• 回答数

    2

  • 浏览数

    93

2岁半的猫
首页 > 学术论文 > 关于推荐系统的毕业论文

2个回答 默认排序
  • 默认排序
  • 按时间排序

红泥娃娃

已采纳

此前整理过KDD21上工业界文章,本文主要整理和分类了Recsys 2021的Research Papers和Reproducibility papers。按照推荐系统的 研究方向 和使用的 推荐技术 来分类,方便大家 快速检索自己感兴趣的文章 。个人认为Recsys这个会议重点不在于”技术味多浓”或者”技术多先进”,而在于经常会涌现很多 新的观点 以及 有意思的研究点 ,涵盖推荐系统的各个方面,例如,Recsys 2021涵盖的一些很有意思的研究点包括:

还有些研究点也是值得一读的,比如推荐系统中的 冷启动 , 偏差与纠偏 , 序列推荐 , 可解释性,隐私保护 等,这些研究很有意思和启发性 ,有助于开拓大家的 研究思路**。

下面主要根据自己读题目或者摘要时的一些判断做的归类,按照 推荐系统研究方向分类 、 推荐技术分类 以及 专门实验性质的可复现型文章分类 ,可能存在漏归和错归的情况,请大家多多指正。

信息茧房/回音室(echo chamber)/过滤气泡(filter bubble) ,这3个概念类似,在国内外有不同的说法。大致是指使用社交媒体以及带有 算法推荐功能 的资讯类APP,可能会导致我们 只看得到自己感兴趣的、认同的内容 ,进而让大家都活在自己的 小世界里 ,彼此之间 难以认同和沟通 。关于这部分的概念可参见知乎文章: 。有四篇文章探讨了这样的问题。

此次大会在探索与利用上也有很多探讨,例如多臂老虎机、谷歌的新工作,即:用户侧的探索等。

涉及排序学习的纠偏、用户的偏差探索等。

Debiased Explainable Pairwise Ranking from Implicit Feedback

Khalil Damak, Sami Khenissi, and Olfa Nasraoui

Mitigating Confounding Bias in Recommendation via Information Bottleneck

Dugang Liu, Pengxiang Cheng, Hong Zhu, Zhenhua Dong, Xiuqiang He, Weike Pan, and Zhong Ming

User Bias in Beyond-Accuracy Measurement of Recommendation Algorithms

Ningxia Wang, and Li Chen

利用图学习、表征学习等做冷启动。

Cold Start Similar Artists Ranking with Gravity-Inspired Graph Autoencoders

Guillaume Salha-Galvan, Romain Hennequin, Benjamin Chapus, Viet-Anh Tran, and Michalis Vazirgiannis

Shared Neural Item Representations for Completely Cold Start Problem

Ramin Raziperchikolaei, Guannan Liang, and Young-joo Chung

涉及离线或在线评估方法,准确性和多样性等统一指标的设计等。

Evaluating Off-Policy Evaluation: Sensitivity and Robustness

Yuta Saito, Takuma Udagawa, Haruka Kiyohara, Kazuki Mogi, Yusuke Narita, and Kei Tateno

Fast Multi-Step Critiquing for VAE-based Recommender Systems

Diego Antognini and Boi Faltings

Online Evaluation Methods for the Causal Effect of Recommendations

Masahiro Sato

Towards Unified Metrics for Accuracy and Diversity for Recommender Systems

Javier Parapar and Filip Radlinski

涉及session维度的短序列推荐;使用NLP中常用的Transformers做序列推荐的鸿沟探讨和解决,这个工作本人还挺感兴趣的,后续会精读下!

