DD大小姐
数学是研究现实世界数量关系与空间形式的一门科学, 数与形的统一结合贯穿于数学学科研究与发展的始终。数和形 是数学研究的两大对象,数形结合法是一种重要的数学思想方法。数 是指数据与式子,主要表现在以下几方面:函数、方程、不等式、数列、复数、排列组合等。形 可以理解为几何图形。采用数形结合法去解数学题,就是对题目中的条件与结论,既分析其代数含义又分析其几何含义。力图将代数和几何统一起来去找出解题思路。 数形结合是数学中的一种重要思想与解题策略, 利用数形结合这一思想, 可以较直观地对问题进行分析, 解决许多比较抽象的数学问题。因此, 通过数形结合能很好地解决一些问题, 对培养学生的解题能力非常重要。 一、渗透数形结合思想,提高学生的数学素养 素质教育是通过科学有效的途径,开发受教育者的潜能,以完善和全面的提高学生素质为根本目的教育。数学素质在人的素质养成上具有不可替代的作用。这是因为数学的直观思维、逻辑推理、精确计算以及结论明确无误等特征是每个学生应该具备的科学文化素质。由此可见,对数学教师来说,要突出素质教育的数学教学关键是加强数学思想方法的教学,因为数学思想方法作为数学知识的精髓,它既是数学中的深层次的基础知识,又是解决问题和思维策略。数学思想方法掌握的深、浅度,直接关系到能否顺利或比较简捷地解决问题;关系到是否深刻地对数学知识本质认识,数学规律的理性认识;关系到是否能把某些数学内容和对数学的认识过程中提炼上升的数学观点加以应用。而这些数学知识的掌握是以解题思维能力作为起点的。因此,在中学数学教学中,如何引导学生选择恰当的方法来提高解题速度和效率,应注重培养学生解题能力,掌握多种方法。尤其数形结合法的教学更是学生应该熟练掌握的重要思维方法。 数形结合是解决数学问题的重要思想,其实质是把抽象的数学语言与直观的图形结合起来,以直观辅助抽象的思考,以抽象的思考研究直观的细节。著名数学家华罗庚先生说过:数无形,少直观;形无数,难入微。发掘数与形互相依存的关系,把数式运算的周密性和图形的直观性巧妙结合起来,对解决数学问题非常有益,它常能有效突破解题障碍,顺利沟通已知和未知,使问题由繁化简,由难化易。数形结合思想方法是中学数学基础知识的精髓之一,是把许多知识转化为能力的桥。在中学数学教学中,许多抽象问题学生往往觉得难以理解,如果教师能灵活地引导学生进行数形结合,转化为直观、易感知的问题,学生就易理解,就能把问题解决,从而获得成功的体验,增强学生学习数学的信心。尤其是对于较难问题,学生若能独立解决或在老师的启发和引导下把问题解决,心情更是愉悦,这样,就容易激发学生学习数学的热情、兴趣和积极性。同时,学生一旦掌握了数形结合法,并不断进行尝试、运用,许多问题就能迎刃而解。 二、在数学教学中渗透数形结合思想 本文特从以下几个方面,对数形结合’解题进行例析研究。1几何图形与数量关系相结合几何中的计算与证明问题,常常根据几何图形的特点挖掘蕴涵的数量关系;一些数量关系的比较问题,常常构造出由数量关系反映出的几何图形,根据图形的直观性寻求解决。2函数图象与数量关系相结合数轴使实数与数轴上的点建立起一一对应的关系,平面直角坐标系使有序实数对与平面上的点建立起一一对应的关系,为数形结合创造了充分的条件函数图象在直角坐标系的位置及变化趋势,为研究函数的性质提供了直观、形象的依据,反过来,依据函数的性质又能推断函数图象在直角坐标系屮的位置及变化情况,数形结合成为研究解决函数问题的重要思想方法。3图形的运动变化与函数问题的结合函数建立起两个变量之间的关系,运动变化便进入了数学,运动改变了图形的位置、形状,其中蕴涵的 数量关系也会发生变化,研究图形运动变化体现出来的函数关系,使数形结合更具活力,更丰富多彩。 4 注重数学思想方法的教学 加深认识,让学生亲自参与知识发现的过程。恩格斯说:世界不是一成不变的事物的集合体,而是过程的集合体。对于数学而言,知的发生过程就是思维方法的产生过程,因此教师在平时的教学过程中,应切实加深学生对知识的认识,让学生亲自去参与知识发现的过程,揭示事物的本质特征。 数学学习贯穿着两条主线,即数学知识和数学思想方法,通性通法蕴涵着丰富的数学思想和方法,更贴近学生的认知水平,符合常人的思维习惯,同样也有利于培养学生的数学能力。在初中数学中,常用的数学思想有函数和方程思想、数形结合思想分类讨论论思想、化归转化思想、整体处理思想等,上面教学片断的探究题,教者通过引导学生从数和形的角度来解决问题,很好地发展了学生的方程思想和数形结合思想,同时也渗透了数学分类的思想方法。在平时的教学中,我们应在解决问题的过程中,对这些数学思想加以揭示、运用和提炼,以提高学生的思维水平和解题能力。 人常说,数学是锻炼思维的体操,恐怕就是因为
夏日风清凉
绝对值是初中数学的一个重点,也是一个比较难的内容.学好绝对值的概念,对有理数的加减法定义的理解和其在二次根式中的应用都非常重要。下文是我为大家搜集整理的关于七年级数学绝对值论文的内容,欢迎大家阅读参考!
