赖于以太假说。光在以太中传播如同声音在空气中传播一样,相对于以太,光速(指光的速率)c恒定不变。按照这样的假设所进行的计算,所得的结果与实验结果完全不符。这除了说明以太假设是错误的以外,同时也说明了依赖于以太假说所进行的迈克耳孙-莫雷实验的条纹移动ΔN的计算也是站不住脚的。 在迈克耳孙-莫雷实验的条纹移动ΔN的计算过程中,始终存在着这样一个参考系,在这个参考系中,光束在传播过程中不管遇到什么情况,光速值始终恒定为c 。如图04(图略)所示的参考系中,光束①在P、M1间来回所需时间t1有两部分构成,光程P→M1’所需的时间为t1’,而光程M1’→P”所需的时间为t1” 。显然, t1=t1’+t1” 由于在迈克耳孙-莫雷实验的条纹移动ΔN的计算中,光束①在P、M1间来回所需时间 t1=L/(c-v)+L/(c+v) 所以 t1’=L/(c-v) t1”=L/(c+v) 故得 ct1’=L+v t1’ ct1”=L-v t1” 光程P→M1’所需的时间为t1’,而光程M1’→P”所需的时间为t1” 。在图04所示的参考系中,光束①在P→M1’的光程中,光速为c ,在经过以速度v运动着的平面反射镜M1反射后,即在M1’→P” 的光程中,光速值仍为c 。同样,如图05(图略)所示,光束②在P、M2间来回所需时间t2有两部分构成,光程P→M2’所需的时间为t2’,而光程M2’→P”所需的时间为t2” 。显然, t2’=t2”= t2/2 在迈克耳孙-莫雷实验的条纹移动ΔN的计算中,光束②在P、M2间来回所需时间 t2 = 2L/(c2-v2)1/2 故得 (ct2/2)2=L2+(v t2/2)2 由此可得 c t2’=[L2+(v t2’)2]1/2 c t2”=[L2+(v t2”)2]1/2 在图05所示的参考系中,速度为c的入射光束一部分经分光板G1反射后成为光束②,由上分析可知,光束②在P→M1’的光程中,光速值为c ,在M2’→P”的光程中,光速值也为c 。 综上所述,在迈克耳孙-莫雷实验的条纹移动ΔN的计算中,始终存在着这样一个参考系,在这个参考系中,光束不管遇到什么情况,其速率始终恒定为c 。也就是说,在迈克耳孙-莫雷实验的条纹移动ΔN的计算过程中,实际上始终依赖于以太假说。然而,按这样的理论所计算出来的结果与实际结果却完全不符。说明以太假说的确是不能成立的。同时也说明了迈克耳孙-莫雷实验的条纹移动ΔN的计算方法同样也是不可靠的。必须摆脱对以太假说的依赖后对迈克耳孙-莫雷实验的条纹移动ΔN进行重新计算。 .对迈克耳孙-莫雷实验的结果进行重新分析。 本文所谓的重新计算,只是为了在计算过程中摆脱以太假说的影响,完全遵守伽利略的相对性原理对其实验过程进行分析,寻找出彻底摆脱以太假说的有别于过去的全新的计算方法。 迈克耳孙-莫雷实验所研究的对象实际上有两个,一为光束,二为迈克耳孙干涉仪本身。研究内容为它们之间的相互作用。根据伽利略相对性原理,当我们研究确定的彼此相互发生作用的对象时,研究所得的结果是不会随着所选择的参考系的不同而不同。也就是说,我们不管选择什么样的参考系来研究这个问题,所得的结果都是相同的。由于已经否定了以太假说,所以根本不存在对于光的传播有着特殊意义的参考系。我们可以选用任何一个参考坐标系来研究这个问题。因此,本文选用相对于光源静止的参考坐标系S和相对于干涉仪静止的参考坐标系S’这两个坐标系来研究这个问题。看看从这两个参考坐标系中所得出的结果到底是什么?是不是相同? .在相对于干涉仪静止的参考坐标系S’中进行分析 如图06(图略)所示,S是相对于光源静止的参考坐标系,所以光源相对于S坐标系是静止的,光源所发出的光,其速率相对于坐标系S为c;而S’是相对于干涉仪静止的参考坐标系,在S坐标系中以速率v沿x轴的正向作匀速直线运动。根据伽利略速度变换可得相对于S’ 坐标系的S坐标系、光源及光的速度 V’(S)= V’(光源)=-v V’(光)=c-v 干涉仪在S’ 坐标系中是静止的,入射光束的速率为c-v,光束在P处穿过P后形成光束①,速率仍为c-v。由于相对于反射镜M1入射光束的速率为c-v,故其反射光束的速率也为c-v。同理,当光束在P处经P反射到视场时,光束的速率也为c-v。设光束①在P 、M1之间来回传播所需的时间为t1,光束①从P 到M1所需的时间为t1’; 光束①从M1到P所需的时间为t1”。显然 (c-v) t1’ = L1 (c-v) t1”= L1 t1’ = L1/(c-v) t1”= L1/(c-v) 由此可得,光束①在P、M1间来回所需的时间为 t1=t1’+t1” = L1/(c-v) +L1/(c-v) = 2L1/(c-v) 如图07(图略)所示,光束②是进入干涉仪的光束在P处经P反射而成的,由于入射光束的速率相对于P为c-v,故经P反射的光束②的速率也为c-v。同理,经M2反射后,光束②的速率仍为c-v。