司马懿砸缸
CVPR论文可以说是世界顶级水平论文。
图片来源于网络
CVPR是IEEE Conference on Computer Vision and Pattern Recognition的缩写,即IEEE国际计算机视觉与模式识别会议。该会议是由IEEE举办的计算机视觉和模式识别领域的顶级会议。这是一个一年一次的会议,举办地从来没有出过美国。正如它的名字一样,这个会上除了视觉的文章,还会有不少模式识别的文章,当然两方面的结合自然也是重点。
下面是前几年CVPR论文的接收情况:
图片来源于网络
cvpr录用标准相当严格,通常会议整体的录取率不超过25%,而口头报告的论文比例更只占5%不到。其会议的组织方是一个循环的志愿群体,其成员遴选一般会在某次会议召开的三年前进行。cvpr的审稿过程中会议的审稿方与投稿方均不知道对方的信息。而且一篇论文经常需要由三位审稿者进行审读。最后再由会议的领域主席决定是否接收。
在各种学术会议统计中,CVPR被认为有着很强的影响力和很高的排名。目前在中国计算机学会推荐国际学术会议的排名中,CVPR为人工智能领域的A类会议。
寄居小妖妖
小目标问题在物体检测和语义分割等视觉任务中一直是存在的一个难点,小目标的检测精度通常只有大目标的一半。
CVPR2019论文: Augmentation for small object detection 提到了一些应对小目标检测的方法,笔者结合这篇论文以及查阅其它资料,对小目标检测相关技巧在本文进行了部分总结。
小目标的定义: 在MS COCO数据集中,面积小于 32*32 的物体被认为是小物体。
小目标难以检测的原因: 分辨率低,图像模糊,携带的信息少。由此所导致特征表达能力弱,也就是在提取特征的过程中,能提取到的特征非常少,这不利于我们对小目标的检测。
1、由于小目标面积太小,可以放大图片后再做检测,也就是在尺度上做文章,如FPN(Feature Pyramid Networks for Object Detection),SNIP(An Analysis of Scale Invariance in Object Detection – SNIP)。
Feature-Fused SSD: Fast Detection for Small Objects, Detecting Small Objects Using a Channel-Aware Deconvolutional Network 也是在多尺度上做文章的论文。
2、在Anchor上做文章(Faster Rcnn,SSD, FPN都有各自的anchor设计),anchor在设置方面需要考虑三个因素:
anchor的密度: 由检测所用feature map的stride决定,这个值与前景阈值密切相关。
anchor的范围: RetinaNet中是anchor范围是32~512,这里应根据任务检测目标的范围确定,按需调整anchor范围,或目标变化范围太大如MS COCO,这时候应采用多尺度测试。
anchor的形状数量: RetinaNet每个位置预测三尺度三比例共9个形状的anchor,这样可以增加anchor的密度,但stride决定这些形状都是同样的滑窗步进,需考虑步进会不会太大,如RetinaNet框架前景阈值是时,一般anchor大小是stride的4倍左右。
该部分anchor内容参考于:
3、在ROI Pooling上做文章,文章SINet: A Scale-Insensitive Convolutional Neural Network for Fast Vehicle Detection 认为小目标在pooling之后会导致物体结构失真,于是提出了新的Context-Aware RoI Pooling方法。
4、用生成对抗网络(GAN)来做小目标检测:Perceptual Generative Adversarial Networks for Small Object Detection。
1、从COCO上的统计图可以发现,小目标的个数多,占到了,但是含有小目标的图片只有,大目标所占比例为,但是含有大目标的图像却有。这说明有一半的图像是不含小目标的,大部分的小目标都集中在一些少量的图片中。这就导致在训练的过程中,模型有一半的时间是学习不到小目标的特性的。
此外,对于小目标,平均能够匹配的anchor数量为1个,平均最大的IoU为,这说明很多情况下,有些小目标是没有对应的anchor或者对应的anchor非常少的,即使有对应的anchor,他们的IoU也比较小,平均最大的IoU也才。