浅析初中数学中的绝对值
初中数学从一开始学习,就对小学学过的数域进行了一次扩展,此时一个非常重要的数学概念的出现就成为必然,它就是绝对值。绝对值无论对初中数学的学习,还是高中数学学习而言,既是重点又是难点。尤其对初中生而言,对绝对值概念的理解和运用过于表面化,对此概念的理解不够深刻,造成解题失误.因而,在数学教学中要引起教师的高度重视,促进学生对绝对值概念深刻理解。
一、绝对值概念与有理数大小比较之间的关系
首先要理解绝对值的几何意义,它是距离,是一个非负的量,具有非负性,即|a|≥0;其次要理解绝对值的性质,它从数的性质的三个方面揭示了绝对值的意义:正数的绝对值是它本身,零的绝对值是零,负数的绝对值是它的相反数.
例如,a、b、c三点在数轴上的位置如下图所示, 试求:|a+b|+|b+c|+|a-c|.
解:由数轴可知:c>0,a |c|>|b|,
∴a+b<0,b+c>0,a-c<0
∴原式=-(a+b)+(b+c)-(a-c)=-a-b+b+c-a+c=2c-2a
正因为有了绝对值的概念,两个负数的比较才能通过绝对值的关系,转化成学生熟悉的正数大小的比较,而不用逐个数在数轴上表示出来,化归成学生已经掌握的知识.
二、绝对值与有理数加减运算之间的关系
对于有理数的加减法而言,正是有了绝对值这一利器,把它最终统一成小学学过的加减法,同号两数相加,取本身的符号,并把它们的绝对值相加;绝对值不相等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值.
例如,求一个数x,使它到-3的距离等于7.
解:由同一数轴上两点间的距离公式可知:
|x-(-3)|=7 ∴|x+3|=7 ∴x+3=±7 ∴x=4或x=-10
有了这个结论,在今后函数的学习中求线段长、求面积、求周长等的运用非常广泛,同时对平面内两点间的距离公式的理解也更加容易.
三、绝对值与二次根式的关系
二次根式中=|a|,因为a2具有非负性,而a的有意义范围是全体实数,问题的本质又回到了绝对值的运算,这种运算在二次根式的相关运算中出现频率比较高,又是学生解题的易错点,仍然强调的是数的正负性的判断.由此可见,绝对值的应用绝非一般,需要教师在日常教学中不断地强化、深化,抓住联系,深入理解,才能够顺利地解决相关问题。同时,绝对值非负性和平方关系的非负性,二次根式非负性的有机结合,也是经常性出现的,多数情况下是以非负数的和为零的形式出现.此时是充分运用了几个非负性数和为零,不可能出现互相抵消的情况,而零的相反数是零,从而每一个非负数分别是零.在此前提下进行求解,解决问题。
例如, a、b、c为三角形的三边,且+|b-4|+(c-5)2=0,试求三角形的周长.
因为=|a-6|,所以有|a-6|+|b-4|+(c-5)2=0,而|a-6|≥0,|b-4|≥0,(c-5)2≥0,故a-6=0,b-4=0,c-5=0, 所以a=6,b=4,c=5,三角形的周长为a+b+c=6+4+5=15.