在回到P处时穿过P后进入视场与光束①相会合。其速率仍然为c-v。设光束②在P 、M1之间来回传播所需的时间为t2,光束②从P 到M2所需的时间为t2’; 光束②从M2到P所需的时间为t2”。显然 (c-v) t2’ = L2 (c-v) t2”= L2 t2’ = L2/(c-v) t2”= L2/(c-v) 因此,光束②在P、M2间来回所需的时间为 t2=t2’+t2” = L2/(c-v) +L2 / (c-v) = 2L2 /(c-v) 由此可见,两光束的时间差为 Δt =t1-t2 = 2L1/(c-v) -2L2 /(c-v) = 2(L1-L2)/(c-v) = 2Δx /(c-v) 于是,两光束的光程差为 δ= V’(光)Δt = (c-v)Δt = 2Δx (c-v) /(c-v) = 2Δx 由此可见,两光束的光程差与光速无关,与干涉仪的运动速度无关,只与干涉仪内部PM1与PM2的距离差值Δx有关。也就是说,只要干涉仪相对于光源不作急加速运动或者快速旋转运动的话,那么,不管是把整个装置转过90°,还是180°,只要干涉仪内部PM1与PM2的距离差值Δx不变,两光束所产生的光程差也不会发生改变,就自然观察不到任何干涉条纹的移动了。这样的分析显然与实验的结果是相吻合的。 那么,以上的分析结果是不是对于相对于干涉仪静止的参考坐标系S’有着特殊的依赖呢?下面,本文继续将这个问题摆在相对于光源静止的参考坐标系S中进行分析。 .在相对于光源静止的参考坐标系S中进行分析 如图08(图略)所示,S是相对于光源静止的参考坐标系,所以光源相对于S坐标系是静止的,光源所发出的光,其速率相对于坐标系S为c;干涉仪在S坐标系中以速率v沿x轴的正向作匀速直线运动。在坐标系S中干涉仪及光的速度 V (干涉仪)= v V (光)=c 在坐标系S中,射入运动着的干涉仪的光束速率为c,光束在P处穿过分光板G1后形成光束①,速率仍为c。由于干涉仪以速率v与光束同向运动,当干涉仪由PM1运动到P’M1’时,相对于反射镜M1’,其入射光束的速率为c-v,故相对于反射镜M1’的反射光束的速率也为c-v。因此,相对于坐标系S,经反射镜M1’反射的光束速率就为(c-v)-v。光束①返回到P”处就被反射到视场中,由于光束①返回到P”处时相对于运动着的P”的速度为c-v,所以反射进入视场的光束相对于运动着的P”的速度也为c-v,而相对于坐标系S,反射进入视场的光束的速率应为[(c-v)2+v2]1/2。如图08(图略)所示,设光束①在P 、M1’和P”之间传播所需的时间为t1,光束①从P 到M1’所需的时间为t1’; 光束①从M1’到P”所需的时间为t1”。那么 ct1’= L1+v t1’ [(c-v) -v]t1”= L1-v t1” 算得 t1’ = L1/(c-v) t1”= L1/(c-v) 由此可得,光束①在P、M1’ 和 P”之间传播所需的时间为 t1=t1’+t1” = L1/(c-v) +L1/(c-v) = 2L1/(c-v) 如图09(图略)所示,光束②是进入干涉仪的光束在P处反射而成的,由于入射光束相对于运动的P的速率为c-v,故经P反射的光束②相对于运动的P的速率也为c-v,且相对于运动的P来说方向与入射光速相垂直,因此,相对于坐标系S,经P反射的光束②的速率应为[(c-v)2+v2]1/2。经M2’反射后,光束②的速率为[(c-v)2+v2]1/2。在回到P”处时穿过P”后进入视场与光束①相会合。其速率仍然为[(c-v)2+v2]1/2,如相对于运动的P来说,其速率仍应为(c-v)。如图09(图略)所示,设光束②在P 、M2’和P”之间传播所需的时间为t2,光束②从P 到M2’所需的时间为t2’; 光束②从M2’到P”所需的时间为t2”。由图09可知 (PM2’) 2 = (P’M2’) 2+(PP’) 2 (M2’P”) 2 = (M2’P”) 2+(P’P”) 2 那么 {[(c-v)2+v2]1/2 t2’ }2 = (L2)2+(v t2’ )2 {[(c-v)2+v2]1/2 t2” }2 = (L2)2+(v t2” )2 计算可得 t2’ = L2/(c-v) t2”= L2/(c-v) 因此,光束②在P、M2’和P”之间传播所需的时间为 t2=t2’+t2” = L2/(c-v) +L2 / (c-v) = 2L2 /(c-v) 由此可见,两光束的时间差为 Δt =t1-t2 = 2L1/(c-v) -2L2 /(c-v) = 2(L1-L2)/(c-v) = 2Δx /(c-v) 光束①和②进入干涉仪视场后相对于坐标系S的速率均为[(c-v)2+v2]1/2。然而,由于只有当观察者与干涉仪保持相对静止时才能对干涉仪进行观察,所以进入干涉仪视场的光束的速率只能选择相对于干涉仪的速率才与事实相符。