结合联邦学习做隐私保护等。

Black-Box Attacks on Sequential Recommenders via Data-Free Model Extraction

Zhenrui Yue, Zhankui He, Huimin Zeng, and Julian McAuley

Large-scale Interactive Conversational Recommendation System

Ali Montazeralghaem, James Allan, and Philip S. Thomas

EX3: Explainable Attribute-aware Item-set Recommendations

Yikun Xian, Tong Zhao, Jin Li, Jim Chan, Andrey Kan, Jun Ma, Xin Luna Dong, Christos Faloutsos, George Karypis, S. Muthukrishnan, and Yongfeng Zhang

Towards Source-Aligned Variational Models for Cross-Domain Recommendation

Aghiles Salah, Thanh Binh Tran, and Hady Lauw

利用视觉信息做推荐。

Ambareesh Revanur, Vijay Kumar, and Deepthi Sharma

Huiyuan Chen, Yusan Lin, Fei Wang, and Hao Yang

探讨了美食场景下,多用户意图的推荐系统的交互设计。

“Serving Each User”: Supporting Different Eating Goals Through a Multi-List Recommender Interface

Alain Starke, Edis Asotic, and Christoph Trattner

涉及传统协同过滤、度量学习的迭代;新兴的图学习技术、联邦学习技术、强化学习技术等的探索。

Matrix Factorization for Collaborative Filtering Is Just Solving an Adjoint Latent Dirichlet Allocation Model After All

Florian Wilhelm

Negative Interactions for Improved Collaborative-Filtering: Don’t go Deeper, go Higher Harald Steck and Dawen Liang

ProtoCF: Prototypical Collaborative Filtering for Few-shot Item Recommendation

Aravind Sankar, Junting Wang, Adit Krishnan, and Hari Sundaram

知识图谱的应用以及图嵌入技术和上下文感知的表征技术的融合,这两个工作个人都挺感兴趣。

Antonio Ferrara, Vito Walter Anelli, Tommaso Di Noia, and Alberto Carlo Maria Mancino

Marco Polignano, Cataldo Musto, Marco de Gemmis, Pasquale Lops, and Giovanni Semeraro

涉及训练、优化、检索、实时流等。

Jeremie Rappaz, Julian McAuley, and Karl Aberer

Reproducibility papers可复现实验性质的文章,共3篇。分别探索了:序列推荐中的 采样评估策略 ;对话推荐系统中 生成式和检索式的方法对比 ; 神经网络 推荐系统和 矩阵分解 推荐系统的对比。

通过论文的整理和分类,笔者也发现了一些自己感兴趣的研究点,比如:推荐系统的回音室效应探讨文章;Transformers在序列推荐和NLP序列表征中的鸿沟和解决文章:Transformers4Rec;图嵌入表征和上下文感知表征的融合文章;NCF和MF的实验对比文章;