四、绝对值与不等式的关系
对于绝对值几何意义的认识和理解,解决不等式|x|≥a和|x|≤a(a>0)的解集,理解起来就要相对容易一些;对|x|≥a而言,可理解为到原点的距离大于a的点,那么,一定是在数a的右边的点,或数-a左边的点,故解集为x>a或x<-a;对|x|≤a而言,可理解为到原点的距离小于a的点,那必然是在-a以右和a以左,故解集为-a 编辑:谢颖丽
浅析初中数学绝对值
摘 要: 绝对值问题是学生进入初中阶段学习后在数学上遇到的第一个拦路虎,许多学生学习存在不少疑惑.本文从绝对值的概念入手,从四个方面分析了绝对值学习中存在的障碍,并提出相应的教学建议.
关键词: 绝对值 数轴 运算 初中数学教学
绝对值是初中数学的一个重点,也是一个比较难的内容.学好绝对值的概念,对有理数的加减法定义的理解和其在二次根式中的应用都非常重要,对高中继续学习绝对值方程,绝对值不等式,体会绝对值中蕴含的分类和数形结合思想具有重要意义.下面从绝对值的概念教学、常见的有关绝对值的错题及错因分析等方面进行论述,进而提出中学绝对值内容的几点教学建议,希望能对一线教师有所帮助.
一、对绝对值概念教学的思考
在中学数学中,许多数学概念或命题看似简单,课本上也给出了标准定义,但其真正蕴涵的数学本质到底是什么却令人难以捉摸,甚至在定义中也未能表现出来,绝对值的概念就是如此.若只抓住绝对值概念的表层意义,而未能领悟其实质进行教学,则可能出现的结果:一方面,学生在学习过程中容易出现理解上的困难,另一方面,由于未抓住该知识点的数学核心,在解决相关问题时只能处理较低水平的问题,解决高水平的问题则很容易出错.此外,这种表层意义上的绝对值概念的学习不利于学生领悟数学思想,汲取数学精髓,从而举一反三.那绝对值的概念到底应该如何理解呢?我们不妨来看看.
这种运算与加减乘除等运算的区别在于,后者在两个数之间进行,是二元运算;而前者是对一个数自身的运算,为一元运算.学生在此前接触的绝大多数运算均为二元运算,但中小学数学中出现的一元运算并不少,如倒数,相反数,乘方,开方,对数,阶乘等,因此,在此处讲课时渗透一元运算的思想,既可加深理解前面所学(倒数,相反数),又可为今后的学习(乘方,开方,对数,阶乘)奠定基础.
二、有关绝对值的易错题及错因分析
1.对有理数集的分类不清.绝对值概念中涉及对有理数域这个无限集的一个本质分类,正确掌握这个分类是掌握绝对值概念的关键.但学生过去仅仅是根据事物的外部特征或外部联系进行分类的,即对接触到现象分类,因而在此感到手足无措.这时需要教师的帮助和引导,使之完成从现象分类到本质分类的转化.倘若这种转化不成功,学生在解题时就很容易混乱.
3.用字母代替数未能掌握好.初中一年级学生刚接触代数时,经历了由算术到代数的过渡,这其中的一个重要标志就是字母代替数.绝对值这个概念,对于一个具体的有理数的绝对值一般容易理解,而对于一个字母或含字母的式子的绝对值,有的同学就弄不清楚了.不少同学认为|a|=a,|-a|=a.这是错误的认识,这是将看成了一个具体的数,而不是可以代表任何数的抽象的字母符号.要想正确解这道题,首先,学生就得理解字母符号a可以是正数、负数、零等任意实数,-a也可以是任意实数,甚至于1-a,2+3a等这样一些含有字母的式子都可以表示任意实数,也即任意实数这个概念有多种表现形式,这种意义单一形式多样的不对称性加大了理解难度.若将实数更具体地分为正数、负数和零,则意义与其形式多得多,更难以理解.
4.数形结合的意识较淡薄.课本引入绝对值概念时是这样定义的:一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.什么是距离呢?就是点与点之间的长度.这也可以说明为什么a≥0.此外,为了理解数轴的实质,必须在教学中运用分类思想,让学生明白:在数轴上0是分界点,将有理数分成两部分,负有理数在0的左边,正有理数在0的右边.在此基础上着重强调:所有有理数都可用数轴上的点表示.这样学生能初步在脑子里建立数形对应,了解新扩充的数(负有理数)与以前学过的数(正有理数)之间的联系,较好地克服对旧有概念的思维倾向.但是,有些教师在教学中没有运用分类思想,学生仍然保留对旧有概念的思维倾向,不能较好地把数形结合起来,这导致学生对数轴概念掌握不好,从而影响对绝对值概念的理解.