光束①和②进入干涉仪视场后相对于干涉仪的速率均为c-v 。于是,两光束的光程差为 δ= (c-v)Δt = 2Δx (c-v) /(c-v) = 2Δx 由此可见,在相对于光源静止的参考坐标系S中进行分析,尽管相对光速有所不同,但同样也得出了在相对于干涉仪静止的参考坐标系S’中进行分析所得出的结论。 3.结论 由以上对迈克耳孙-莫雷实验结果的重新分析可以得出如下结论:迈克耳孙-莫雷实验的条纹移动ΔN取决于两光束的光程差的改变量Δδ,而两光束的光程差的改变量Δδ取决于两光束的光程差δ,而两光束的光程差δ,相对于任意一个惯性参考坐标系S来说,与光速VS(光)无关,与干涉仪的运动速度VS (干涉仪)也无关,只与干涉仪内部PM1与PM2的距离差值Δx有关。也就是说,在迈克耳孙-莫雷实验的过程中,只要干涉仪相对于光源不作急加速运动和快速旋转运动的话,那么,不管把整个装置转过90°还是180°,只要干涉仪内部PM1与PM2的距离差值Δx不变,两光束所产生的光程差也不会发生改变,就自然观察不到任何干涉条纹的移动了。这就是迈克耳孙-莫雷实验为何始终观察不到地球运动效应的真正原因。 在以上对迈克耳孙-莫雷实验结果的分析过程中,本文唯一遵循的就是伽利略相对性原理。也就是说,本文在以上的分析中只有一个前提,那就是假设光的传播必须遵守伽利略相对性原理,而在这样的前提下做出的分析所得的结果恰恰与实验结果完全吻合。而一百多年前所作的分析就是因为并没有完全遵守伽利略相对性原理,始终不能摆脱以太假说的影响。所以其分析的结果才与实验结果不符。这一实验再一次证明了伽利略相对性原理所揭示的规律具有普遍的适用性。原先认为光的传播规律特殊并不符合伽利略相对性原理的观点是站不住脚的。这一实验充分证明了光的传播也完全遵循伽利略相对性原理。 爱因斯坦依据迈克耳孙-莫雷实验的结果草率地得出光速对于所有惯性观测者都一样的结论,并把建立在如此意义上的光速不变作为一条基本原理,于此推导出洛伦兹变换来代替伽利略变换,在此基础上才建立起狭义相对论和广义相对论。由此可见,爱因斯坦相对论不但没有科学理论的支持,而且也没有科学实践的支持。可以说,爱因斯坦相对论是有史以来隐藏最深的伪科学理论。同时也是仍在不断发展着的并且是目前体系化程度最高的伪科学理论体系。 100年前,爱因斯坦将迈克耳孙-莫雷实验作为建立相对论的可靠支柱。而今,本文将它作为推翻爱因斯坦相对论的有力证据。 后记: 在人类探索未知世界的历程中,迈克耳孙-莫雷实验给予人们什么启示呢?它让人们产生了对科学本身的反思。技术侧重于知识和方法,而科学侧重于精神和态度。科学的本质可以概括为实事求是的探索精神和脚踏实地的认真态度。如果离开了实事求是和脚踏实地这两点,那么科学技术就只能剩下技术两字了。
冷月无痕MNG
文献综述是对某一方面的专题搜集大量情报资料后经综合分析而写成的一种学术论文, 它是科学文献的一种。 格式与写法 文献综述的格式与一般研究性论文的格式有所不同。这是因为研究性的论文注重研究的方法和结果,特别是阳性结果,而文献综述要求向读者介绍与主题有关的详细资料、动态、进展、展望以及对以上方面的评述。因此文献综述的格式相对多样,但总的来说,一般都包含以下四部分:即前言、主题、总结和参考文献。撰写文献综述时可按这四部分拟写提纲,在根据提纲进行撰写工。 前言部分,主要是说明写作的目的,介绍有关的概念及定义以及综述的范围,扼要说明有关主题的现状或争论焦点,使读者对全文要叙述的问题有一个初步的轮廓。 主题部分,是综述的主体,其写法多样,没有固定的格式。可按年代顺序综述,也可按不同的问题进行综述,还可按不同的观点进行比较综述,不管用那一种格式综述,都要将所搜集到的文献资料归纳、整理及分析比较,阐明有关主题的历史背景、现状和发展方向,以及对这些问题的评述,主题部分应特别注意代表性强、具有科学性和创造性的文献引用和评述。 总结部分,与研究性论文的小结有些类似,将全文主题进行扼要总结,对所综述的主题有研究的作者,最好能提出自己的见解。 参考文献虽然放在文末,但却是文献综述的重要组成部分。因为它不仅表示对被引用文献作者的尊重及引用文献的依据,而且为读者深入探讨有关问题提供了文献查找线索。因此,应认真对待。参考文献的编排应条目清楚,查找方便,内容准确无误。关于参考文献的使用方法,录著项目及格式与研究论文相同,不再重复。
zhinaltl333
