bayueshisan
大的方面,在加密算法、数字签名、报文摘要、安全认证等方面,质数都具有重要的价值。小的方面,在生活中它可以帮助我们记忆某些数字。可以用于设置密码,比如密码838997,猛一看它没什么规律,但自己知道它是由3个连续的质数组成的素数,又称,是只有两个正因子(1和自己)的自然数。素数近来被利用在密码学上,所谓的就是将想要传递的信息在编码时加入素数,编码之后传送给收信人,任何人收到此信息后,若没有此收信人所拥有的密钥,则解密的过程中(实为寻找素数的过程),将会因为找素数的过程()过久而无法解读信息你的问题有意思,不过是分类而以,如同你问偶数有什么用一样。素数因为其固有特征:只被自己或1除尽。不同的工程上有其不同的用处,例如,在计算机中工程编码一些方法中,希望有正交特征,素数即有该特征。__________________________嗯,这些是我摘抄其他人的,希望对你有帮助
Banyantree212
质数又被称为素数,是指一个大于1的自然数,除了1和它自身外,不能被其它自然数整除,且其个数是无穷的,具有许多独特的性质,现如今多被用于密码学上。
质数有许多独特的性质,例如质数p的约数只会有两个,那就是1和p,且质数的个数是无限的,所有大于10的质数中,个位数都只有1,3,7,9,所以要区分质数或者认识质数是非常容易的,掌握基本规律即可。
在初等数学中有一个基本定理,任意一个大于1的自然数,要么本身就是质数,要么可以分解为几个质数之积,这种分解本身就是具有唯一性的。所以现如今多将质数用于密码学上,而其解密的过程,实际上就是一个寻找质数的过程。
扩展资料:
质数被利用在密码学上,所谓的公钥就是将想要传递的信息在编码时加入质数,编码之后传送给收信人,任何人收到此信息后,若没有此收信人所拥有的密钥,则解密的过程中(实为寻找素数的过程),将会因为找质数的过程(分解质因数)过久,使即使取得信息也会无意义。
在汽车变速箱齿轮的设计上,相邻的两个大小齿轮齿数设计成质数,以增加两齿轮内两个相同的齿相遇啮合次数的最小公倍数,可增强耐用度减少故障。
在害虫的生物生长周期与杀虫剂使用之间的关系上,杀虫剂的质数次数的使用也得到了证明。实验表明,质数次数地使用杀虫剂是最合理的:都是使用在害虫繁殖的高潮期,而且害虫很难产生抗药性。
以质数形式无规律变化的导弹和鱼雷可以使敌人不易拦截。
多数生物的生命周期也是质数(单位为年),这样可以最大程度地减少碰见天敌的机会。
参考资料来源:百度百科-质数
洁博利郑少波
质数是用来保证一个系统稳定运作的。比如机械设计的时候,一对啮合的圆柱齿轮齿数要互质。两个不相同的质数一定是互质数。这样很少会出现两个齿总是碰在一起的情况,不容易齿轮断裂。自然界也有动物利用质数切分休眠节奏,这样有利于躲避天敌。比如美洲蝉藏地下休眠17年,天敌不论什么周期都很难碰上。没有质数,一个相对动态平衡的系统是比较难以维持的。说质数是宇宙的基石一点也不为过。(ps:个人理解,其实质数在密码学上的作用也是保持加密系统状态稳定,很难被破坏。非得知道对应的两个质数,瞎猫碰死老鼠是极其艰难的。)
黄小仙128
可以这么说,质数是令所有数学家着迷的数,很多大数学家都有过关于质数的研究,从欧几里得到欧拉、高斯、黎曼再到Weil、Grothendieck……基本说得出来的数学家都对研究质数有过贡献,质数本身有着一种美,这种美也许你对...