三、教学建议
1.对绝对值概念要从多个不同角度理解深化,可结合之前学过的倒数、相反数等概念,透过对比与分析,渗透绝对值作为一种运算的思想,帮助学生更好地理解和运用绝对值.
2.在扩充数域的学习中加强对负数概念的认识,巩固分类讨论思想.例如可在讲相反数时补充双重符号化简-(-a)=a,这样可以及时纠正学生对负数概念的错误认识.在学习数轴概念时,应使学生对有理数的分类有一个几何直观上的初步理解,并着重强调每一个有理数都确定数轴上一个点,帮助学生在头脑中初步建立数形对应.
3.从具体的数字到抽象的字母这一认识上的飞跃需要反复用字母取值训练,因为正确的认识不是一次两次通过分析和综合就可以形成的,它需要不断反复地进行分析、综合.每一次重复都会使我们对问题的认识更深一步,从而使问题得到解决.绝对值定义是通过字母和数轴提炼出来的,刚进入初中的学生对这些抽象的概念是很难适应的,我们必须通过像2,-6,π这些具体的数字来体现,然后过渡到具体的字母.特别是a作为一个正数形式出现而可以表示任意的数表示疑惑比如:若a<0,那么-a=?摇?摇 ?摇?摇.对于刚接触这类题目,特别是对理解力稍差的学生可以通过具体的数字帮其解惑,再通过强化训练使其以后不再错.
4.在绝对值教学中紧紧抓住绝对值的几何意义,注意加深对距离、数轴等涉及形的概念的认识,强化数形结合的观点.例如可让两学生沿讲台相反的方向走任意的长度体会距离的非负性,也即绝对值的非负性。数形结合是中学阶段重要的数学思想,贯穿整个初中数学始终,在初一刚刚出现这种思想要充分应用多种教学手段,促进学生对这种思想的适应和理解.“数无形时少直观,形无数时难入微”,利用数形结合的数学思维可以密切知识间的纵横联系,培养类比联想的能力,这对加深概念理解、开拓解决问题的思路有着非常重要的作用.
参考文献:
[1]杨军华.漫谈初中数学绝对值[J].新课程学习,.
Jonathan261
初中数学是为之后的数学学习打下基础的,学好初中的知识点很重要,下面我为你整理了几篇初中数学教学论文范文,希望对你有帮助。
数学教学论文篇一
一、引进有效的教学方法
科学有效的教学方法对提高整体教学的有效性有很大的帮助。以初中函数的教学为例,初中三年级就开始引入了函数的相关概念。一般而言,学生会根据教科书中给出的函数方程进行简单的计算,教师也只是把一些公式教给学生,让学生进行一味的数据计算。在这种情况中,学生只能认识到函数是一个抽象的概念,根本不知道函数到底是怎么来的,也不知道对称轴、截距到底是什么。所以,教师要改进方法,进行有效的初中数学教学。
而数形结合则是一种很好的、能实现有效教学的方法之一。数形结合也就是教师要根据函数题画出相应的函数图形,以便于学生能更加清晰、明了地理解数学函数的相关概念和性质,能快速理解那些抽象难懂的问题。当然,这也就能有效地为接下来的高中函数的学习打下坚实的基础,把抽象知识变为了具体的知识。综上所述,教师应在初中函数的教学过程中改进、并利用科学有效的教学方法,以不断提高初中数学的教学质量。
二、进行激励性教育
在学习的过程中,每个学生都会希望得到教师的表扬和称赞,因为在学生眼里,教师的嘉奖是教师对自己的肯定。在这种动力的驱使下,学生的学习热情得到了激发,就会将学习当做是一件幸福的事。这也就从侧面激发了学生学习的热情,是快乐学习的具体表现形式之一。“鼓励别人一句强于指责别人百句”,这是一句英国的谚语。
每个人都希望自己无时无刻不得到别人的肯定与认可,谁都不希望自己总是被别人指责。在初中数学教学过程中,每位教师也应该多鼓励自己的学生,提升学生的学习热情,增进师生之间的交流,使学生能够毫无顾虑地向教师提问,这样就不会出现因为畏惧而不敢提问的情况。反之,学生学习的热情降低,学生消极对抗教师,师生之间的距离也拉远了。这样的做法既不利于学生初中数学的学习,也对教师的工作产生了极大的威胁。
三、寓教于乐的教学
在平时的学习中,教师要采取寓教于乐的教学方式,在教学中适当地加入相对应的数学游戏,让学生劳逸结合,实现既在娱乐中学习,又在学习中娱乐的教学和学习效果。通过这种方式,学生认识到学习是一件有趣快乐的事,并不是一件枯燥无味的事情。例如,针对初中数学书中的几何问题,教师就可以举办一个叫做“辅助线”的游戏。