20世纪70年代末,中国科学技术大学在国内率先提出建设电子同步辐射加速器。1977年同步辐射装置的建造列入全国科学技术发展规划。1978年春中科院决定成立以中国科学技术大学为主的同步辐射加速器筹备组,并于当年三月在合肥召开了第一次筹备工作会议,讨论了我国建造电子同步辐射加速器的初步方案,象征着我国同步辐射事业的正式启动。在随后几年的预研制过程中,工程人员制成了一段30MeV的电子直线加速器、一块弯转磁铁、一块四极磁铁及一个储存环的超高真空系统,以及物理设计,取得了良好的结果和第一手的经验,为后面的工程打下了坚实的基础。1981年10月,中科院在合肥召开了“合肥同步辐射装置预研制及物理设计审定会”,会议认为合肥同步辐射装置已基本进入工程的条件。1983年,国家计委以计科1983年470号文《关于建设国家同步辐射实验室的复函》批准了在中国科学技术大学筹备国家同步辐射实验室,国家同步辐射实验室正式立项。这是国家计委批准建设的中国第一个国家级实验室。1984年,国家计委以计科(外)1984年2033号文《关于合肥同步辐射实验室扩初设计的批复》批准了该工程的主体工程建设规模为建造一台能量为8亿电子伏的同步辐射光源及相应的实验设施,总投资5990万元(含350万美元),并列入按合理工期组织施工的国家重点项目。国家计委批准的国家同步辐射实验室扩初设计中确定了电子储存环的能量为800MeV、平均流强为100~300mA,用一台能量为200MeV、脉冲流强为50mA的电子直线加速器作为注入器。并明确与加速器建设的同时,建造5条光束线及5个实验站,它们分别是:光电子能谱光束线实验站、分时光谱光束线实验站、软X射线显微术光束线实验站、X射线光刻光束线实验站。1988年,国家同步辐射实验室的土建工程基本完工。1989年3月加速器的所有部件都已安装就位并经过局部和分系统的调试,同年4月开始联调,25日开始注入储存环,仅经过23小时便得到第一个储存束流。1989年光束线实验站开始安装,1991年8月完成所有光束线实验站的安装调试工作,同年9月开始用同步光进行调试,并开展实验研究工作。1991年12月22日至23日,由国家科委组织,王淦昌任主任的鉴定委员会对合肥同步辐射加速器及光束线实验站进行技术鉴定。鉴定委员会认为由我国自行设计、研制建成的合肥同步辐射加速器的主要性能指标已达到国际上同类加速器的先进水平,已建成的五条同步辐射光束线和五个实验站的主要性能指标已基本达到国际水平。1991年12月26日,国家同步辐射实验室工程顺利通过了国家计委组织的国家验收。国家验收委员会高度评价国家同步辐射实验室工程的建设者们圆满地完成了工程建设任务。1993年4月,NSRL正式对国内外开放,建有6条光束线和6个实验站,可广泛用于开展物理、化学、材料科学、生命科学、信息科学、力学、地学、医学、药学、农学、环境保护、计量科学、X射线光刻和超微细加工等基础研究和应用研究。1994年2月,由钱临照、唐孝威两位院士发起,王淦昌、谢希德、谢家麟、冯端、卢嘉锡等34位院士联合向有关部门提出《关于集中力量全面建设、充分利用合肥国家同步辐射光源的建议》,中国科技大学也正式向国家有关部门提出建造国家同步辐射实验室二期工程(简称二期工程)的申请。1996年,国家科技领导小组批准二期工程作为“九五”的首批国家重大科学工程项目之一启动。国家计委分别以计科技1997年557号文和1503号文对二期工程项目建议书和可行性研究报告批复中国科学院,同意以中国科技大学为依托建设“国家同步辐射实验室二期工程”国家重大科学工程项目,总投资11,800万元人民币。1997年4月8日,国家计委批复了NSRLII项目建议书(计科技(1997)557号文)。1997年8月29日,国家计委批复了可行性研究报告(计科技(1997)1503号文)。1998年7月8日,国家计委批复了初步设计报告(计投资(1998)1301号文)。1999年4月15日,国家发展计划委员会以计投资1999年416号文《国家计委关于国家同步辐射实验室二期工程开工建设的批复》同意二期工程开工建设。 二期工程的技术目标是:在充分保证机器主体长期、可靠、稳定运行,大幅度提高光源积分流强、亮度和稳定性的基础上,新建1台波荡器插入元件,增建8条新光束线和相应8个实验站。竣工后,合肥光源的潜力得到更充分的发挥,将作为性能优秀、稳定可靠、部分指标相当先进的中低能区同步辐射光源,长期处于国际上同类装置的一流水平。1999年,NSRLII完成了水冷系统冷却塔的更新改造,空调系统热交换器等附属设备投入运行,辐射场监测系统通过调试开始试运行。加速器各子系统改造的主要元件及样机研制与测试多已顺利完成并通过了验收。注入系统完成了冲击磁铁磁块分组测试、脉冲电源组装、陶瓷真空盒部分测试。储存环真空系统、电源系统的环主电源、控制系统的相关控制软件、高频系统的新高频机、束测系统的部分组件、波荡器单磁块测量系统等改造或研制均已完成。1999年12月12日,来自中科院高能所、物理所、电工所、上海同步辐射装置、清华大学、复旦大学的9位教授、研究员组成的专家组,对6万高斯超导扭摆磁铁及XAFS光束线、站进行了技术鉴定。会议听取了研制报告、测试结果报告,审阅了全部资料,并进行了现场考察。专家组认为:6万高斯超导扭摆磁铁是一项技术复杂的项目,在我国是首次研制,其综合性能在国际同能区的装置中已居领先地位。