182 评论

无痕之音

综述类: 1、Towards the  Next Generation of Recommender Systems: A Survey of the State-of-the-Art and  Possible Extensions。最经典的推荐算法综述 2、Collaborative Filtering Recommender Systems. JB Schafer 关于协同过滤最经典的综述 3、Hybrid Recommender Systems: Survey and Experiments 4、项亮的博士论文《动态推荐系统关键技术研究》 5、个性化推荐系统的研究进展.周涛等 6、Recommender systems L Lü, M Medo, CH Yeung, YC Zhang, ZK Zhang, T Zhou Physics Reports 519 (1), 1-49 ( ) 个性化推荐系统评价方法综述.周涛等 协同过滤: factorization techniques for recommender systems. Y Koren collaborative filtering to weave an information Tapestry. David Goldberg (协同过滤第一次被提出) Collaborative Filtering Recommendation Algorithms. Badrul Sarwar , George Karypis, Joseph Konstan .etl of Dimensionality Reduction in Recommender System – A Case Study. Badrul M. Sarwar, George Karypis, Joseph A. Konstan etl Memory-Based Collaborative Filtering. Kai Yu, Anton Schwaighofer, Volker Tresp, Xiaowei Xu,and Hans-Peter Kriegel systems:a probabilistic analysis. Ravi Kumar Prabhakar recommendations: item-to-item collaborative filtering. Greg Linden, Brent Smith, and Jeremy York of Item-Based Top- N Recommendation Algorithms. George Karypis Matrix Factorization. Ruslan Salakhutdinov Decompositions,Alternating Least Squares and other Tales. Pierre Comon, Xavier Luciani, André De Almeida 基于内容的推荐:   Recommendation Systems. Michael J. Pazzani and Daniel Billsus 基于标签的推荐:   Recommender Systems: A State-of-the-Art Survey. Zi-Ke Zhang(张子柯), Tao Zhou(周 涛), and Yi-Cheng Zhang(张翼成) 推荐评估指标:   1、推荐系统评价指标综述. 朱郁筱,吕琳媛 2、Accurate is not always good:How Accuacy Metrics have hurt Recommender Systems 3、Evaluating Recommendation Systems. Guy Shani and Asela Gunawardana 4、Evaluating Collaborative Filtering Recommender Systems. JL Herlocker 推荐多样性和新颖性:   1. Improving recommendation lists through topic diversification. Cai-Nicolas Ziegler Sean M. McNee, Joseph Lausen Fusion-based Recommender System for Improving Serendipity Maximizing Aggregate Recommendation Diversity:A Graph-Theoretic Approach The Oblivion Problem:Exploiting forgotten items to improve Recommendation diversity A Framework for Recommending Collections Improving Recommendation Diversity. Keith Bradley and Barry Smyth 推荐系统中的隐私性保护:   1、Collaborative Filtering with Privacy. John Canny 2、Do You Trust Your Recommendations? An Exploration Of Security and Privacy Issues in Recommender Systems. Shyong K “Tony” Lam, Dan Frankowski, and John Ried. 3、Privacy-Enhanced Personalization. Alfred 4、Differentially Private Recommender Systems:Building Privacy into the  Netflix Prize Contenders. Frank McSherry and Ilya Mironov Microsoft Research,  Silicon Valley Campus 5、When being Weak is Brave: Privacy Issues in Recommender Systems. Naren Ramakrishnan, Benjamin J. Keller,and Batul J. Mirza 推荐冷启动问题:   Boltzmann Machines for Cold Start Recommendations. Asela Preference Regression for Cold-start Recommendation. Seung-Taek Park, Wei Chu Cold-Start Problem in Recommendation Systems. Xuan Nhat and Metrics for Cold-Start Recommendations. Andrew I. Schein, Alexandrin P opescul, Lyle H. U ngar bandit(老虎机算法,可缓解冷启动问题):  1、Bandits and Recommender Systems. Jeremie Mary, Romaric Gaudel, Philippe Preux 2、Multi-Armed Bandit Algorithms and Empirical Evaluation 基于社交网络的推荐:   1. Social Recommender Systems. Ido Guy and David Carmel A Social Networ k-Based Recommender System(SNRS). Jianming He and Wesley W. Chu Measurement and Analysis of Online Social Networks. Referral Web:combining social networks and collaborative filtering 基于知识的推荐:   1、Knowledge-based recommender systems. Robin Burke 2、Case-Based Recommendation. Barry Smyth 3、Constraint-based Recommender Systems: Technologies and Research Issues. A. Felfernig. R. Burke 其他:   Trust-aware Recommender Systems. Paolo Massa and Paolo Avesani

213 评论

相关问答

  • 关于推荐系统的毕业论文

    此前整理过KDD21上工业界文章,本文主要整理和分类了Recsys 2021的Research Papers和Reproducibility papers。按照

    2岁半的猫 2人参与回答 2023-12-08
  • 毕业论文关于系统的

    电力系统自动化是一项综合性质的技术,包含内容广泛,并且随着时代的发展,经济水平的提高,生活质量的提升,对于电力的需求和利用也就越来越大。下文是我为大家搜集整理的

    时空归宿 4人参与回答 2023-12-07
  • 推荐系统毕业论文答辩ppt

    1、首先,PPT封面应该有:毕设题目、答辩人、指导教师以及答辩日期;2、其次,需要有一个目录页来清楚的阐述本次答辩的主要内容有道哪些;3、接下来,就到了答辩的主

    cool100886 6人参与回答 2023-12-08
  • 深度推荐系统论文模板

    论文:地址: 论文题目:《xDeepFM: Combining Explicit and Implicit Feature Interactions f

    秋末夏初 3人参与回答 2023-12-10
  • 基于文本相似度推荐系统毕业论文

    综述类: 1、Towards the  Next Generation of Recommender Systems: A Survey of the

    初记装饰 4人参与回答 2023-12-06