游戏大致内容是教师将学生分组,并且给出一个几何的图形,让小组思考该如何做辅助线,并且思考一下假若加入这条辅助线,会对解题有什么样的帮助,随后再继续深化,讨论一下加入一条辅助线后,会不会产生另一个新的问题,从而使所有学生都参与到这个活动中来。这种教学模式可以采取举手抢答的方式,抢答成功就会得到相应的分数,在游戏活动最后,累计分数,得分最高的小组会获得奖励。这种游戏的方式,能让学生在愉快的学习中加深对函数知识的理解,有利于调动学生学习的积极性。这也是提高初中教学有效性的方式方法之一。
四、总结
总体来说,初中数学的学习是学生逻辑思维开发的最初阶段,是高中数学教育的基础。所以,教师有必要加强初中数学教育的有效性研究。以上笔者针对如何提高初中数学教学有效性的方式方法做了初步探讨,希望能够给今后初中数学的有效性教学的发展做出一定的贡献。
数学教学论文篇二
一、差别性教学的作用
(一)通过差别性教学,学生更好地成长
由于学生处于不同的知识水平,他们对知识的运用并非相同,特别在数学领域,人们在应用推理、判断方面程度是不一样的,有较强推理、判断能力的学生常常不用花费太多的时间就掌握了,但是那些应用推理、判断能力较差的学生就要花费很久。因此,教师要是根据课本上的知识来教,那么好的学生没办法得到更长远的发展,而差的学生也没办法得到提高,显而易见,这样的教学办法是不可取的。所以差别性教学教学有利于改善这一点,从每个学生的突出点出发,根据他们的突出点来制定符合他们成长的教学手段与内容,学生才可以得到更好的发展。
(二)使学生更加自信
推理、判断能力比较强的学生常常热衷于深入地研究难以解决的方面,这些学生在深入研究时能得到自信,要是直接采取同一种教育方式去教育所有的学生,那样就很难使学生获得自信,会使学生不愿意深入探究难以解决的方面。另一方面,那些应用推理、判断的程度比较浅的学生就因为太多的失败而不再相信自己了,产生放弃的念头,从而使他们渐渐地落后于其他人。因此,通过依据学生水平不同进行教学的方式,能使好的学生深入研究难以解决的方面,使落后的学生从自身实际出发,一步一个脚印,踏踏实实地进步,这样所有的学生就可以更好地完成自己的学业,更加相信自己。
二、初中数学教学中差别性教学的实施办法
(一)从学生的水平出发,有序地分组
通常,学生可以分为三种层次:第一层次的学生是起点高,有好的方法和技巧,应用推理、判断程度高的;第二层次的学生是起点一般,但有较好的方法和技巧,应用推理、判断程度较高的;第三层次的学生是起点低的。我们应进行有序分组。有序分组的过程中应关注下面三个方面:首先,必须清楚地知道学生的突出点是什么,教师与学生,教师与家长,学生与家长应好好交流。其次,有序分组应理解学生的内在想法,不可只依据卷面测试结果来区分学生,分组应该是具有伸缩性的而不是硬性的。卷面测试结果属于有序分组的一部分,学生了解自身的状况,有自己的目标,所以我们应理解他们,不能忽略他们的内在想法,这样他们才会相信自己。待分组结束后,我们要进行差别性教学。最后,教师在看待不同组的学生时,应一视同仁,付出自己的最大努力。
(二)依据分组后学生的情况,采取不同的教学方式
我们要考虑到所有的学生,将差别性教学深入应用在课堂上。1.引入新的内容。数学的内在关系是紧密相连的,教师可以回忆学过的内容来引入新的内容,此时则通过第三水平学生去回忆学过的内容,使其加深印象。第二层次的学生则解决新的内容的引出,第一层次的学生则完善第二层次的学生的内容。2.解说新的内容。解说新的内容时要考虑到第三层次的学生,循序渐进。3.课上操练。结束新的内容时,教师要对学生进行操练,第一层次的学生比较得心应手,教师则让学生操练转变形式的习题,可以给第二层次的学生比较有难度的习题进行操练。另外教师要认真对待第三层次的学生,提供难度小的习题有助于他们加深记忆。
(三)依据分组后学生的情况,安排的任务有所不同