该扭摆磁铁安装调试成功,使工作能区扩展到硬X射线领域,具有重要的科学意义。XAFS线、站的主要性能均达到设计指标,光束线的分辨率和光斑的稳定性达到国际上同类装置的水平,提供用户使用后获得了良好的实验结果。1999年12月19日,NSRL第二届用户委员会第一次会议在合肥召开。会上宣读了经中科院批准的新一届用户委员会名单,简要介绍了二期工程的进展情况、实验室现状和下年度用光计划。委员们肯定了NSRL为用户做的工作,针对用户管理方面存在的一些问题,提出了可行的建议。2000年,3月20日打开储存环真空,开始安装与之相连的大部分设备和所有光束线的前端,4月中旬封闭。光束线前端于5月安装到位。储存环真空恢复顺利,各前端的真空性能均达到指标要求,通过了工程内部验收。新建的LIGA光束线安装就位,通过了离线调试验收。2001年,运行质量比改造前大幅度的提高。环的主磁铁电源、注入系统电源等新设备的故障率很低,真空系统改造、新光束线前端等通过了运行的考验。5月超导Wiggler投入运行,为NSRLII的两条用X射线的光束线对光,LIGA站进行了首次调试和试运行,获得了深达1毫米的深度光刻制品(右图)。下半年,高频腔完成机械加工;注入系统长直线段的冲击磁铁已制成;波荡器加工已完成,磁场测量与调整的初步结果令人满意。大部分电源已验收,控制系统的改造与之配合进行。光束线站的非标加工基本完成。除已就位的LIGA线外,其他七条光束线的机械测量(粗)、真空调试、安装就位等工作正全面展开。八个实验站中的四个的主体设备已经初步安装到位。其他各站也进展顺利,重要的非标部件的加工基本完成。公用设施改造的大部分已完成并投入使用。2002年5月,NSRLII储存环束流闭轨校正系统投入运行并取得良好效果。其三个主要组成部分:束流闭轨位置测量系统、校正铁系统和相关的控制系统功能正常。该系统能很好地满足机器运行和研究的需要。2002年7月15日,长约米的波荡器UD-1通过专家测试。来自中科院高能物理所、中科院上海原子核所和中国科技大学等单位的专家对NSRLII新建波荡器UD-1的磁场性能指标进行了测试。现场测试结果与原测数据一致,重复性很好。UD-1是中国大陆建成的第一台储存环中以产生高亮度同步辐射的波荡器。其磁间隙变化范围大,测量长度长,磁测指标多、数据多,调试测量的工作量和难度都很大。测试组认为,UD-1调试测量数据完整,性能优良,各项指标均已达到设计要求,主要指标优于设计要求。2002年,环高频系统10月完成安装,真空系统改造基本完成,工程进入联合调试、试运行阶段。X射线衍射与散射线站通过了专家测试开始试运行。表面物理、光谱辐射标准和计量、原子分子物理等线的光学元件完成安装,开始光路的初步调试。2003年1月16日,NSRLII光声、光热实验站设计方案调整专家审定会在合肥举行。专家组由南京大学声学研究所张淑仪院士(组长)、复旦大学同步辐射研究中心的张新夷教授、复旦大学生命科学学院的季朝能副教授、中科院基础局的陈勋远研究员和中国科技大学物理系的方容川、施朝淑教授、化学系的苏庆德教授以及生命科学学院吴季辉教授组成。专家们听取了该实验站方案调整内容以及调研结果。专家组认为:NSRLII建设方案已充分考虑了满足真空紫外圆二色光谱实验站的要求,在工程进行中尽快调整方案是必要的,也是合理的,应集中力量建立真空紫外圆二色光谱及光声光谱实验研究方法,并建议光热偏转光谱可不作为二期工程验收内容,条件成熟时再开展这方面工作。2003年3月13日,NSRLII新注入系统通过束流调试。3月4日打开环真空更换陶瓷真空室组件,3月13日开始带束联调并成功储存束流。四块冲击磁铁能实现良好匹配,励磁电流可加足设计值,最高积累束流流强曾达210mA。注入系统改造是NSRLII的关键子项目之一,也是难点之一。在2002年10月的调试中,束流极难储存。经过多方试验、观察测量和分析,并与高能所、上海核所、日本KEK的专家讨论,判断是陶瓷真空室金属镀膜偏厚,造成磁场时间滞后不均,并制定了改进关键工艺、严格控制质量、加强半成品检测、抓紧进度等措施。由于判断准确,措施得当。陶瓷真空室组件的加工仅用两个多月就顺利完成。各项技术指标皆符合物理设计要求。2004年3月14-16日,NSRLII通过了中科院组织的加速器及光束线专家测试会。测试组由来自上海应用物理所、北京高能物理所、兰州近代物理所的10位专家组成,陈森玉院士担任组长,赵振堂、夏佳文、夏绍建研究员担任副组长。测试期间,测试组专家审定了工程指挥部提交申请报告,确定了总体工艺综合测试指标和参数,分成8个小组对加速器改造项目和光束线部分的12个子项工艺的测试方法、测试手段和自测结果进行了审定,并对他们的主要性能指标进行了复测。测试组专家认为:NSRLII已测的加速器改造项目通用运行模式满足同步辐射用户的基本需求,可投入运行。12条光束线和实验站可提供同步辐射用户使用。