cuteorange290
质数(又称为素数)1.就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,这种整数叫做质数或素数。还可以说成质数只有1和它本身两个约数。这终规只是文字上的解释而已。能不能有一个代数式,规定用字母表示的那个数为规定的任何值时,所代入的代数式的值都是质数呢?2.素数是这样的整数,它除了能表示为它自己和1的乘积以外,不能表示为任何其它两个整数的乘积。例如,15=3*5,所以15不是素数;又如,12=6*2=4*3,所以12也不是素数。另一方面,13除了等于13*1以外,不能表示为其它任何两个整数的乘积,所以13是一个素数。编辑本段质数的概念一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。例如 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数或合数。从这个观点可将整数分为两种,一种叫质数,一种叫合成数。(1不是质数,也不是合数)著名的高斯「唯一分解定理」说,任何一个整数。可以写成一串质数相乘的积。编辑本段质数的奥秘质数的分布是没有规律的,往往让人莫名其妙。如:101、401、601、701都是质数,但上下面的301(7*43)和901(17*53)却是合数。有人做过这样的验算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……于是就可以有这样一个公式:设一正数为n,则n^2+n+41的值一定是一个质数。这个式子一直到n=39时,都是成立的。但n=40时,其式子就不成立了,因为40^2+40+41=1681=41*41。说起质数就少不了哥德巴赫猜想,和著名的“1+1”哥德巴赫猜想 :(Goldbach Conjecture)内容为“所有的大于2的偶数,都可以表示为两个素数”这个问题是德国数学家哥德巴赫(C.Goldbach,1690-1764)于1742年6月7日在给大数学家欧拉的信中提出的,所以被称作哥德巴赫猜想。同年6月30日,欧拉在回信中认为这个猜想可能是真的,但他无法证明。从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。“用当代语言来叙述,哥德巴赫猜想有两个内容,第一部分叫做奇数的猜想,第二部分叫做偶数的猜想。奇数的猜想指出,任何一个大于等于7的奇数都是三个素数的和。偶数的猜想是说,大于等于4的偶数一定是两个素数的和。”(引自《哥德巴赫猜想与潘承洞》)哥德巴赫猜想貌似简单,要证明它却着实不易,成为数学中一个著名的难题。18、19世纪,所有的数论专家对这个猜想的证明都没有作出实质性的推进,直到20世纪才有所突破。直接证明哥德巴赫猜想不行,人们采取了“迂回战术”,就是先考虑把偶数表为两数之和,而每一个数又是若干素数之积。如果把命题"每一个大偶数可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b",那么哥氏猜想就是要证明"1+1"成立。1900年,20世纪最伟大的数学家希尔伯特,在国际数学会议上把“哥德巴赫猜想”列为23个数学难题之一。此后,20世纪的数学家们在世界范围内“联手”进攻“哥德巴赫猜想”堡垒,终于取得了辉煌的成果。到了20世纪20年代,有人开始向它靠近。1920年,挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比6大的偶数都可以表示为(9+9)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫猜想”。1920年,挪威的布朗(Brun)证明了 “9+9 ”。1924年,德国的拉特马赫(Rademacher)证明了“7+7 ”。1932年,英国的埃斯特曼(Estermann)证明了 “6+6 ”。1937年,意大利的蕾西(Ricei)先后证明了“5+7 ”, “4+9 ”, “3+15 ”和“2+366 ”。1938年,苏联的布赫 夕太勃(Byxwrao)证明了“5+5 ”。1940年,苏联的布赫 夕太勃(Byxwrao)证明了 “4+4 ”。1948年,匈牙利的瑞尼(Renyi)证明了“1+c ”,其中c是一很大的自然数。1956年,中国的王元证明了 “3+4 ”。1957年,中国的王元先后证明了 “3+3 ”和 “2+3 ”。1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1+5 ”, 中国的王元证明了“1+4 ”。1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)证明了“1+3 ”。1966年,中国的陈景润证明了 “1+2 ”[用通俗的话说,就是大偶数=素数+素数*素数或大偶数=素数+素数(注:组成大偶数的素数不可能是偶素数,只能是奇素数。因为在素数中只有一个偶素数,那就是2。)]。其中“s + t ”问题是指: s个质数的乘积 与t个质数的乘积之和20世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法。解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果。由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。但为了实现这最后的一步,也许还要历经一个漫长的探索过程。有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的。英文的prime number: a number that haas exact 2 foctor编辑本段质数的性质被称为“17世纪最伟大的法国数学家”费尔马,也研究过质数的性质。他发现,设Fn=2^(2^n)+1,则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=4294967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数。但是,就是在F5上出了问题!费尔马死后67年,25岁的瑞士数学家欧拉证明:F5=4294967297=641*6700417,并非质数,而是合数。更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数。目前由于平方开得较大,因而能够证明的也很少。现在数学家们取得Fn的最大值为:n=1495。这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数。质数和费尔马开了个大玩笑!编辑本段质数的假设17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1代数式,当p是质数时,2^p-1是质数。他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。 p=2,3,5,7时,Mp都是素数,但M11=2047=23×89不是素数。还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证。梅森去世250年后,美国数学家科勒证明,2^67-1=193707721*761838257287,是一个合数。这是第九个梅森数。20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难。编辑本段质数表上的质数现在,数学家找到的最大的梅森数是一个有9808357位的数:2^32582657-1。数学虽然可以找到很大的质数,但质数的规律还是无法循通。
日文:要旨遗产税の役割は调节贫富の格差社会の不公平、一环。したがって、国际上で一般的遗产税の课税、わが国は现在の税制には相続税が、わが国の経済レベルが大幅に向上
相信很多朋友在上学期间都听过老师讲课外阅读十分重要,能够帮助我们学习语文,那么课外阅读除此以外还有哪些更重要的作用?为什么语文老师都希望学生去多多的课外阅读?今
问题一:文学类论文的研究意义该怎么写? 两个方面: 理论意义――即该文学给我们的社会、生活、思想等等带来的影响与意义【比如莎士比亚的戏剧对文艺复兴的影响】
毕业论文研究意义如下: 1、撰写毕业论文是检验学生在校学习成果的重要措施,也是提高教学质量的重要环节。 2、通过撰写毕业论文,提高写作水平是干部队伍“四化”建设
论文的目的、意义也就是要写为什么要研究、研究它有什么价值,一般可以先从现实需求方面去论述,指出现实当中存在这个问题所需要研究解决的内容,本论文的研究有什么实际作