安排的任务要使学生可以在其力所能及的范围内,从而有助于他们的成长。第一层次的学生可以多安排统合性较高的习题,加强他们的处理数学问题的规则和程序,使他们挖掘习题中那些数学处理的规则和程序。第二层次的学生,主要学会普通的题目和一部分难题的思考方向。第三层次的学生则重复做题,做很多的习题来巩固基础。
(四)依据分组后学生的情况,评估的方面有所不同
因为学生的核心目的有所不同,所以要使用不同的评估方法。举个例子,教师依据水平不同的学生,应把考试题目进行区分,让不同水平的学生做不同的题目。第一层次的学生重点做难题;第二层次的学生重点则是中等题目,外加小部分难题;第三层次的学生重点放在基本的题目上,外加一小部分中等题目。那么,所有的学生都可以在自己的范围内得到进步。
三、总结
差别性教学是根据从实际出发来解决问题的哲学思路来进行的,该方式可以一对一地处理学生遇到的困境,让所有学生都可以发挥自己的优点,弥补自己的不足,鼓励学生学习,使学生对自己有信心,有助于学生的各个方面的协调与进步。
数学教学论文篇三
一、课堂上进行有针对性的有效提问
1.问题必须要有思维容量。
不能够激发学生思考的提问是失败的,只有促进了学生的思维发展,拓宽了他们的思路,才能够提升其探究能力,引起他们对数学的热情。即使学生回答问题偏颇,即便是并非尽善尽美,教师也要表扬其优点,给予赞美,加以挖掘。面积求出来之后,斜边AB上的高如何得出?此时教师利用多媒体,展示求直线y=2x+3、y=-2x-1及y轴围成的三角形的面积。这样就把问题由一条直线转化为两条直线与坐标轴围成的面积。
2.锻炼提问的技巧。
问题的提出也有优劣,掌握提问方式,提高问题的质量,抓住学生的兴趣,创造良好的学习氛围,学生的积极性能够充分地被调动起来,学生就会顺利地成为课堂的主体、学习的主人。
二、让学生“想学”,教学语言风趣
美国心理学家调查发现,学生都喜欢幽默的教师,这样学习氛围轻松愉快,这一点是促使学生“想学”的主要因素,什么学科概莫能外。这就要求教师具有很高的综合修养。其中一点,要语言幽默:幽默是伟大的智慧,是教学的润滑剂。比如,我向学生提出分析这个“数”字,由“米女攵”构成,什么意思呢?也就是说,你只有学好了数学,你毕业以后才可能找到好的工作,才可能有钱买米吃,才可能找到女朋友,那么这个“攵”是什么意思呢?这个更凸显数学的重要了,就是以手持杖或执鞭责打学不好数学的人……这些生动形象的解说,不胜枚举,当然还需要教师表情、语调等的配合。
三、对学生进行正确的思维训练
对学生进行正确的思维训练要充分唤起学生的主动性。讲例题,让学生自主审题,题目给了学生就可以,然后读题、审题、解题一系列的思维活动让学生自己完成;学生有了问题,反复推敲“个体参悟”,不行则“同伴互导”,再不行,“教师解难”,即使是“教师解难”,一样不要急于递给答案,教师应对学生逐步启发:问题里涉及什么概念?用什么公式才能表达这一规律?问题解决了,还有没有别的解题方法?学生养成思维训练的习惯,随着综合能力的提高,课堂上随时就会有智慧熠熠生辉了。
四、总结
总之,数学是培养人的创造性素质的最佳途径,成功非一日之功,我们教师要为教育竭尽微忱,为学生终生的数学学习奠定良好的发展基础。
初中数学教学数形结合思想应用 几何是初中数学教学的重点,相比代数的抽象化,几何因直观化的图形图像等,赢得了学生的喜欢。将抽象的代数与形象的函数图像结合起来,通过
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没
数学是研究现实世界数量关系与空间形式的一门科学, 数与形的统一结合贯穿于数学学科研究与发展的始终。数和形 是数学研究的两大对象,数形结合法是一种重要的数学思想方
文献综述格式文献综述格式与般研究性论文格式所同研究性论文注重研究结文献综述要求向读者介绍与主题关详细资料、态、进展、展望及面评述文献综述格式相总说般都包含具体格
Topic: the recursive formula for the series - Abstract: recursive formula for th