2004年5月27-28日,中科院基础局组织专家组对NSRLII进行了院级工艺鉴定。鉴定组由魏宝文院士担任组长,陈森玉院士、陆坤权研究员担任副组长的11位专家组成。专家们听取了工程建设报告和分管加速器改造、光束线建设、实验站建设报告;听取了陈森玉院士宣读的工艺测试报告;查阅了工程指挥部提供的专家测试组测试结果;并现场观察了装置运行情况。鉴定组确认了专家测试组提交的测试结果,积极评价NSRLII取得的成绩。改造后的装置技术水平提高到新的高度,运行流强300毫安,束流平均寿命大于8小时;超导扭摆磁铁(Wiggler)运行时,全部14条光束线可同时引出同步辐射光。所有新建实验站皆已基本具备向用户开放的条件,满足大多数同步辐射用户的基本需求,建议在国家验收后将尽快投入运行。2004年12月14日,NSRLII正式通过了由国家发展和改革委员会委托中科院主持的国家验收。验收委员会听取了工程建设报告、专家测试报告、工艺鉴定报告和预验收意见,查验了工程现场,查阅了文件、档案资料。经过认真、仔细的审查,验收委员会认为:国家同步辐射实验室通过二期工程建设,提高了装置技术水平,扩大了实验应用领域,基本完成了国家发展和改革委员会(原国家计委)批准的建设目标,同意NSRLII通过国家验收。2005年5月12日,NSRLII齐飞研究组与美国、德国的科学家合作,首次在实验中发现了一系列的碳氢化合物氧化过程的重要中间体-烯醇,其研究成果以Science Express形式发表在5月12日出版的国际权威的学术刊物《科学》杂志上。国外的一些媒体在第一时间作了相关报道。《科学》杂志审稿人认为这是一项非常有意义而且很有趣的工作。这一研究工作由美国、中国、德国五个研究小组共同参与,中国科学技术大学国家同步辐射实验室作为第三参与单位。实验工作在美国劳伦斯伯克利国家实验室的先进光源和NSRLII完成。2005年8月4-7日,NSRLII2005年度用户年会在安徽天柱山召开。来自国内外高等院校、科研机构和企业共计45家单位的136位代表参加了会议。会议听取了工程竣工验收后的整体工作、运行和开放情况的报告。美国斯坦福大学沈志勋教授、日本广岛大学乔山教授、加拿大同步辐射装置教授,以及中科院大连化物所包信和所长、中科院生物物理所所长饶子和院士、中科院物理研究所周兴江研究员、中科院北京高能所胡天斗研究员、中科院上海应物所何建华研究员应邀做了精彩报告,分别介绍了各自的科研成果及相关领域研究的最新进展。各实验站工作人员与用户进行了交流、讨论,听取了各线、站用户对用光机时申请、课题发展方向和实验技术方法等方面的意见和建议。会议期间,选出了新一届用户专家委员会,成员由来自13个科研机构的29人组成。委员会主任杨学明(中科院大连化物所)、副主任吴自玉(中科院高能所)、周兴江(中科院物理研究所)、封东来(复旦大学),秘书长高琛。2005年11月19-20日,NSRLII在合肥举行了发展方向国际研讨会,探讨NSRLII在真空紫外、软X射线和红外领域所面临的重大科学问题、所具备的优势和发展战略等问题。来自法国SOLEIL同步辐射实验室、日本分子科学研究所、日本广岛大学、美国加利福尼亚大学、中科院物理研究所、中科院大连化学物理研究所、中科院上海技术物理研究所、中科院武汉物理与数学研究所、中科院化学所、清华大学、复旦大学、吉林大学、中国科学技术大学等国内外13个高校、研究所的19位知名专家学者参加了会议。会议听取了相关领域专家对各自学科前沿重大科学问题的分析和利用NSRLII解决其科学问题的设想,重点是真空紫外光化学光物理过程、强关联体系的软X射线共振散射和生命或材料科学中的红外光谱显微。专家认为,NSRLII已初步具备了开展这些前沿研究的基本条件,通过与用户的紧密合作,有针对性地重组、改进和完善现有的实验条件、实验技术和方法即可开展这些重要的工作,为我国的基础研究提供一个高水平的研究平台。专家建议优先考虑建立一个软X射线波段的波荡器(undulator),补充真空紫外光束线实验站的条件。2005年12月14日,利用X射线散斑法研究弛豫铁电体PMN-PT的极化团簇结构取得进展。中科院上海应用物理所邰仁忠课题组与NSRLII科研人员合作,利用NSRLII高亮度X射线光源在X射线衍射与散射实验站上用散斑技术观察到PMN-PT铁电单晶中纳米极化团簇随温度和外电场的变化情况。驰豫铁电体是应用很广泛的一类功能材料,这类材料优异的机电性能一直被认为源于PbTiO3母体中掺杂阳离子所形成的电极化团簇。然而,人们对极化团簇的理解基本上来自理论计算或一些间接的实验结果,尚无电极化团簇的直接实验证据。2005年12月21-23日,NSRLII通过了中科院组织的现场评估。由中科院高能物理所、兰州近代物理所、上海应用物理所和中科院物理所相关专家组成的专家组对NSRLII改造完成后一年来的运行情况进行了现场评估,专家组组长由陈森玉院士担任。