如上图,左上角是一个anchor示意图,右上角是一个小目标所对应的anchor,一共有只有三个anchor能够与小目标配对,且配对的IoU也不高。左下角是一个大目标对应的anchor,可以发现有非常多的anchor能够与其匹配。匹配的anchor数量越多,则此目标被检出的概率也就越大。
实现方法: 1、Oversampling :我们通过在训练期间对这些图像进行过采样来解决包含小对象的相对较少图像的问题(多用这类图片)。在实验中,我们改变了过采样率和研究不仅对小物体检测而且对检测中大物体的过采样效果
2、Copy-Pasting Strategies:将小物体在图片中复制多分,在保证不影响其他物体的基础上,增加小物体在图片中出现的次数(把小目标扣下来贴到原图中去),提升被anchor包含的概率。
如上图右下角,本来只有一个小目标,对应的anchor数量为3个,现在将其复制三份,则在图中就出现了四个小目标,对应的anchor数量也就变成了12个,大大增加了这个小目标被检出的概率。从而让模型在训练的过程中,也能够有机会得到更多的小目标训练样本。
具体的实现方式如下图:图中网球和飞碟都是小物体,本来图中只有一个网球,一个飞碟,通过人工复制的方式,在图像中复制多份。同时要保证复制后的小物体不能够覆盖该原来存在的目标。
网上有人说可以试一下lucid data dreaming Lucid Data Dreaming for Multiple Object Tracking ,这是一种在视频跟踪/分割里面比较有效的数据增强手段,据说对于小目标物体检测也很有效。
基于无人机拍摄图片的检测目前也是个热门研究点(难点是目标小,密度大)。 相关论文: The Unmanned Aerial Vehicle Benchmark: Object Detection and Tracking(数据集) Drone-based Object Counting by Spatially Regularized Regional Proposal Network Simultaneously Detecting and Counting Dense Vehicles from Drone Images Vision Meets Drones: A Challenge(数据集)
1: 2: 3: 4: 5: 6: 7:
M15981511985
cvpr论文是具有很强的影响力和很高的排名的论文,可以说是世界顶级型论文。
cvpr 全称IEEE Conference on Computer Vision and Pattern Recognition,中文翻译过来就是IEEE国际计算机视觉与模式识别会议,该会议是由IEEE举办的计算机视觉和模式识别领域的顶级会议。这是一个一年一次的会议,举办地从来没有出过美国,可以说是计算机视觉领域全球最具影响力、内容最全面的顶级学术会议。
cvpr录用标准相当严格,通常会议整体的录取率不超过25%,而口头报告的论文比例更只占5%不到。其会议的组织方是一个循环的志愿群体,其成员遴选一般会在某次会议召开的三年前进行。cvpr的审稿过程中会议的审稿方与投稿方均不知道对方的信息。而且一篇论文经常需要由三位审稿者进行审读。最后再由会议的领域主席(area chair)决定是否接收。
所以在各类学术会议统计中,cvpr也被认为有着很强的影响力和很高的排名。自然,cvpr论文的级别就可想而知了,cvpr论文什么级别,可以说其级别相当于顶级SCI期刊论文级别同等甚至更高。
论文地址: 前置文章:10/16、10/17、10/18 本文提出了Point Fractal Network(PF-Net),旨在从不完整的点云数据中
对于目标检测方向并不是特别熟悉,本文记录一下RCNN, fast-RCNN, faster-RCNN, mask-RCNN这4篇有关目标检测的论文笔记和学习心得
论文原文: YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的
在目标检测中,IoU 为预测框 (Prediction) 和真实框 (Ground truth) 的交并比。如下图所示,在关于小猫的目标检测中,紫线边框为预测框
论文名称:Rich feature hierarchies for accurate object detection and semantic segment