专家组听取了工作汇报,分为加速器、光束线站及用户开放两个小组进行现场考察,并调阅运行记录、进行现场测试,对运行及管理工作进行了深入的了解,对NSRLII的整体运行、开放、用户管理、人才培养及取得的科研成果予以充分肯定。专家组认为:“经二期工程改造后,合肥光源的运行水平得到了较大和明显的提高。除发射度和轨道稳定性外,性能(流强和寿命)接近世界同类光源SRC,CAMD水平”。但由于不具备相应的测试手段,个别敏感出光口是否达到垂直位置漂移30微米稳定性难以定量测量。建议今后应注重改善轨道的稳定性;提高年供光时间(年积分流强)和降低自然发射度,以满足用户需求,并真正达到世界先进水平。专家组给出了《加速器部分现场检查意见》和《光束线站现场检查意见》两个分组报告及《现场检查的了解和建议》总体报告。2006年3月29日,中科院微电子所在NSRLII光刻站上利用X射线光刻技术成功研制出最外环宽度为150nm的高线密度钛特征线微聚焦波带片,并实现了波带片图形特征尺寸的精确控制,其高宽比达到。在X射线波段,各种材料的折射率都近似等于1,无法构造出类似于可见光波段的“透镜”,只能采用波带片来实现对X射线的聚焦。为了满足X射线光学的需求,微聚焦波带片的最外环必须是大高宽比的深亚微米、纳米圆环,因此这种波带片的制作难度非常大。该研究结果充分证明了在国家同步辐射实验室光刻站上进行大高宽比深亚微米、纳米X射线光刻的可行性。2006年5月29日,NSRLII的软X射线磁性圆二色(XMCD)实验站通过加偏置电压消除外磁场的影响,成功实现了外磁场下MCD的测量。磁性的起源一直是自旋电子学器件应用的关键。传统磁滞测量无法给出各个元素对磁性的贡献,只能得到总效应。利用同步辐射XMCD技术可以将X射线能量精确定位在某个元素的共振吸收处,选择性地研究该元素对磁性的贡献,这对理解复杂材料体系磁性的起源意义重大。由于外磁场对样品出射电子干扰较大,大部分基于同步辐射软X射线磁性圆二色(XMCD)的实验站均无法在加磁场下进行MCD测量。2006年8月10-15日,NSRLII第一届运行年会在安徽屯溪召开。来自海峡两岸科研院所共计6家单位的56位代表参加了会议。会议听取了NSRLII改造运行、NSRL05-06同步辐射应用研究进展的报告。特邀高能所陈延伟研究员、上海应用物理所阎和平研究员、兰州近物所夏佳文研究员和台湾新竹光源许国栋博士分别介绍了各自大科学装置的运行情况和最新进展。2006年8月16-20日,NSRLII2006年度用户年会在安徽黄山召开。来自国内外高等院校、科研院所共计38家单位的105位代表,以及中科院基础和国家自然基金委等有关领导参加了会议。会议向与会代表汇报了NSRLII近期发展规划、机器运行汇报和用户开放的情况。会议邀请日本Hiroyuki Oyanagi教授、加拿大Peiqiang Yu教授、台湾杨耀文和李裕新教授、物理所麦振洪和李晨曦教授、复旦大学封东来教授、高能所吴自玉教授、浙江大学李宏年教授做了精彩报告,介绍了各自的科研成果及相关领域研究的最新进展。其中近半报告是近一年来利用NSRLII取得的较有影响的研究成果。会议期间,用户专家委员会讨论和审批了一批NSRL用户课题,评议了实验室开放运行工作、对实验室的发展提出了建议和意见。会议期间还召开了真空紫外研讨会,对国家同步辐射实验室的发展方向、近期目标和重点解决的问题等进行了研究和探讨。2007年4月5日,NSRLII新建Undulator真空紫外光束线及实验站建设成功。该束线利用波荡器产生的真空紫外辐射,光子能量范围 eV,平均光子强度1x1013光子/秒,能量分辨E/DE约1000。该波段高次谐波严重,抑制非常困难,是世界上真空紫外光束线研究的重点。新束线采用三级差分的气体滤波器,成功抑制了高次谐波,抑制效率,达到了世界先进水平。研究人员已在新建实验站上,利用红外激光解析结合同步辐射单光子电离技术研究了生物小分子、有机分子、药物分子等,取得了一些实验结果。2007年7月22日-25日,NSRLII2007年度用户年会在大连化学物理研究所召开。来自国内外高等院校、科研院所共计26家单位的105位代表参加了此次会议。会议对了解国际同步辐射应用研究领域最新进展、促进国内外同行交流合作、了解用户需求起到了积极的促进作用。2007年7月24日,NSRLII发展规划研讨会在大连召开。中国科学技术大学党委书记郭传杰,中科院计划局、基础局有关领导,中国科学技术大学有关领导,实验室用户专家委员会委员和部分用户代表,以及实验室主任伍灼耀、执行主任盛六四、副主任高琛和实验部主要学术骨干、线站负责人参加了研讨会。会议听取了实验室发展规划报告,从实验室的定位和发展目标、历史和现况、国内外发展趋势、重点研究领域、光源建设和需要的保障措施等七个方面阐述了实验室在前期调研、筹划和研讨的基础上初步形成的发展规划设想。与会代表展开了热烈的讨论,从NSRL的特色出发,面向国家战略发展和国际前沿科学的需求,强调有所为和有所不为的原则,提出了认真总结现存问题、调整重点研究领域布局、尽可能提高现有装置的水平等很多有益意见和建议。2007年8月12日-17日,NSRLII运行年会在山东日照召开,会议总结了一年来了机器运行和开放情况,与北京高能所、兰州近物所、上海应物所等兄弟单位的特邀代表进行了学术交流和研讨,与会代表对进一步提高合肥光源的运行质量提出了很多有益的建议。2007年11月,NSRLII在教育部“985”二期工程支持下新建的X射线成像实验站完成了安装调试,空间分辨率达到50纳米,其分辨能力达到国际先进水平。实验站具有吸收衬度、相位衬度成像和三维成像等功能,可用于表征纳米/亚微米材料,观察细胞和组织的内部结构和形貌变化,在细胞、植物和污染物的内部进行元素定位等,为纳米材料、环境科学和生物医学等提供了一种先进的实验手段。2008年1月,担任合肥同步辐射国家实验室用户专家委员会主任的中科院大连化物所杨学明研究组的成果“发现玻恩―奥本海默近似在氟加氘反应中完全失效”入选2007年中国十大科技进展。该项研究成果中的部分重要数据在合肥同步辐射国家实验室原子与分子物理实验站上获得。2008年3月,NSRLII齐飞教授领导的研究组利用低温等离子体放电技术完成了对星际等离子体环境的模拟,并在醇类物质的等离子体放电过程中探测到一系列的烯醇类物质,揭示了烯醇类物质作为一类重要星际物质的可能性。实验结果发表在天文学科顶级期刊《天体物理学杂志》(The Astrophysical Journal 676,416(2008))上。4月,该课题组又有三篇论文正式被《国际燃烧会议论文集》(Proceedings of the Combustion Institute)接收,并将于2008年8月初在加拿大蒙特利尔召开的第三十二届国际燃烧会议(目前燃烧学界档次最高的国际性会议)上进行宣读。入选的三篇论文分别对乙炔、乙基苯和硝基甲烷的低压预混层流火焰进行了深入的研究。《国际燃烧会议论文集》汇集本学科两年来的前沿成果,是燃烧研究领域最著名的杂志之一。这三篇论文的入选是继2005年关于火焰中烯醇探测的文章在Science上发表后,该课题组在燃烧研究领域取得的又一重要进展。2008年6月,合肥微尺度物质科学国家实验室纳米材料与化学研究部俞书宏教授、NSRLII田扬超研究员及其合作者利用NSRLII的X射线纳米三维成像技术,成功地在室温、空气环境下对运用化学法制造的‘几何明星’凹陷Escher型硫化铜十四面体微晶进行了三维成像,直观地揭示了该凹陷Escher型微晶由四个相同的六角形的板通过相互交叉构筑成具有14个腔洞(其中包括6个正方形和8个三角形)的结构。与传统的形态和结构分析技术如透视电子显微镜和扫描电子显微镜相比,X射线纳米三维成像技术具有更直观解析复杂形态纳米结构的优点。相关论文发表在《应用物理快报》(Appl. Phys. Lett. 92, 233104(2008))上,并被《自然·中国》(Nature China )选为来自中国大陆和香港的突出科学研究成果,在2008年6月的‘Research Highlights’(研究亮点)栏目中以“Nanotomography: Crystal clear”为题并附图介绍了该工作。2008年9月,合肥国家同步辐射实验室的用户—中科大化学系环境工程实验室俞汉青教授研究小组,利用同步辐射微细加工技术首次制备了一种新型微电极。该课题组利用这个微电极成功测定了好氧硝化颗粒中溶解氧的微区分布,并进行了定量分析,对于其中生化反应机理进行了探讨。实验结果对于微生物颗粒的培养与废水处理具有一定的指导意义。该研究结果已有2篇论文发表在环境学科顶级期刊《环境科学与技术》Environmental Science & Technology 上(41,5447(2007)和42,4467(2008)),还有1篇论文已被该刊物接受。
在网上找下,(材料化学前沿)或者(材料科学)这样的期刊~里面可以参考下这类的论文~可以免费下载下来~找下灵感
1、收集文献应当尽量全系列。2、注意引用文献的代表性,可靠性和科学性。3、提及文献必须钟爱文献内容。4、参考文献不能省略。有些科研论文可以将参考文献省略,但文献
1、医疗器械在设计和生产过程中,由于受技术条件、认知水平和工艺等限制,加之上市前的研究、验证不足,将不可避免地存在缺陷;同时,由于器械在应用过程中的性能退化、故
工业工程在国内企业,尤其是大型企业的应用研究,作为一个具有很强的理论和实际意义的课题,被推到前所未有的显要位置。下面是我为大家整理的工业工程系研究 毕业 论
可行性研究的步骤。 (1)组织准备。进行项目可行性研究首先要组建研究班子,负责可行性研究的构想、经费筹集、制定研究计划方案等。其中,项目研究班子的成员包括了解房